Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.302
Filtrar
1.
Environ Monit Assess ; 196(6): 540, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733434

RESUMO

X-ray fluorescence is a fast, cost-effective, and eco-friendly method for elemental analyses. Portable X-ray fluorescence spectrometers (pXRF) have proven instrumental in detecting metals across diverse matrices, including plants. However, sample preparation and measurement procedures need to be standardized for each instrument. This study examined sample preparation methods and predictive capabilities for nickel (Ni) concentrations in various plants using pXRF, employing empirical calibration based on inductively coupled plasma optical emission spectroscopy (ICP-OES) Ni data. The evaluation involved 300 plant samples of 14 species with variable of Ni accumulation. Various dwell times (30, 60, 90, 120, 300 s) and sample masses (0.5, 1.0, 1.5, 2.0 g) were tested. Calibration models were developed through empirical and correction factor approaches. The results showed that the use of 1.0 g of sample (0.14 g cm-2) and a dwell time of 60 s for the study conditions were appropriate for detection by pXRF. Ni concentrations determined by ICP-OES were highly correlated (R2 = 0.94) with those measured by the pXRF instrument. Therefore, pXRF can provide reliable detection of Ni in plant samples, avoiding the digestion of samples and reducing the decision-making time in environmental management.


Assuntos
Monitoramento Ambiental , Níquel , Plantas , Espectrometria por Raios X , Níquel/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Espectrometria por Raios X/métodos , Plantas/química , Poluentes do Solo/análise
2.
PLoS One ; 19(5): e0302496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709760

RESUMO

Adult mosquitoes require regular sugar meals, including nectar, to survive in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors (ORs) activated by plant volatiles to orient toward flowers or honeydew. The yellow fever mosquito, Aedes aegypti (Linnaeus, 1762), possesses a large gene family of ORs, many of which are likely to detect floral odors. In this study, we have uncovered ligand-receptor pairings for a suite of Aedes aegypti ORs using a panel of environmentally relevant, plant-derived volatile chemicals and a heterologous expression system. Our results support the hypothesis that these odors mediate sensory responses to floral odors in the mosquito's central nervous system, thereby influencing appetitive or aversive behaviors. Further, these ORs are well conserved in other mosquitoes, suggesting they function similarly in diverse species. This information can be used to assess mosquito foraging behavior and develop novel control strategies, especially those that incorporate mosquito bait-and-kill technologies.


Assuntos
Aedes , Flores , Receptores Odorantes , Compostos Orgânicos Voláteis , Animais , Aedes/fisiologia , Aedes/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Feminino , Masculino , Febre Amarela/transmissão , Odorantes/análise , Plantas/metabolismo , Plantas/química
3.
Braz J Biol ; 84: e282386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695424

RESUMO

Due to the need to achieve the principles of sustainable development and to understand the processes of formation of phytocenoses in areas that were adversely affected by the industrial impact, this study assessed the condition of the Grachevsky uranium mine (Kazakhstan), which underwent conservation procedures about 25 years ago. The purpose is to determine the level of water quality and phytocenosis of the shores of the reservoir accumulating natural effluents from reclaimed dumps and anthropogenic sites of a uranium mine, as well as quality indicators and toxicology. The assessment included a qualitative research method (analysis of documents) to determine agro-climatic conditions and empirical methods of collecting information. The authors studied the intensity of ionizing radiation of the gamma background of the water surface of the reservoir (and sections of the shoreline and territories adjacent to the reservoir), and hydrochemical parameters of the waters of the reservoir, and performed a description of the botanical diversity. The vegetation cover of the sections of the reservoir shore is at different stages of syngenesis and is represented by pioneer groupings, group thicket communities, and diffuse communities. Favorable ecological conditions for the settlement and development of plants develop within the shores of the reservoir. The intensity levels of ionizing radiation do not exceed the maximum permissible levels and practically do not affect the formation of phytocenoses. An anthropogenically modified dry meadow with the participation of plants typical of the steppe zone has been formed on the floodplain terrace. Concerning the indicators of quality and toxicology of this reservoir, the water can be used for household and drinking purposes under the condition of prior water treatment. It can be concluded that a high level of natural purification of the reservoir waters occurred within twenty years after the reclamation of the uranium mine.


Assuntos
Mineração , Urânio , Qualidade da Água , Urânio/análise , Biodiversidade , Resíduos Industriais/análise , Cazaquistão , Monitoramento Ambiental/métodos , Plantas/química , Plantas/classificação , Poluentes Radioativos da Água/análise , Instalações de Eliminação de Resíduos
4.
Methods Mol Biol ; 2787: 281-291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656497

RESUMO

This chapter provides a description of the procedure for two-dimensional electrophoresis that can be performed for any given gel size and isoelectric focusing range. This will enable the operator to recognize critical steps and gain sufficient information to generate 2D images suitable for computer-assisted analysis of 2D-gel, as well as mass spectrometry analysis for protein identification and characterization.


Assuntos
Eletroforese em Gel Bidimensional , Focalização Isoelétrica , Proteínas de Plantas , Eletroforese em Gel Bidimensional/métodos , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/análise , Focalização Isoelétrica/métodos , Proteômica/métodos , Plantas/química , Espectrometria de Massas/métodos
5.
Methods Mol Biol ; 2787: 265-279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656496

RESUMO

Polyacrylamide gel electrophoresis (PAGE) is a widely used technique for separating proteins from complex plant samples. Prior to the analysis, proteins must be extracted from plant tissues, which are rather complex than other types of biological material. Different protocols have been applied depending on the protein source, such as seeds, pollen, leaves, roots, and flowers. Total protein amounts must also be determined before conducting gel electrophoresis. The most common methodologies include PAGE under native or denaturing conditions. Both procedures are used consequently for protein identification and characterization via mass spectrometry. Additionally, various staining procedures are available to visualize protein bands in the gel, facilitating the software-based digital evaluation of the gel through image acquisition.


Assuntos
Eletroforese em Gel de Poliacrilamida , Proteínas de Plantas , Plantas , Eletroforese em Gel de Poliacrilamida/métodos , Proteínas de Plantas/análise , Proteínas de Plantas/isolamento & purificação , Plantas/química , Proteômica/métodos , Software , Coloração e Rotulagem/métodos , Espectrometria de Massas/métodos
6.
Methods Mol Biol ; 2787: 293-303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656498

RESUMO

Phosphopeptide enrichment is the main bottleneck of every phosphorylation study. Therefore, in this chapter, a general workflow tries to overbridge the hurdles of plant sample handling from sample collection to protein extraction, protein solubilization, enzymatic digestion, and enrichment step prior to mass spectrometry. The workflow provides information to perform global proteomics as well as phosphoproteomics enabling the researcher to use the protocol in both fields.


Assuntos
Espectrometria de Massas , Fosfopeptídeos , Fosfoproteínas , Proteínas de Plantas , Proteômica , Fosfopeptídeos/análise , Fosfopeptídeos/isolamento & purificação , Proteômica/métodos , Fosfoproteínas/análise , Fosfoproteínas/isolamento & purificação , Proteínas de Plantas/análise , Proteínas de Plantas/isolamento & purificação , Espectrometria de Massas/métodos , Fosforilação , Plantas/química , Plantas/metabolismo , Fluxo de Trabalho , Proteoma/análise
7.
Methods Mol Biol ; 2788: 3-18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656505

RESUMO

Carotenoids are the natural pigments available in nature and exhibit different colors such as yellow, red, and orange. These are a class of phytonutrients that have anti-cancer, anti-inflammatory, anti-oxidant, immune-modulatory, and anti-aging properties. These were used in food, pharmaceutical, nutraceutical, and cosmetic industries. They are divided into two classes: carotenes and xanthophylls. The carotenes are non-oxygenated derivatives and xanthophylls are oxygenated derivatives. The major source of carotenoids are vegetables, fruits, and tissues. Carotenoids also perform the roles of photoprotection and photosynthesis. In addition to the roles mentioned above, they are also involved and act as precursor molecules for the biosynthesis of phytohormones such as strigolactone and abscisic acid. This chapter briefly introduces carotenoids and their extraction method from plant tissue. Proposed protocol describes the extraction of carotenoid using solvents chloroform and dichloromethane. Reverse-phase HPLC can be performed with C30 columns using gradient elution. The column C30 is preferred to the C18 column because the C30 column has salient features, which include selective nature in the separation of structural isomers and hydrophobic, long-chain compounds, and shows the best compatibility with highly aqueous mobile phases. A complete pipeline for the extraction of carotenoids from plant tissue is given in the present protocol.


Assuntos
Carotenoides , Carotenoides/isolamento & purificação , Carotenoides/química , Carotenoides/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Plantas/química , Plantas/metabolismo , Extratos Vegetais/química
8.
Methods Mol Biol ; 2788: 19-37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656506

RESUMO

Metabolites are intermediate products formed during metabolism. Metabolites play different roles, including providing energy, supporting structure, transmitting signals, catalyzing reactions, enhancing defense, and interacting with other species. Plant metabolomics research aims to detect precisely all metabolites found within tissues of plants through GC-MS. This chapter primarily focuses on extracting metabolites using chemicals such as methanol, chloroform, ribitol, MSTFA, and TMCS. The metabolic analysis method is frequently used according to the specific kind of sample or matrix being investigated and the analysis objective. Chromatography (LC, GC, and CE) with mass spectrometry and NMR spectroscopy is used in modern metabolomics to analyze metabolites from plant samples. The most frequently used method for metabolites analysis is the GC-MS. It is a powerful technique that combines gas chromatography's separation capabilities with mass spectrometry, offering detailed information, including structural identification of each metabolite. This chapter contains an easy-to-follow guide to extract plant-based metabolites. The current protocol provides all the information needed for extracting metabolites from a plant, precautions, and troubleshooting.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Plantas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Plantas/metabolismo , Plantas/química , Metaboloma , Extratos Vegetais/química , Extratos Vegetais/análise
9.
Biomed Pharmacother ; 174: 116543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608523

RESUMO

In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.


Assuntos
Exossomos , Nanopartículas , Exossomos/metabolismo , Nanopartículas/química , Humanos , Animais , Sistemas de Liberação de Medicamentos/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Plantas/química , Plantas/metabolismo
10.
Chimia (Aarau) ; 78(4): 209-214, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38676611

RESUMO

Antibiotics reach agricultural soils via fertilization with manure and biosolids as well as irrigation withwastewater and have the potential to be taken up by growing crops. The fate of antibiotics in terms of uptakefrom soil to plants, as well as translocation from root to leaves, is determined by a combination of antibiotic'sphysio-chemical (e.g. speciation, lipophilicity), soil (e.g. organic carbon content, pH) and plant (e.g.transpiration rates) characteristics. In this meta-analysis, a literature search was executed to obtain an overview of antibiotic uptake to plants, with an aim to identify uptake and translocation patterns of different antibiotic classes. Overall, we found that higher uptake of tetracyclines to plant leaves was observed compared to sulfonamides. Differences were also observed in translocation within the plants, where tetracyclines were found in roots and leaves with close to equal concentrations, while the sulfonamides represented a tendency to accumulate to the root fraction. The antibiotic's characteristics have a high influence on their fate, for example, the high water-solubility and uncharged speciation in typical agricultural soil pH ranges likely induces tetracycline uptake from soil and translocation in plant. Despite the advances in knowledge over the past decade, our meta-analysis indicated that the available research is focused on a limited number of analytes and antibiotic classes. Furthermore, fastgrowing plant species (e.g. spinach, lettuce, and radish) are overly represented in studies compared to crop species with higher significance for human food sources (e.g. corn, wheat, and potato), requiring more attention in future research.


Assuntos
Antibacterianos , Plantas , Solo , Antibacterianos/metabolismo , Solo/química , Plantas/metabolismo , Plantas/química , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Transporte Biológico , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Folhas de Planta/metabolismo , Folhas de Planta/química
11.
J Sep Sci ; 47(8): e2300669, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651549

RESUMO

Exosomes-like nanoparticles (ELNs) (exosomes or extracellular vesicles) are vesicle-like bodies secreted by cells. Plant ELNs (PENs) are membrane vesicles secreted by plant cells, with a lipid bilayer as the basic skeleton, enclosing various active substances such as proteins and nucleic acids, which have many physiological and pathological functions. Recent studies have found that the PENs are widespread within different plant species and their biological functions are increasingly recognized. The effective separation method is also necessary for its function and application. Ultracentrifugation, sucrose density gradient ultracentrifugation, ultrafiltration, polymer-based precipitation methods, etc., are commonly used methods for plant exosome-like nanoparticle extraction. In recent years, emerging methods such as size exclusion chromatography, immunoaffinity capture-based technique, and microfluidic technology have shown advancements compared to traditional methods. The standardized separation process for PENs continues to evolve. In this review, we summarized the recent progress in the biogenesis, components, separation methods, and some functions of PENs. When the research on the separation method of PENs and their unique biological structure is further studied. A brand-new idea for the efficient separation and utilization of PENs can be provided in the future, which has a very broad prospect.


Assuntos
Exossomos , Nanopartículas , Plantas , Nanopartículas/química , Exossomos/química , Exossomos/metabolismo , Plantas/química , Plantas/metabolismo , Tamanho da Partícula , Ultracentrifugação , Cromatografia em Gel
12.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647675

RESUMO

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Assuntos
Resveratrol , Estilbenos , Estilbenos/química , Estilbenos/farmacologia , Humanos , Resveratrol/farmacologia , Resveratrol/química , Fungos/efeitos dos fármacos , Endófitos/química , Endófitos/metabolismo , Endófitos/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Medicina Tradicional , Plantas/química
13.
Food Chem ; 449: 139227, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599108

RESUMO

Metabolomics, the systematic study of metabolites, is dedicated to a comprehensive analysis of all aspects of plant-based food research and plays a pivotal role in the nutritional composition and quality control of plant-based foods. The diverse chemical compositions of plant-based foods lead to variations in sensory characteristics and nutritional value. This review explores the application of the metabolomics method to plant-based food origin tracing, cultivar identification, and processing methods. It also addresses the challenges encountered and outlines future directions. Typically, when combined with other omics or techniques, synergistic and complementary information is uncovered, enhancing the classification and prediction capabilities of models. Future research should aim to evaluate all factors affecting food quality comprehensively, and this necessitates advanced research into influence mechanisms, metabolic pathways, and gene expression.


Assuntos
Metabolômica , Plantas Comestíveis/química , Plantas Comestíveis/metabolismo , Plantas Comestíveis/genética , Análise de Alimentos , Manipulação de Alimentos , Plantas/metabolismo , Plantas/química , Plantas/classificação
14.
Environ Sci Pollut Res Int ; 31(17): 24768-24787, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523214

RESUMO

An alternative method to conventional synthesis is examined in this review by the use of plant extracts as reducing and capping agents. The use of plant extracts represents an economically viable and environmentally friendly alternative to conventional synthesis. In contrast to previous reviews, this review focuses on the synthesis of nano-compounds utilizing plant extracts, which lack comprehensive reports. In order to synthesize diverse nanostructures, researchers have discovered a sustainable and cost-effective method of harnessing functional groups in plant extracts. Each plant extract is discussed in detail, along with its potential applications, demonstrating the remarkable morphological diversity achieved by using these green synthesis approaches. A reduction and capping agent made from plant extracts is aligned with the principles of green chemistry and offers economic advantages as well as paving the way for industrial applications. In this review, it is discussed the significance of using plant extracts to synthesize nano-compounds, emphasizing their potential to shape the future of nanomaterials in a sustainable and ecologically friendly manner.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanopartículas Metálicas/química , Extratos Vegetais/química , Química Verde , Nanoestruturas/química , Plantas/química , Antibacterianos
15.
Int J Biol Macromol ; 267(Pt 1): 131203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554900

RESUMO

Frost damage remains a significant challenge for agricultural practices worldwide, leading to substantial economic losses and food insecurity. Practically, traditional methods for frost management have proven ineffective and come with several drawbacks, such as energy consumption and limited efficacy. Hence, proposing an anti-freezing coating can be an innovative idea. The potential of sodium alginate (SA) to construct anti-freezing hydrogels has been explored in several sciences. SA hydrogels can form protective films around plants as a barrier against freezing temperatures and ice crystals on the plant's surface. Sodium alginate exhibits excellent water retention, enhancing plant hydration during freezing conditions. This coating can provide insulation, effectively shielding the plant from frost damage. The advantages of SA as a coating material, such as its biocompatibility, biodegradability, and non-toxic nature, are highlighted. Therefore, the proposed use of SA as an innovative coating material holds promise for safeguarding plants from frost damage. Following SA potential and frost's huge damage, the present review provides a comprehensive overview of the recent developments in SA-based anti-freezing hydrogels, their applications, and their potential in agriculture as anti-freezing coatings. However, further research and field trials are necessary to optimize the application methods and understand the long-term effects on productivity.


Assuntos
Alginatos , Congelamento , Hidrogéis , Alginatos/química , Alginatos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Plantas/química
17.
J Nat Prod ; 87(4): 1285-1305, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38375796

RESUMO

The discovery of naturally occurring organohalogen compounds has increased astronomically in the 55 years since they were first discovered─from fewer than 50 in 1968 to a combined 7,958 described examples in three comprehensive reviews. The present survey, which covers the period 2021-2023, brings the number of known natural organohalogens to approximately 8,400. The organization is according to species origin, and coverage includes marine and terrestrial plants, fungi, bacteria, marine sponges, corals, cyanobacteria, tunicates, and other marine organisms.


Assuntos
Cianobactérias , Estrutura Molecular , Animais , Cianobactérias/química , Poríferos/química , Produtos Biológicos/química , Bactérias , Fungos/química , Antozoários/química , Urocordados/química , Plantas/química , Hidrocarbonetos Halogenados/química , Organismos Aquáticos
18.
Chemosphere ; 352: 141369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342150

RESUMO

The release of radionuclides, including Cesium-137 (137Cs), Strontium-90 (90Sr), Uranium-238 (238U), Plutonium-239 (239Pu), Iodine-131 (131I), etc., from nuclear contamination presents profound threats to both the environment and human health. Traditional remediation methods, reliant on physical and chemical interventions, often prove economically burdensome and logistically unfeasible for large-scale restoration efforts. In response to these challenges, bioremediation has emerged as a remarkably efficient, environmentally sustainable, and cost-effective solution. This innovative approach harnesses the power of microorganisms, plants, and biological agents to transmute radioactive materials into less hazardous forms. For instance, consider the remarkable capability demonstrated by Fontinalis antipyretica, a water moss, which can accumulate uranium at levels as high as 4979 mg/kg, significantly exceeding concentrations found in the surrounding water. This review takes an extensive dive into the world of bioremediation for nuclear contaminant removal, exploring sources of radionuclides, the ingenious resistance mechanisms employed by plants against these harmful elements, and the fascinating dynamics of biological adsorption efficiency. It also addresses limitations and challenges, emphasizing the need for further research and implementation to expedite restoration and mitigate nuclear pollution's adverse effects.


Assuntos
Radioisótopos de Césio , Plantas , Humanos , Biodegradação Ambiental , Radioisótopos de Césio/análise , Plantas/química , Radioisótopos do Iodo , Água
19.
Toxins (Basel) ; 16(2)2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393157

RESUMO

Consumers are increasingly seeking natural alternatives to chemical compounds, including the use of dried aromatic plants as seasonings instead of salt. However, the presence of pyrrolizidine alkaloids (PAs) in food supplements and dried plants has become a concern because of their link to liver diseases and their classification as carcinogenic by the International Agency for Research on Cancer (IARC). Despite European Union (EU) Regulation (EU) 2023/915, non-compliance issues persist, as indicated by alerts on the Rapid Alert System for Food and Feed (RASFF) portal. Analyzing PAs poses a challenge because of their diverse chemical structures and low concentrations in these products, necessitating highly sensitive analytical methods. Despite these challenges, ongoing advancements in analytical techniques coupled with effective sampling and extraction strategies offer the potential to enhance safety measures. These developments aim to minimize consumer exposure to PAs and safeguard their health while addressing the growing demand for natural alternatives in the marketplace.


Assuntos
Alcaloides de Pirrolizidina , Alcaloides de Pirrolizidina/toxicidade , Alcaloides de Pirrolizidina/química , Plantas/química , Suplementos Nutricionais/toxicidade , Suplementos Nutricionais/análise , Carcinógenos
20.
Environ Res ; 249: 118382, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331160

RESUMO

Constructed wetlands (CWs) are a pollutant treatment design inspired by natural wetlands and are widely utilized for the removal of common pollutants. The research focus lies in the circulation of manganese (Mn) in the environment to enhance pollutant removal within CWs. This paper provides a comprehensive review of recent advancements in understanding the role and effects of Mn in chemical weapons, based on literature retrieval from 2002 to 2021. Ecological risk assessment and heavy metals within CWs emerge as current areas of research interest. Mn sources within CWs primarily include natural deposition, heavy metal wastewater, and intentional addition. The cycling between Mn(II) and Mn(IV) facilitates enhanced wastewater treatment within CWs. Moreover, employing a Mn matrix proves effective in reducing ammonia nitrogen wastewater, organic pollutants, as well as heavy metals such as Cd and Pb, thereby addressing complex pollution challenges practically. To comprehensively analyze influencing factors on the system's performance, both internal factors (biological species, design parameters, pH levels, etc.) and external factors (seasonal climate variations, precipitation patterns, ultraviolet radiation exposure, etc.) were discussed. Among these factors, microorganisms, pollutants, and temperature are the most important influencing factors, which emphasizes the importance of these factors for wetland operation. Lastly, this paper delves into plant absorption of Mn along with coping strategies employed by plants when faced with Mn poisoning or deficiency scenarios. When utilizing Mn for the regulation of constructed wetlands, it is crucial to consider the tolerance levels of associated plant species. Furthermore, the study predicts future research hotspots encompass high-efficiency catalysis techniques, matrix-filling approaches, and preparation of resource utilization methods involving Mn nanomaterials.


Assuntos
Manganês , Plantas , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Áreas Alagadas , Manganês/análise , Poluentes Químicos da Água/análise , Plantas/metabolismo , Plantas/química , Eliminação de Resíduos Líquidos/métodos , Bibliometria , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA