Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
1.
Viruses ; 16(7)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39066170

RESUMO

Tobacco mosaic virus (TMV) was the first virus to be studied in detail and, for many years, TMV and other tobamoviruses, particularly tomato mosaic virus (ToMV) and tobamoviruses infecting pepper (Capsicum spp.), were serious crop pathogens. By the end of the twentieth and for the first decade of the twenty-first century, tobamoviruses were under some degree of control due to introgression of resistance genes into commercial tomato and pepper lines. However, tobamoviruses remained important models for molecular biology, biotechnology and bio-nanotechnology. Recently, tobamoviruses have again become serious crop pathogens due to the advent of tomato brown rugose fruit virus, which overcomes tomato resistance against TMV and ToMV, and the slow but apparently inexorable worldwide spread of cucumber green mottle mosaic virus, which threatens all cucurbit crops. This review discusses a range of mainly molecular biology-based approaches for protecting crops against tobamoviruses. These include cross-protection (using mild tobamovirus strains to 'immunize' plants against severe strains), expressing viral gene products in transgenic plants to inhibit the viral infection cycle, inducing RNA silencing against tobamoviruses by expressing virus-derived RNA sequences in planta or by direct application of double-stranded RNA molecules to non-engineered plants, gene editing of host susceptibility factors, and the transfer and optimization of natural resistance genes.


Assuntos
Resistência à Doença , Doenças das Plantas , Plantas Geneticamente Modificadas , Tobamovirus , Tobamovirus/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Resistência à Doença/genética , Plantas Geneticamente Modificadas/virologia , Capsicum/virologia , Capsicum/imunologia , Produtos Agrícolas/virologia , Produtos Agrícolas/genética , Solanum lycopersicum/virologia , Engenharia Genética , Vírus do Mosaico do Tabaco/genética
2.
Transgenic Res ; 33(3): 149-157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842603

RESUMO

RNA silencing is an innate immune mechanism of plants against invasion by viral pathogens. Artificial microRNA (amiRNA) can be engineered to specifically induce RNA silencing against viruses in transgenic plants and has great potential for disease control. Here, we describe the development and application of amiRNA-based technology to induce resistance to soybean mosaic virus (SMV), a plant virus with a positive-sense single-stranded RNA genome. We have shown that the amiRNA targeting the SMV P1 coding region has the highest antiviral activity than those targeting other SMV genes in a transient amiRNA expression assay. We transformed the gene encoding the P1-targeting amiRNA and obtained stable transgenic Nicotiana benthamiana lines (amiR-P1-3-1-2-1 and amiR-P1-4-1-2-1). Our results have demonstrated the efficient suppression of SMV infection in the P1-targeting amiRNA transgenic plants in an expression level-dependent manner. In particular, the amiR-P1-3-1-2-1 transgenic plant showed high expression of amiR-P1 and low SMV accumulation after being challenged with SMV. Thus, a transgenic approach utilizing the amiRNA technology appears to be effective in generating resistance to SMV.


Assuntos
Resistência à Doença , MicroRNAs , Nicotiana , Doenças das Plantas , Plantas Geneticamente Modificadas , Potyvirus , MicroRNAs/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Plantas Geneticamente Modificadas/imunologia , Nicotiana/genética , Nicotiana/virologia , Nicotiana/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Potyvirus/patogenicidade , Potyvirus/genética , Interferência de RNA , Glycine max/genética , Glycine max/virologia , Glycine max/imunologia
3.
Viruses ; 16(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38932116

RESUMO

Papaya ringspot virus (PRSV) limits papaya production worldwide. Previously, we generated transgenic lines of hybrid Tainung No.2 (TN-2) carrying the coat protein (CP) gene of PRSV with broad resistance to PRSV strains. Unfortunately, all of them were female, unacceptable for growers and consumers in practical applications. With our reported flanking sequences and the newly released papaya genomic information, the CP-transgene insert was identified at a non-coding region in chromosome 3 of the papaya genome, and the flanking sequences were verified and extended. The female transgenic line 16-0-1 was first used for backcrossing with the parental Sunrise cultivar six times and then followed by selfing three times. With multi-level molecular markers developed from the PRSV CP transgene and the genomic flanking sequences, the presence and zygosity of the CP transgene were characterized at the seedling stage. Meanwhile, hermaphrodite genotype was identified by a sex-linked marker. With homozygotic transgene and horticultural properties of Sunrise, a selected hermaphrodite individual was propagated by tissue culture (TC) and used as maternal progenitor to cross with non-transgenic parental cultivar Thailand to generate a new hybrid cultivar TN-2 with a hemizygotic CP-transgene. Three selected hermaphrodite individuals of transgenic TN were micropropagated by TC, and they showed broad-spectrum resistance to different PRSV strains from Taiwan, Hawaii, Thailand, and Mexico under greenhouse conditions. The selected clone TN-2 #1, with excellent horticultural traits, also showed complete resistance to PRSV under field conditions. These selected TC clones of hermaphrodite transgenic TN-2 provide a novel cultivation system in Taiwan and elsewhere.


Assuntos
Proteínas do Capsídeo , Carica , Resistência à Doença , Doenças das Plantas , Plantas Geneticamente Modificadas , Potyvirus , Transgenes , Carica/virologia , Carica/genética , Potyvirus/genética , Plantas Geneticamente Modificadas/virologia , Resistência à Doença/genética , Doenças das Plantas/virologia , Proteínas do Capsídeo/genética , Genoma de Planta , Mapeamento Cromossômico
4.
Plant Signal Behav ; 19(1): 2358270, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38796845

RESUMO

Trans-acting small interfering RNAs (tasiRNAs) are 21-nt phased (phased siRNAs) resulting from successive DCL-catalyzed processing from the end of a double-stranded RNA substrate originating from the RDR of an AGO-catalyzed cleaved RNA at a micro RNA target site. Plant tasiRNAs have been synthesized to produce synthetic tasiRNAs (syn-tasiRNAs) targeting viral RNAs that confer viral resistance. In this study, we engineered syn-tasiRNAs to target potato virus Y (PVY) infection by replacing five native siRNAs of TAS1c with 210-bp fragments from the coat protein (CP) region of the PVY genome. The results showed that the transient expression of syn-tasiR-CPpvy2 in Nicotiana benthamiana (N. benthamiana) plants conferred antiviral resistance, supported by the absence of PVY infection symptoms and viral accumulation. This indicated that syn-tasiR-CPpvy2 successfully targeted and silenced the PVY CP gene, effectively inhibiting viral infection. syn-tasiR-CPpvy1 displayed attenuated symptoms and decreased viral accumulation in these plants However, severe symptoms of PVY infection and a similar amount of viral accumulation as the control were observed in plants expressing syn-tasiR-CPpvy3. syn-tasiR-CPpvy/pvx, which targets both PVY and potato virus X (PVX), was engineered using a single precursor. After the transient expression of syn-tasiR-CPpvy/pvx3 and syn-tasiR-CPpvy/pvx5 in N. benthamiana, the plants were resistant to both PVY and PVX. These results suggested that engineered syn-tasiRNAs could not only specifically induce antiviral resistance against one target virus but could also be designed for multi-targeted silencing of different viruses, thereby preventing complex virus infection in plants.


Assuntos
Proteínas do Capsídeo , Resistência à Doença , Nicotiana , Doenças das Plantas , Potyvirus , RNA Interferente Pequeno , Nicotiana/virologia , Nicotiana/genética , Nicotiana/imunologia , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Potyvirus/fisiologia , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Plantas Geneticamente Modificadas/virologia
5.
Virus Genes ; 60(4): 412-422, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38727968

RESUMO

Viral promoters can be used to drive heterologous gene expression in transgenic plants. As part of our quest to look for new promoters, we have explored, for the first time, the promoters of okra enation leaf curl virus (OELCuV), a begomovirus infecting okra (Abelmoschus esculentus). The Rep and CP promoters of OELCuV fused with the gfp reporter gene, were expressed transiently in the natural host okra and the laboratory host cotton and Nicotiana benthamiana. The expression levels of the promoters were quantified through confocal laser scanning microscopy and GFP assay in N. benthamiana and okra. The results indicated that the Rep promoter was more active than the CP promoter, whose activity was similar to that of CaMV 35S promoter. Additionally, the Rep and CP promoters showed increase of expression, probably due to transactivation, when assayed following inoculation of OELCuV and betasatellite DNAs in cotton plants. A moderate increase in promoter activity in N. benthamiana was also seen, when assayed following the inoculation of the heterologous begomovirus Sri Lankan cassava mosaic virus.


Assuntos
Abelmoschus , Begomovirus , Gossypium , Nicotiana , Regiões Promotoras Genéticas , Nicotiana/virologia , Nicotiana/genética , Begomovirus/genética , Abelmoschus/virologia , Abelmoschus/genética , Gossypium/virologia , Gossypium/genética , Plantas Geneticamente Modificadas/virologia , Doenças das Plantas/virologia , Proteínas de Fluorescência Verde/genética , Genes Reporter , Expressão Gênica
6.
Pestic Biochem Physiol ; 201: 105893, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685255

RESUMO

Potato virus Y (PVY) is one of the most important pathogens in the genus Potyvirus that seriously harms agricultural production. Copper (Cu), as a micronutrient, is closely related to plant immune response. In this study, we found that foliar application of Cu could inhibit PVY infection to some extent, especially at 7 days post inoculation (dpi). To explore the effect of Cu on PVY infection, transcriptome sequencing analysis was performed on PVY-infected tobacco with or without Cu application. Several key pathways regulated by Cu were identified, including plant-pathogen interaction, inorganic ion transport and metabolism, and photosynthesis. Moreover, the results of virus-induced gene silencing (VIGS) assays revealed that NbMLP423, NbPIP2, NbFd and NbEXPA played positive roles in resistance to PVY infection in Nicotiana benthamiana. In addition, transgenic tobacco plants overexpressing NtEXPA11 showed increased resistance to PVY infection. These results contribute to clarify the role and regulatory mechanism of Cu against PVY infection, and provide candidate genes for disease resistance breeding.


Assuntos
Cobre , Resistência à Doença , Nicotiana , Doenças das Plantas , Potyvirus , Nicotiana/virologia , Nicotiana/genética , Potyvirus/fisiologia , Cobre/farmacologia , Doenças das Plantas/virologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/virologia , Regulação da Expressão Gênica de Plantas , Transcriptoma
7.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216418

RESUMO

CRISPR/Cas9 provides a robust and widely adaptable system with enormous potential for genome editing directed towards generating useful products. It has been used extensively to generate resistance against viruses infecting plants with more effective and prolonged efficiency as compared with previous antiviral approaches, thus holding promise to alleviate crop losses. In this review, we have discussed the reports of CRISPR/Cas-based virus resistance strategies against plant viruses. These strategies include approaches targeting single or multiple genes (or non-coding region) in the viral genome and targeting host factors essential for virus propagation. In addition, the utilization of base editing has been discussed to generate transgene-free plants resistant to viruses. This review also compares the efficiencies of these approaches. Finally, we discuss combinatorial approaches, including multiplexing, to increase editing efficiency and bypass the generation of escape mutants.


Assuntos
Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Genoma Viral/genética , Vírus de Plantas/genética , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia
8.
Viruses ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35215816

RESUMO

Alphasatellites, which encode only a replication-associated protein (alpha-Rep), are frequently found to be non-essential satellite components associated with begomovirus/betasatellite complexes, and their presence can modulate disease symptoms and/or viral DNA accumulation during infection. Our previous study has shown that there are three types of alphasatellites associated with begomovirus/betasatellite complexes in Yunnan province in China and they encode three corresponding types of alpha-Rep proteins. However, the biological functions of alpha-Reps remain poorly understood. In this study, we investigated the biological functions of alpha-Reps in post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) using 16c and 16-TGS transgenic Nicotiana benthamiana plants. Results showed that all the three types of alpha-Rep proteins were capable of suppressing the PTGS and reversing the TGS. Among them, the alpha-Rep of Y10DNA1 has the strongest PTGS and TGS suppressor activities. We also found that the alpha-Rep proteins were able to increase the accumulation of their helper virus during coinfection. These results suggest that the alpha-Reps may have a role in overcoming host defense, which provides a possible explanation for the selective advantage provided by the association of alphasatellites with begomovirus/betasatellite complexes.


Assuntos
Begomovirus/metabolismo , Doenças das Plantas/virologia , Vírus Satélites/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Begomovirus/química , Begomovirus/genética , China , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Vírus Satélites/química , Vírus Satélites/genética , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/virologia , Proteínas Virais/química , Proteínas Virais/genética
9.
Viruses ; 13(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34960618

RESUMO

The P1/HC-Pro viral suppressor of potyvirus suppresses posttranscriptional gene silencing (PTGS). The fusion protein of P1/HC-Pro can be cleaved into P1 and HC-Pro through the P1 self-cleavage activity, and P1 is necessary and sufficient to enhance PTGS suppression of HC-Pro. To address the modulation of gene regulatory relationships induced by turnip mosaic virus (TuMV) P1/HC-Pro (P1/HC-ProTu), a comparative transcriptome analysis of three types of transgenic plants (P1Tu, HC-ProTu, and P1/HC-ProTu) were conducted using both high-throughput (HTP) and low-throughput (LTP) RNA-Seq strategies. The results showed that P1/HC-ProTu disturbed the endogenous abscisic acid (ABA) accumulation and genes in the signaling pathway. Additionally, the integrated responses of stress-related genes, in particular to drought stress, cold stress, senescence, and stomatal dynamics, altered the expressions by the ABA/calcium signaling. Crosstalk among the ABA, jasmonic acid, and salicylic acid pathways might simultaneously modulate the stress responses triggered by P1/HC-ProTu. Furthermore, the LTP network analysis revealed crucial genes in common with those identified by the HTP network in this study, demonstrating the effectiveness of the miniaturization of the HTP profile. Overall, our findings indicate that P1/HC-ProTu-mediated suppression in RNA silencing altered the ABA/calcium signaling and a wide range of stress responses.


Assuntos
Arabidopsis , Sinalização do Cálcio/genética , Plantas Geneticamente Modificadas/virologia , Arabidopsis/genética , Arabidopsis/virologia , Regulação da Expressão Gênica de Plantas , Interferência de RNA
10.
Viruses ; 13(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34960733

RESUMO

Viral pathogens are a major threat to stable crop production. Using a backcross strategy, we find that integrating a dominant brown planthopper (BPH) resistance gene Bph3 into a high-yield and BPH-susceptible indica rice variety significantly enhances BPH resistance. However, when Bph3-carrying backcross lines are infested with BPH, these BPH-resistant lines exhibit sterile characteristics, displaying panicle enclosure and failure of seed production at their mature stage. As we suspected, BPH-mediated viral infections could cause the observed sterile symptoms, and we characterized rice-infecting viruses using deep metatranscriptomic sequencing. Our analyses revealed eight novel virus species and five known viruses, including a highly divergent virus clustered within a currently unclassified family. Additionally, we characterized rice plant antiviral responses using small RNA sequencing. The results revealed abundant virus-derived small interfering RNAs in sterile rice plants, providing evidence for Dicer-like and Argonaute-mediated immune responses in rice plants. Together, our results provide insights into the diversity of viruses in rice plants, and our findings suggest that multiple virus infections occur in rice plants.


Assuntos
Hemípteros/virologia , Oryza/virologia , Doenças das Plantas/virologia , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Animais , Resistência à Doença , Hemípteros/fisiologia , Oryza/genética , Oryza/imunologia , Oryza/parasitologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/parasitologia , Plantas Geneticamente Modificadas/virologia , Vírus de RNA/classificação , Análise de Sequência de RNA , Transcriptoma
11.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830122

RESUMO

Cucumber green mottle mosaic virus (CGMMV), as a typical seed-borne virus, causes costly and devastating diseases in the vegetable trade worldwide. Genetic sources for resistance to CGMMV in cucurbits are limited, and environmentally safe approaches for curbing the accumulation and spread of seed-transmitted viruses and cultivating completely resistant plants are needed. Here, we describe the design and application of RNA interference-based technologies, containing artificial microRNA (amiRNA) and synthetic trans-acting small interfering RNA (syn-tasiRNA), against conserved regions of different strains of the CGMMV genome. We used a rapid transient sensor system to identify effective anti-CGMMV amiRNAs. A virus seed transmission assay was developed, showing that the externally added polycistronic amiRNA and syn-tasiRNA can successfully block the accumulation of CGMMV in cucumber, but different virulent strains exhibited distinct influences on the expression of amiRNA due to the activity of the RNA-silencing suppressor. We also established stable transgenic cucumber plants expressing polycistronic amiRNA, which conferred disease resistance against CGMMV, and no sequence mutation was observed in CGMMV. This study demonstrates that RNA interference-based technologies can effectively prevent the occurrence and accumulation of CGMMV. The results provide a basis to establish and fine-tune approaches to prevent and treat seed-based transmission viral infections.


Assuntos
Cucumis sativus , Resistência à Doença/genética , MicroRNAs , Doenças das Plantas , Plantas Geneticamente Modificadas , RNA de Plantas , Tobamovirus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Tobamovirus/genética , Tobamovirus/metabolismo
12.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34830426

RESUMO

In recent decades, Pakistan has suffered a decline in cotton production due to several factors, including insect pests, cotton leaf curl disease (CLCuD), and multiple abiotic stresses. CLCuD is a highly damaging plant disease that seriously limits cotton production in Pakistan. Recently, genome editing through CRISPR/Cas9 has revolutionized plant biology, especially to develop immunity in plants against viral diseases. Here we demonstrate multiplex CRISPR/Cas-mediated genome editing against CLCuD using transient transformation in N. benthamiana plants and cotton seedlings. The genomic sequences of cotton leaf curl viruses (CLCuVs) were obtained from NCBI and the guide RNA (gRNA) were designed to target three regions in the viral genome using CRISPR MultiTargeter. The gRNAs were cloned in pHSE401/pKSE401 containing Cas9 and confirmed through colony PCR, restriction analysis, and sequencing. Confirmed constructs were moved into Agrobacterium and subsequently used for transformation. Agroinfilteration in N. benthamiana revealed delayed symptoms (3-5 days) with improved resistance against CLCuD. In addition, viral titer was also low (20-40%) in infected plants co-infiltrated with Cas9-gRNA, compared to control plants (infected with virus only). Similar results were obtained in cotton seedlings. The results of transient expression in N. benthamiana and cotton seedlings demonstrate the potential of multiplex CRISPR/Cas to develop resistance against CLCuD. Five transgenic plants developed from three experiments showed resistance (60-70%) to CLCuV, out of which two were selected best during evaluation and screening. The technology will help breeding CLCuD-resistant cotton varieties for sustainable cotton production.


Assuntos
Begomovirus/genética , Sistemas CRISPR-Cas/genética , Resistência à Doença/genética , Gossypium/genética , Agrobacterium/genética , Begomovirus/patogenicidade , Gossypium/crescimento & desenvolvimento , Gossypium/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , Solanaceae/genética , Solanaceae/crescimento & desenvolvimento , Solanaceae/virologia
13.
Viruses ; 13(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696530

RESUMO

Rice black-streaked dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is a serious constraint in Chinese rice production. Breeding disease-resistant varieties through multigene aggregation is considered an effective way to control diseases, but few disease-resistant resources have been characterized thus far. To develop novel resources for resistance to RBSDV through CRISPR/Cas9-mediated genome editing, a guide RNA sequence targeting exon 1 of eIF4G was designed and cloned into a binary vector, pHUE401. This recombinant vector was used to generate mutations in the rice cultivar Nipponbare via Agrobacterium-mediated transformation. This approach produced heritable homozygous mutations in the transgene-free T1 generation. Sequence analysis of the eIF4G target region from T1 transgenic plants identified 3 bp deletion mutants, and analysis of the predicted amino acid sequence identified one amino acid deletion in mutants that possess near full-length eIF4G. Furthermore, our data suggest that eIF4G may plays an important role in rice normal development, as there were no eIF4G knock-out homozygous mutants in T1 generation plants. When homozygous mutant lines were inoculated with RBSDV, they exhibited enhanced tolerance to virus infection, without visibly affecting plant growth and development. However, the eif4g mutant plants showed the same sensitivity to rice stripe virus (RSV) infection as wild-type plants. Notably, the wild-type and mutant N-termini of eIF4G interacted directly with RBSDV P8 in yeast and in planta. Additionally, compared to wild-type plants, the eIF4G transcript level was reduced twofold in the mutant plants. These results indicate that site-specific mutation of rice eIF4G successfully conferred partial resistance specific to RBSDV associated with less transcription of eIF4G in mutants. Therefore, this study demonstrates that the novel eIF4G alleles generated by CRISPR/Cas9 represent valuable disease-resistant resources that can be used to develop RBSDV-resistant varieties.


Assuntos
Fator de Iniciação Eucariótico 4G/genética , Oryza/genética , Vírus de Plantas/genética , Resistência à Doença/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Alimentos Geneticamente Modificados , Edição de Genes/métodos , Oryza/virologia , Melhoramento Vegetal/métodos , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Plantas Geneticamente Modificadas/virologia
14.
Cells ; 10(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571927

RESUMO

Histone deacetylases (HDACs) are vital epigenetic modifiers not only in regulating plant development but also in abiotic- and biotic-stress responses. Though to date, the functions of HD2C-an HD2-type HDAC-In plant development and abiotic stress have been intensively explored, its function in biotic stress remains unknown. In this study, we have identified HD2C as an interaction partner of the Cauliflower mosaic virus (CaMV) P6 protein. It functions as a positive regulator in defending against CaMV infection. The hd2c mutants show enhanced susceptibility to CaMV infection. In support, the accumulation of viral DNA, viral transcripts, and the deposition of histone acetylation on the viral minichromosomes are increased in hd2c mutants. P6 interferes with the interaction between HD2C and HDA6, and P6 overexpression lines have similar phenotypes with hd2c mutants. In further investigations, P6 overexpression lines, together with CaMV infection plants, are more sensitive to ABA and NaCl with a concomitant increasing expression of ABA/NaCl-regulated genes. Moreover, the global levels of histone acetylation are increased in P6 overexpression lines and CaMV infection plants. Collectively, our results suggest that P6 dysfunctions histone deacetylase HD2C by physical interaction to promote CaMV infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Caulimovirus/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Folhas de Planta/virologia , Proteínas Virais/metabolismo , Viroses/virologia , Acetilação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Caulimovirus/fisiologia , Proteínas de Ligação a DNA/genética , Histona Desacetilases/química , Histona Desacetilases/genética , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/genética , Viroses/genética , Viroses/metabolismo
15.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34494949

RESUMO

Transmission of the crinivirus, lettuce infectious yellows virus (LIYV), is determined by a minor coat protein (CPm)-mediated virion retention mechanism located in the foregut of its whitefly vector. To better understand the functions of LIYV CPm, chimeric CPm mutants engineered with different lengths of the LIYV CPm amino acid sequence and that of the crinivirus, lettuce chlorosis virus (LCV), were constructed based on bioinformatics and sequence alignment data. The 485 amino acid-long chimeric CPm of LIYV mutant, CPmP-1, contains 60 % (from position 3 to 294) of LCV CPm amino acids. The chimeric CPm of mutants CPmP-2, CPmP-3 and CPmP-4 contains 46 (position 3 to 208), 51 (position 3 to 238) and 41 % (position 261 to 442) of LCV CPm amino acids, respectively. All four mutants moved systemically, expressed the chimeric CPm and formed virus particles. However, following acquisition feeding of the virus preparations, only CPmP-1 was retained in the foreguts of a significant number of vectors and transmitted. In immuno-gold labelling transmission electron microscopy (IGL-TEM) analysis, CPmP-1 particles were distinctly labelled by antibodies directed against the LCV but not LIYV CPm. In contrast, CPmP-4 particles were not labelled by antibodies directed against the LCV or LIYV CPm, while CPmP-2 and -3 particles were weakly labelled by anti-LIYV CPm but not anti-LCV CPm antibodies. The unique antibody recognition and binding pattern of CPmP-1 was also displayed in the foreguts of whitefly vectors that fed on CPmP-1 virions. These results are consistent with the hypothesis that the chimeric CPm of CPmP-1 is incorporated into functional virions, with the LCV CPm region being potentially exposed on the surface and accessible to anti-LCV CPm antibodies.


Assuntos
Proteínas do Capsídeo/metabolismo , Crinivirus/fisiologia , Hemípteros/virologia , Insetos Vetores/virologia , Nicotiana/virologia , Doenças das Plantas/virologia , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Crinivirus/genética , Sistema Digestório/virologia , Engenharia Genética , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/metabolismo , Mutação , Plantas Geneticamente Modificadas/virologia , Vírion/fisiologia
16.
Viruses ; 13(8)2021 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-34452313

RESUMO

The tomato Sw-5b gene confers resistance to tomato spotted wilt virus (TSWV) and encodes a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal Solanaceae-specific domain (SD). Although our understanding of how Sw-5b recognizes the viral NSm elicitor has increased significantly, the process by which Sw-5b activates downstream defense signaling remains to be elucidated. In this study, we used a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system to investigate the roles of the SGT1/RAR1, EDS1/NDR1, NPR1, and NRC/ADR1/NRG1 genes in the Sw-5b-mediated signaling pathway. We found that chaperone SGT1 was required for Sw-5b function, but co-chaperone RAR1 was not. Sw-5b-mediated immune signaling was independent of both EDS1 and NDR1. Silencing NPR1, which is a central component in SA signaling, did not result in TSWV systemic infection in Sw-5b-transgenic N. benthamiana plants. Helper NLR NRCs (NLRs required for cell death) were required for Sw-5b-mediated systemic resistance to TSWV infection. Suppression of NRC2/3/4 compromised the Sw-5b resistance. However, the helper NLRs ADR1 and NRG1 may not participate in the Sw-5b signaling pathway. Silencing ADR1, NRG1, or both genes did not affect Sw-5b-mediated resistance to TSWV. Our findings provide new insight into the requirement for conserved key components in Sw-5b-mediated signaling pathways.


Assuntos
Resistência à Doença/genética , Proteínas de Plantas/genética , Transdução de Sinais/genética , Solanum lycopersicum/virologia , Tospovirus/genética , Inativação Gênica , Imunidade Inata , Solanum lycopersicum/imunologia , Doenças das Plantas/virologia , Imunidade Vegetal/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/virologia , Domínios Proteicos , Transdução de Sinais/imunologia , Tospovirus/metabolismo
17.
Virus Genes ; 57(5): 469-473, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34379307

RESUMO

Citrus yellow mosaic badnavirus (CMBV) causes mosaic disease in all economically important citrus cultivars of India, with losses reaching up to 70%. CMBV belongs to the genus Badnavirus, family Caulimoviridae, possessing a circular double-stranded (ds) DNA genome with six open reading frames (ORFs I to VI), whose functions are yet to be deciphered. The RNA-silencing suppressor (RSS) activity has not been assigned to any CMBV ORF as yet. In the present study, it was found that ORFI exhibited RSS activity among all the six CMBV ORFs tested. Studies were done by employing the well-established Agrobacterium-mediated transient assay based on the transgenic Nicotiana benthamiana 16c plant line expressing the green fluorescent protein (GFP). The RSS activity of ORFI was confirmed by the analysis of the GFP visual expression in the agroinfiltrated leaves, further supported by quantification of GFP expression by RT-PCR. Based on the GFP visual expression, the CMBV ORFI was a weak RSS when compared to the p19 protein of tomato bushy stunt virus. In contrast, the ORFII, ORFIV, ORFV, ORFVI, and CP gene did not exhibit any RSS activity. Hence, ORFI is the first ORF of CMBV to be identified with RNA-silencing suppression activity.


Assuntos
Badnavirus/isolamento & purificação , Citrus/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Badnavirus/genética , Badnavirus/patogenicidade , Citrus/crescimento & desenvolvimento , Citrus/virologia , Proteínas de Fluorescência Verde/genética , Índia , Fases de Leitura Aberta/genética , Doenças das Plantas/genética , Vírus de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , RNA/genética , Interferência de RNA , Nicotiana/virologia , Tombusvirus/genética
18.
EMBO J ; 40(16): e107660, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34254679

RESUMO

The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH-dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC-mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2-Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC-mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.


Assuntos
Cloroplastos/metabolismo , Interações Hospedeiro-Patógeno , Nicotiana/virologia , Vírus de Plantas/fisiologia , Proteínas não Estruturais Virais/fisiologia , Replicação Viral , Estresse Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/virologia , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Nicotiana/genética
19.
Cells ; 10(5)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-34067940

RESUMO

Viroids are plant pathogenic, circular, non-coding, single-stranded RNAs (ssRNAs). Members of the Pospiviroidae family replicate in the nucleus of plant cells through double-stranded RNA (dsRNA) intermediates, thus triggering the host's RNA interference (RNAi) machinery. In plants, the two RNAi pillars are Post-Transcriptional Gene Silencing (PTGS) and RNA-directed DNA Methylation (RdDM), and the latter has the potential to trigger Transcriptional Gene Silencing (TGS). Over the last three decades, the employment of viroid-based systems has immensely contributed to our understanding of both of these RNAi facets. In this review, we highlight the role of Pospiviroidae in the discovery of RdDM, expound the gradual elucidation through the years of the diverse array of RdDM's mechanistic details and propose a revised RdDM model based on the cumulative amount of evidence from viroid and non-viroid systems.


Assuntos
Metilação de DNA , DNA de Plantas/genética , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Plantas/genética , RNA de Plantas/genética , Viroides/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas/virologia , Interferência de RNA
20.
Arch Virol ; 166(5): 1325-1336, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33660107

RESUMO

Rice tungro disease (RTD) is a devastating disease of rice caused by combined infection with rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV), with one of the main symptoms being stunting. To dissect the molecular events responsible for RTD-induced stunting, the expression patterns of 23 cell-wall-related genes were examined in different rice lines with the same titers of RTSV but different titers of RTBV and in lines where only RTBV was present. Genes encoding cellulose synthases, expansins, glycosyl hydrolases, exostosins, and xyloglucan galactosyl transferase showed downregulation, whereas those encoding defensin or defensin-like proteins showed upregulation with increasing titers of RTBV. RTSV titers did not affect the expression levels of these genes. A similar relationship was seen for the reduction in the cellulose and pectin content and the accumulation of lignin. In silico analysis of promoters of the genes indicated a possible link to transcription factors reported earlier to respond to viral titers in rice. These results suggest a common network in which the genes related to the cell wall components are affected during infection with diverse viruses in rice.


Assuntos
Parede Celular/genética , Oryza/virologia , Doenças das Plantas/virologia , Tungrovirus/fisiologia , Carga Viral/fisiologia , Parede Celular/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , Polissacarídeos/metabolismo , Waikavirus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA