Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.851
Filtrar
1.
Physiol Plant ; 176(3): e14340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741259

RESUMO

Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.


Assuntos
Arabidopsis , Cisteína , Malato Desidrogenase , NAD , Oxirredução , Plastídeos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Plastídeos/metabolismo , Plastídeos/enzimologia , NAD/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
2.
Physiol Plant ; 176(2): e14273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566156

RESUMO

Sacoglossa sea slugs have garnered attention due to their ability to retain intracellular functional chloroplasts from algae, while degrading other algal cell components. While protective mechanisms that limit oxidative damage under excessive light are well documented in plants and algae, the photoprotective strategies employed by these photosynthetic sea slugs remain unresolved. Species within the genus Elysia are known to retain chloroplasts from various algal sources, but the extent to which the metabolic processes from the donor algae can be sustained by the sea slugs is unclear. By comparing responses to high-light conditions through kinetic analyses, molecular techniques, and biochemical assays, this study shows significant differences between two photosynthetic Elysia species with chloroplasts derived from the green alga Acetabularia acetabulum. Notably, Elysia timida displayed remarkable tolerance to high-light stress and sophisticated photoprotective mechanisms such as an active xanthophyll cycle, efficient D1 protein recycling, accumulation of heat-shock proteins and α-tocopherol. In contrast, Elysia crispata exhibited absence or limitations in these photoprotective strategies. Our findings emphasize the intricate relationship between the host animal and the stolen chloroplasts, highlighting different capacities to protect the photosynthetic organelle from oxidative damage.


Assuntos
Acetabularia , Gastrópodes , Animais , Plastídeos/metabolismo , Cloroplastos/metabolismo , Fotossíntese , Gastrópodes/metabolismo
3.
Physiol Plant ; 176(2): e14289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606618

RESUMO

Albino plants display partial or complete loss of photosynthetic pigments and defective thylakoid membrane development, consequently impairing plastid function and development. These distinctive attributes render albino plants excellent models for investigating chloroplast biogenesis. Despite their potential, limited exploration has been conducted regarding the molecular alterations underlying these phenotypes, extending beyond photosynthetic metabolism. In this study, we present a novel de novo transcriptome assembly of an albino somaclonal variant of Agave angustifolia Haw., which spontaneously emerged during the micropropagation of green plantlets. Additionally, RT-qPCR analysis was employed to validate the expression of genes associated with chloroplast biogenesis, and plastome copy numbers were quantified. This research aims to gain insight into the molecular disruptions affecting chloroplast development and ascertain whether the expression of critical genes involved in plastid development and differentiation is compromised in albino tissues of A. angustifolia. Our transcriptomic findings suggest that albino Agave plastids exhibit high proliferation, activation of the protein import machinery, altered transcription directed by PEP and NEP, dysregulation of plastome expression genes, reduced expression of photosynthesis-associated nuclear genes, disruption in the tetrapyrrole and carotenoid biosynthesis pathway, alterations in the plastid ribosome, and an increased number of plastome copies, among other alterations.


Assuntos
Agave , Agave/genética , Cloroplastos/metabolismo , Fotossíntese/genética , Plastídeos/genética , Plastídeos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética
4.
Plant Physiol Biochem ; 210: 108654, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663264

RESUMO

Fatty acid de novo biosynthesis in plant plastids is initiated from acetyl-CoA and catalyzed by a series of enzymes, which is required for the vegetative growth, reproductive growth, seed development, stress response, chloroplast development and other biological processes. In this review, we systematically summarized the fatty acid de novo biosynthesis-related genes/enzymes and their critical roles in various plant developmental processes. Based on bioinformatic analysis, we identified fatty acid synthase encoding genes and predicted their potential functions in maize growth and development, especially in anther and pollen development. Finally, we highlighted the potential applications of these fatty acid synthases in male-sterility hybrid breeding, seed oil content improvement, herbicide and abiotic stress resistance, which provides new insights into future molecular crop breeding.


Assuntos
Ácidos Graxos , Plastídeos , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Plastídeos/metabolismo , Plastídeos/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reprodução , Pólen/genética , Pólen/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/enzimologia , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/genética , Zea mays/genética , Zea mays/metabolismo , Zea mays/enzimologia , Plantas/metabolismo , Plantas/genética , Plantas/enzimologia
5.
7.
Methods Mol Biol ; 2776: 21-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502496

RESUMO

A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.


Assuntos
Evolução Biológica , Rodófitas , Simbiose , Plastídeos/genética , Plastídeos/metabolismo , Plantas/genética , Rodófitas/genética , Filogenia
8.
Methods Mol Biol ; 2776: 89-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502499

RESUMO

Plastids are semi-autonomous organelles like mitochondria and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.


Assuntos
Mitocôndrias , Plastídeos , Plastídeos/metabolismo , Mitocôndrias/genética
9.
Methods Mol Biol ; 2776: 63-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502498

RESUMO

Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of morphological, ultrastructural, biochemical, and physiological differences. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization. In addition to basic plastid structural features, the most important plastid types, the newly characterized peculiar plastids, and future perspectives in plastid biology are also provided in this chapter.


Assuntos
Cloroplastos , Embriófitas , Cloroplastos/genética , Cloroplastos/metabolismo , Plastídeos/metabolismo , Embriófitas/genética , Plantas/metabolismo
10.
Methods Mol Biol ; 2776: 177-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502504

RESUMO

Phaeodactylum tricornutum, a model pennate diatom, carries a secondary plastid surrounded by four membranes. Its biological function remains mysterious, supposed to combine features of the primary chloroplast and the endomembrane system. Isolation of high-quality plastid from the diatom enables a more conclusive understanding of the special structure and metabolic pathways in the plastid. Due to the direct continuity between the chloroplast endoplasmic reticulum membrane (cERM) and the outer nuclear envelope together with the integration of cERM into the cellular endoplasmic reticulum (ER) system, the plastid isolation is still challenging. In this study, highly purified P. tricornutum plastids with the four-layered membrane are obtained by Percoll density gradient centrifugation. The isolated plastids are unlikely to contain any residue of nuclear and coatomer compartments, and they might contain a relatively small contamination of mitochondrion and ER debris.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Plastídeos/metabolismo , Retículo Endoplasmático/metabolismo , Cloroplastos
11.
Methods Mol Biol ; 2776: 185-196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502505

RESUMO

Diatoms such as Phaeodactylum tricornutum arose through a process termed secondary endosymbiosis, in which red alga-derived plastids are surrounded by a complicated membrane system. Subcellular marker proteins provide defined localizations on the compartmental and even sub-compartmental levels in the complex plastids of diatoms. Here we introduce how to use subcellular marker proteins and in vivo co-localization in the diatom P. tricornutum by presenting a step-by-step method allowing the determination of subcellular localization of proteins in different membranes of the secondary plastid. This chapter describes the materials required and the procedures of transformation and microscopic observation.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Proteínas/metabolismo , Membranas , Simbiose , Plastídeos/metabolismo
12.
Methods Mol Biol ; 2776: 107-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502500

RESUMO

Plastids are organelles delineated by two envelopes playing important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by metabolites, signaling molecules, and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, mitochondria, peroxisomes, plasma membrane, and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still far from being understood. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.


Assuntos
Retículo Endoplasmático , Plastídeos , Plastídeos/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membrana Celular/metabolismo , Peroxissomos/metabolismo
13.
Methods Mol Biol ; 2776: 161-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502503

RESUMO

Plastids are organelles playing fundamental roles in different cellular processes such as energy metabolism or lipid biosynthesis. To fulfill their biogenesis and their function in the cell, plastids have to communicate with other cellular compartments. This communication can be mediated by the establishment of direct contact sites between plastids envelop and other organelles. These contacts are dynamic structures regulated in response to stress. For example, during phosphate (Pi) starvation, the number of contact sites between plastids and mitochondria significantly increases. In this situation, these contacts play an important role in the transfer of galactoglycerolipids from plastids to mitochondria. Recently, Pi starvation stress was used to identify key proteins involved in the traffic of galactoglycerolipids from plastids to mitochondria in Arabidopsis thaliana. A mitochondrial lipoprotein complex called MTL (Mitochondrial Transmembrane Lipoprotein) was identified. This complex contains mitochondrial proteins but also proteins located in the plastid envelope, suggesting its presence at the plastid-mitochondria junction. This chapter describes the protocol to isolate the MTL complex by clear-native polyacrylamide gel electrophoresis (CN-PAGE) from the mitochondrial fraction of Arabidopsis cell cultures and the methods to study different features of this complex.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Arabidopsis/metabolismo , Plastídeos/metabolismo , Proteínas de Arabidopsis/metabolismo , Lipoproteínas/metabolismo
14.
Methods Mol Biol ; 2776: 197-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502506

RESUMO

Apicomplexan parasites are unicellular eukaryotes responsible for major human diseases such as malaria and toxoplasmosis, which cause massive social and economic burden. Toxoplasmosis, caused by Toxoplasma gondii, is a global chronic infectious disease affecting ~1/3 of the world population and is a major threat for any immunocompromised patient. To date, there is no efficient vaccine against these parasites and existing treatments are threatened by rapid emergence of parasite resistance. Throughout their life cycle, Apicomplexa require large amount of nutrients, especially lipids for propagation and survival. Understanding lipid acquisition is key to decipher host-parasite metabolic interactions. Parasite membrane biogenesis relies on a combination of (a) host lipid scavenging, (b) de novo lipid synthesis in the parasite, and (c) fluxes of lipids between host and parasite and within. We recently uncovered that parasite need to store the host-scavenged lipids to avoid their toxic accumulation and to mobilize them for division. How can parasites orchestrate the many lipids fluxes essential for survival? Here, we developed metabolomics approaches coupled to stable isotope labelling to track, monitor, and quantify fatty acid and lipids fluxes between the parasite, its human host cell, and its extracellular environment to unravel the complex lipid fluxes in any physiological environment the parasite could meet.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Humanos , Parasitos/metabolismo , Plastídeos/metabolismo , Ácidos Graxos/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Proteínas de Protozoários/metabolismo
15.
Mol Cell ; 84(5): 910-925.e5, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38428434

RESUMO

Chloroplasts contain a dedicated genome that encodes subunits of the photosynthesis machinery. Transcription of photosynthesis genes is predominantly carried out by a plastid-encoded RNA polymerase (PEP), a nearly 1 MDa complex composed of core subunits with homology to eubacterial RNA polymerases (RNAPs) and at least 12 additional chloroplast-specific PEP-associated proteins (PAPs). However, the architecture of this complex and the functions of the PAPs remain unknown. Here, we report the cryo-EM structure of a 19-subunit PEP complex from Sinapis alba (white mustard). The structure reveals that the PEP core resembles prokaryotic and nuclear RNAPs but contains chloroplast-specific features that mediate interactions with the PAPs. The PAPs are unrelated to known transcription factors and arrange around the core in a unique fashion. Their structures suggest potential functions during transcription in the chemical environment of chloroplasts. These results reveal structural insights into chloroplast transcription and provide a framework for understanding photosynthesis gene expression.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA de Cloroplastos , RNA de Cloroplastos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Transcrição Gênica
16.
Plant Sci ; 343: 112053, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38417718

RESUMO

Retrograde signaling between plastids and the nucleus is vital for chloroplast biogenesis and environmental responses. GENOMES UNCOUPLED1 (GUN1) was proposed to be a central integrator of multiple retrograde signaling pathways in the model plant Arabidopsis thaliana (Arabidopsis). However, the function of GUN1 orthologs in other plant species has not been well studied. Here, we found that many GUN1 orthologs from the Solanaceae family have a short N-terminus before the first pentatricopeptide repeat (PPR) motif which is predicted as intrinsically disordered regions (IDRs). Functional analyses of tomato (Solanum lycopersicum L.) GUN1 (SlGUN1), which does not contain N-terminal IDRs, show that it can complement the GUN phenotype of the Arabidopsis gun1 mutant (Atgun1). However, in contrast to the AtGUN1 protein, which does contain the N-terminal IDRs, the SlGUN1 protein is highly accumulated even after chloroplast biogenesis is completed, suggesting that the N-terminal IDRs may determine the stability of the GUN1 protein. Furthermore, we generated tomato Slgun1 genome-edited mutants via the CRISPR-Cas9 system. The Slgun1 mutants exhibited a typical GUN phenotype under lincomycin (Lin) or norflurazon (NF) treatment. Moreover, Slgun1 mutants are hypersensitive to low concentrations of Lin or NF. Taken together, our results suggest that, although lacking the N-terminal IDRs, SlGUN1 plays conserved roles in plastid retrograde signaling in tomato plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Solanum lycopersicum/genética , Proteínas de Ligação a DNA/genética , Plastídeos/genética , Plastídeos/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Plant Commun ; 5(5): 100836, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38327059

RESUMO

RNA cytidine-to-uridine editing is essential for plant organellar gene expression. Pentatricopeptide repeat (PPR)-E+ proteins have been proposed to bind to target sites and recruit the cytidine deaminase AtDYW2, facilitated by AtNUWA. Here we analyze the function of ZmNUWA, ZmDYW2A, and ZmDYW2B and their relationships with other editing factors in maize. The zmdyw2a and zmdyw2b single mutants are normal, but the zmdyw2a::zmdyw2b and zmnuwa mutants are severely arrested in seed development. ZmNUWA, ZmDYW2A, and ZmDYW2B are dual localized in mitochondria and plastids. Loss of ZmNUWA decreases the editing at 99 mitochondrial sites and 8 plastid sites. Surprisingly, loss of ZmDYW2A:ZmDYW2B affects almost the same set of sites targeted by PPR-E+ proteins. ZmNUWA interacts with ZmDYW2A and ZmDYW2B, suggesting that ZmNUWA recruits ZmDYW2A/2B in the editing of PPR-E+-targeted sites in maize. Further protein interaction analyses show that ZmNUWA and ZmDYW2A/2B interact with ZmMORF1, ZmMORF8, ZmMORF2, and ZmMORF9 and that ZmOZ1 interacts with ZmORRM1, ZmDYW2A, ZmDYW2B, ZmMORF8, and ZmMORF9. These results suggest that the maize mitochondrial PPR-E+ editosome contains PPR-E+, ZmDYW2A/2B, ZmNUWA, and ZmMORF1/8, whereas the plastid PPR-E+ editosome is composed of PPR-E+, ZmDYW2A/2B, ZmNUWA, ZmMORF2/8/9, ZmORRM1, and ZmOZ1.


Assuntos
Mitocôndrias , Proteínas de Plantas , Plastídeos , Edição de RNA , Zea mays , Zea mays/genética , Zea mays/metabolismo , Plastídeos/metabolismo , Plastídeos/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Plant Physiol ; 195(1): 713-727, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330186

RESUMO

Plant tetrapyrrole biosynthesis (TPB) takes place in plastids and provides the chlorophyll and heme required for photosynthesis and many redox processes throughout plant development. TPB is strictly regulated, since accumulation of several intermediates causes photodynamic damage and cell death. Protoporphyrinogen oxidase (PPO) catalyzes the last common step before TPB diverges into chlorophyll and heme branches. Land plants possess two PPO isoforms. PPO1 is encoded as a precursor protein with a transit peptide, but in most dicotyledonous plants PPO2 does not possess a cleavable N-terminal extension. Arabidopsis (Arabidopsis thaliana) PPO1 and PPO2 localize in chloroplast thylakoids and envelope membranes, respectively. Interestingly, PPO2 proteins in Amaranthaceae contain an N-terminal extension that mediates their import into chloroplasts. Here, we present multiple lines of evidence for dual targeting of PPO2 to thylakoid and envelope membranes in this clade and demonstrate that PPO2 is not found in mitochondria. Transcript analyses revealed that dual targeting in chloroplasts involves the use of two transcription start sites and initiation of translation at different AUG codons. Among eudicots, the parallel accumulation of PPO1 and PPO2 in thylakoid membranes is specific for the Amaranthaceae and underlies PPO2-based herbicide resistance in Amaranthus species.


Assuntos
Herbicidas , Proteínas de Plantas , Protoporfirinogênio Oxidase , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo , Herbicidas/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plastídeos/genética , Plastídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Amaranthus/genética , Amaranthus/efeitos dos fármacos , Cloroplastos/metabolismo , Cloroplastos/genética , Resistência a Herbicidas/genética , Arabidopsis/genética , Tilacoides/metabolismo
20.
Plant Cell Environ ; 47(6): 1921-1940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38357785

RESUMO

Multiple organellar RNA editing factor (MORF) complex was shown to be highly associated with C-to-U RNA editing of vascular plant editosome. However, mechanisms by which MORF9-dependent plastid RNA editing controls plant development and responses to environmental alteration remain obscure. In this study, we found that loss of MORF9 function impaired PSII efficiency, NDH activity, and carbohydrate production, rapidly promoted nuclear gene expression including sucrose transporter and sugar/energy responsive genes, and attenuated root growth under sugar starvation conditions. Sugar repletion increased MORF9 and MORF2 expression in wild-type seedlings and reduced RNA editing of matK-706, accD-794, ndhD-383 and ndhF-290 in the morf9 mutant. RNA editing efficiency of ndhD-383 and ndhF-290 sites was diminished in the gin2/morf9 double mutants, and that of matK-706, accD-794, ndhD-383 and ndhF-290 sites were significantly diminished in the snrk1/morf9 double mutants. In contrast, overexpressing HXK1 or SnRK1 promoted RNA editing rate of matK-706, accD-794, ndhD-383 and ndhF-290 in leaves of morf9 mutants, suggesting that HXK1 partially impacts MORF9 mediated ndhD-383 and ndhF-290 editing, while SnRK1 may only affect MORF9-mediated ndhF-290 site editing. Collectively, these findings suggest that sugar and/or its intermediary metabolites impair MORF9-dependent plastid RNA editing resulting in derangements of plant root development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Plastídeos , Edição de RNA , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Edição de RNA/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Açúcares/metabolismo , Mutação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA