Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.267
Filtrar
1.
Kidney Int ; 105(6): 1165-1167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777401

RESUMO

The Oxford histopathologic classification (MEST-C: scores for lesions indicating active glomerular inflammation, mesangial [M] and endocapillary [E] hypercellularity as well as cellular or fibrocellular crescents [C], and for segmental glomerulosclerosis [S] and interstitial fibrosis and/or tubular atrophy [T]) is useful in helping assess prognosis in patients with IgA nephropathy. Elements of this classification indicative of active glomerular inflammation, endocapillary hypercellularity and crescents, also have been found to be responsive to immunosuppressive therapy, potentially including newer agents specifically targeting mediators of such inflammation. In this issue of Kidney International, Bellur and coworkers identify histopathologic subtypes of segmental glomerulosclerosis in IgA nephropathy showing podocyte injury that also behave like active lesions, including showing improved outcomes with immunosuppression. This podocyte injury, identifiable only by kidney biopsy, may represent a potential therapeutic target in some patients with IgA nephropathy.


Assuntos
Glomerulonefrite por IGA , Podócitos , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/imunologia , Humanos , Podócitos/patologia , Podócitos/imunologia , Podócitos/efeitos dos fármacos , Biópsia , Imunossupressores/uso terapêutico , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/imunologia , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomérulos Renais/patologia , Glomérulos Renais/imunologia , Glomérulos Renais/efeitos dos fármacos , Prognóstico
2.
Cells ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786068

RESUMO

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Assuntos
Adesão Celular , Diabetes Mellitus Experimental , Proteína-Tirosina Quinases de Adesão Focal , Podócitos , Proteinúria , Receptor A2B de Adenosina , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Animais , Humanos , Proteinúria/metabolismo , Ratos , Receptor A2B de Adenosina/metabolismo , Adesão Celular/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Masculino , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/tratamento farmacológico , Antagonistas do Receptor A2 de Adenosina/farmacologia , Adenosina/metabolismo , Adenosina/farmacologia , Movimento Celular/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo
3.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732210

RESUMO

Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD.


Assuntos
Angiotensina II , Quimiocina CCL2 , Doxorrubicina , Camundongos Knockout , Podócitos , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Podócitos/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Camundongos , Masculino , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Deleção de Genes , Modelos Animais de Doenças
4.
Pak J Pharm Sci ; 37(1): 155-161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741412

RESUMO

Nephrin is a transmembrane protein that maintains the slit diaphragm of renal podocyte. In chronic kidney disease (CKD), podocyte effacement causes damage to glomerular basement membrane barrier leading to proteinuria. Boerhavia diffusa, (BD), an Ayurveda herb, is used in treatment of various diseases particularly in relation to the urinary system. This study attempts to evaluate the effect of ethanolic extract of BD on the expression of nephrin in adenine induced CKD rats. CKD was induced in Wistar albino rats using adenine (600/mg/kg, orally for 10 days). CKD rats were treated with BD (400/mg/kg) and pirfenidone (500/mg/kg) orally for 14 days. The kidneys were harvested from euthanized animals and processed for histopathology, electron microscopy and immunohistochemistry, gene and protein expression of nephrin. Diseased rats treated with BD and pirfenidone showed reduction in the thickening of renal basement membranes and reduced haziness in brush border of PCT and glomeruli. Nephrin gene and protein expressions were higher in BD and pirfenidone treated group when compared to the disease control group. The structural and functional damage brought on by adenine-induced nephrotoxicity was countered by protective action of BD by up regulating the expression of nephrin. Therefore, BD can be utilized as a nutraceutical for the prevention and treatment of CKD.


Assuntos
Adenina , Proteínas de Membrana , Extratos Vegetais , Podócitos , Ratos Wistar , Insuficiência Renal Crônica , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Extratos Vegetais/farmacologia , Adenina/farmacologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Masculino , Ratos , Modelos Animais de Doenças
5.
Environ Int ; 187: 108672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648691

RESUMO

Manganese (Mn) is an essential micronutrient required for various biological processes but excess exposure to Mn can cause neurotoxicity. However, there are few reports regarding the toxicity effect of Mn on the kidney as well as the underlying molecule mechanism. Herein, in vivo experiments were adopted to assess the toxicity effects associated with Mn, and found that chronic Mn treatment induced the injury of glomerular podocytes but not renal tubule in rats. Genome-wide CRISPR/Cas9 knockout screen was then employed to explore the biotargets of the toxic effect of Mn on podocytes. Through functional analyses of the enriched candidate genes, NLRP10 was found to be significantly up-regulated and mediated Mn-induced podocyte apoptosis. Further mechanism investigation revealed that NLRP10 expression was regulated by demethylase AlkB homolog 5 (ALKBH5) in an m6A-dependent fashion upon Mn treatment. Moreover, Mn could directly bind to Metadherin (MTDH) and promoted its combination with ALKBH5 to promote NLRP10 expression and cell apoptosis. Finally, logistic regressions, restricted cubic spline regressions and uniform cubic B-spline were used to investigate the association between Mn exposure and the risk of chronic kidney disease (CKD). A U-shaped nonlinear relationship between CKD risk and plasma Mn level, and a positive linear relationship between CKD risk and urinary Mn levels was found in our case-control study. To sum up, our findings illustrated that m6A-dependent NLRP10 regulation is indispensable for podocyte apoptosis and nephrotoxicity induced by Mn, providing fresh insight into understanding the health risk of Mn and a novel target for preventing renal injury in Mn-intoxicated patients.


Assuntos
Manganês , Proteínas de Membrana , Podócitos , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Animais , Ratos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Manganês/toxicidade , Insuficiência Renal Crônica/induzido quimicamente , Humanos , Masculino , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
6.
Pharmacol Rep ; 76(3): 612-621, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38668812

RESUMO

BACKGROUND: Podocytes have a remarkable ability to recover from injury; however, little is known about the recovery mechanisms involved in this process. We recently showed that formoterol, a long-acting ß2-adrenergic receptor (ß2-AR) agonist, induced mitochondrial biogenesis (MB) in podocytes and led to renoprotection in mice. However, it is not clear whether this effect was mediated by formoterol acting through the ß2-AR or if it occurred through "off-target" effects. METHODS: We genetically deleted the ß2-AR specifically in murine podocytes and used these mice to determine whether formoterol acting through the podocyte ß2-AR alone is sufficient for recovery of renal filtration function following injury. The podocyte-specific ß2-AR knockout mice (ß2-ARfl/fl/PodCre) were generated by crossing ß2-AR floxed mice with podocin Cre (B6.Cg-Tg(NPHS2-cre)295Lbh/J) mice. These mice were then subjected to both acute and chronic glomerular injury using nephrotoxic serum (NTS) and adriamycin (ADR), respectively. The extent of injury was evaluated by measuring albuminuria and histological and immunostaining analysis of the murine kidney sections. RESULTS: A similar level of injury was observed in ß2-AR knockout and control mice; however, the ß2-ARfl/fl/PodCre mice failed to recover in response to formoterol. Functional evaluation of the ß2-ARfl/fl/PodCre mice following injury plus formoterol showed similar albuminuria and glomerular injury to control mice that were not treated with formoterol. CONCLUSIONS: These results indicate that the podocyte ß2-AR is a critical component of the recovery mechanism and may serve as a novel therapeutic target for treating podocytopathies.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Doxorrubicina , Fumarato de Formoterol , Camundongos Knockout , Podócitos , Receptores Adrenérgicos beta 2 , Animais , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Receptores Adrenérgicos beta 2/metabolismo , Camundongos , Fumarato de Formoterol/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Albuminúria/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia
7.
Cell Rep ; 43(4): 114075, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583151

RESUMO

Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and no specific drugs are clinically available. We have previously demonstrated that inhibiting microsomal prostaglandin E synthase-2 (mPGES-2) alleviated type 2 diabetes by enhancing ß cell function and promoting insulin production. However, the involvement of mPGES-2 in DKD remains unclear. Here, we aimed to analyze the association of enhanced mPGES-2 expression with impaired metabolic homeostasis of renal lipids and subsequent renal damage. Notably, global knockout or pharmacological blockage of mPGES-2 attenuated diabetic podocyte injury and tubulointerstitial fibrosis, thereby ameliorating lipid accumulation and lipotoxicity. These findings were further confirmed in podocyte- or tubule-specific mPGES-2-deficient mice. Mechanistically, mPGES-2 and Rev-Erbα competed for heme binding to regulate fatty acid binding protein 5 expression and lipid metabolism in the diabetic kidney. Our findings suggest a potential strategy for treating DKD via mPGES-2 inhibition.


Assuntos
Nefropatias Diabéticas , Metabolismo dos Lipídeos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Podócitos , Prostaglandina-E Sintases , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/tratamento farmacológico , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Fibrose , Rim/patologia , Rim/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Podócitos/metabolismo , Podócitos/patologia , Podócitos/efeitos dos fármacos , Prostaglandina-E Sintases/metabolismo , Prostaglandina-E Sintases/genética , Transdução de Sinais/efeitos dos fármacos
8.
Life Sci ; 347: 122667, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670449

RESUMO

BACKGROUND: Zinc deficiency is strongly correlated with prolonged diabetes mellitus and diabetic nephropathy (DN). Previously, glucose-lowering, insulinomimetic, and ß-cell proliferative activities of zinc oxide nanoparticles (ZON) have been reported. Considering these pleiotropic effects, we hypothesized that ZON modulates multiple cellular pathways associated with necroptosis, inflammation, and renal fibrosis, which are involved in progressive loss of renal function. AIM: This study evaluated the effect of ZON on renal function, leading to the alleviation of DN in streptozotocin (STZ)-induced type 1 diabetic Wistar rats and proposed a probable mechanism for its activity. METHODS: Wistar rats (n = 6/group) were used as healthy controls, diabetic controls, diabetic rats treated with ZON (1, 3, and 10 mg/kg), and insulin controls. Urine and serum biochemical parameters, glomerular filtration rate (GFR), and renal histology were also evaluated. Cultured E11 podocytes were evaluated in vitro for markers of oxidative stress, proteins associated with the loss of renal function, and genes associated with renal damage. KEY FINDINGS: STZ-treated rats receiving oral doses of ZON showed enhanced renal function, with no histological alterations in the kidney tissue. ZON inhibited the TGF-ß/Samd3 pathway in renal fibrosis; blocked Ripk1/Ripk3/Mlkl mediated necroptosis and protected against hyperglycemia-induced pyroptosis. In E11 podocytes, ZON reduced oxidative stress under high glucose conditions and retained podocyte-specific proteins. SIGNIFICANCE: A probable mechanism by which ZON prevents DN has been proposed, suggesting its use as a complementary therapeutic agent for the treatment of diabetic complications. To the best of our knowledge, this is the first study to demonstrate the in vitro effects of ZON in cultured podocytes.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Estresse Oxidativo , Ratos Wistar , Óxido de Zinco , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Masculino , Óxido de Zinco/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nanopartículas , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Fibrose , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Estreptozocina , Transdução de Sinais/efeitos dos fármacos
9.
Biomed Pharmacother ; 174: 116583, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626520

RESUMO

BACKGROUND: Primary membranous nephropathy (PMN) is an autoimmune glomerular disease. IL-6 is a potential therapeutic target for PMN. Previous clinical studies have demonstrated the effectiveness of Mahuang Fuzi and Shenzhuo Decoction (MFSD) in treating membranous nephropathy. However, the mechanism of action of MFSD remains unclear. METHODS: Serum IL-6 levels were measured in patients with PMN and healthy subjects. The passive Heymann nephritis (PHN) rat model was established, and high and low doses of MFSD were used for intervention to observe the repair effect of MFSD on renal pathological changes and podocyte injury. RNA-seq was used to screen the possible targets of MFSD, and the effect of MFSD targeting IL-6/STAT3 was further verified by combining the experimental results. Finally, the efficacy of tocilizumab in PHN rats was observed. RESULTS: Serum IL-6 levels were significantly higher in PMN patients than in healthy subjects. These levels significantly decreased in patients in remission after MFSD treatment. MFSD treatment improved laboratory indicators in PHN rats, as well as glomerular filtration barrier damage and podocyte marker protein expression. Renal transcriptome changes showed that MFSD-targeted differential genes were enriched in JAK/STAT and cytokine-related pathways. MFSD inhibits the IL6/STAT3 pathway in podocytes. Additionally, MFSD significantly reduced serum levels of IL-6 and other cytokines in PHN rats. However, treatment of PHN with tocilizumab did not achieve the expected effect. CONCLUSION: The IL-6/STAT3 signaling pathway is activated in podocytes of experimental membranous nephropathy. MFSD alleviates podocyte damage by inhibiting the IL-6/STAT3 pathway.


Assuntos
Anticorpos Monoclonais Humanizados , Medicamentos de Ervas Chinesas , Glomerulonefrite Membranosa , Interleucina-6 , Podócitos , Fator de Transcrição STAT3 , Transdução de Sinais , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Fator de Transcrição STAT3/metabolismo , Animais , Interleucina-6/metabolismo , Interleucina-6/sangue , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Masculino , Ratos , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Feminino , Pessoa de Meia-Idade , Modelos Animais de Doenças , Adulto
10.
Genes (Basel) ; 15(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38674390

RESUMO

The Adriamycin (ADR) nephropathy model, which induces podocyte injury, is limited to certain mouse strains due to genetic susceptibilities, such as the PrkdcR2140C polymorphism. The FVB/N strain without the R2140C mutation resists ADR nephropathy. Meanwhile, a detailed analysis of the progression of ADR nephropathy in the FVB/N strain has yet to be conducted. Our research aimed to create a novel mouse model, the FVB-PrkdcR2140C, by introducing PrkdcR2140C into the FVB/NJcl (FVB) strain. Our study showed that FVB-PrkdcR2140C mice developed severe renal damage when exposed to ADR, as evidenced by significant albuminuria and tubular injury, exceeding the levels observed in C57BL/6J (B6)-PrkdcR2140C. This indicates that the FVB/N genetic background, in combination with the R2140C mutation, strongly predisposes mice to ADR nephropathy, highlighting the influence of genetic background on disease susceptibility. Using RNA sequencing and subsequent analysis, we identified several genes whose expression is altered in response to ADR nephropathy. In particular, Mmp7, Mmp10, and Mmp12 were highlighted for their differential expression between strains and their potential role in influencing the severity of kidney damage. Further genetic analysis should lead to identifying ADR nephropathy modifier gene(s), aiding in early diagnosis and providing novel approaches to kidney disease treatment and prevention.


Assuntos
Modelos Animais de Doenças , Doxorrubicina , Nefropatias , Animais , Doxorrubicina/efeitos adversos , Camundongos , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Predisposição Genética para Doença , Podócitos/metabolismo , Podócitos/patologia , Podócitos/efeitos dos fármacos
11.
Int Immunopharmacol ; 130: 111790, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447417

RESUMO

OBJECTIVE: Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease, which has limited treatment options. Rutaecarpine has anti-inflammatory effects, however, it has not been studied in DKD. Pyroptosis is a newly discovered mode of podocyte death related to inflammation. This study aimed to explore whether Rutaecarpine can ameliorate DKD and to clarify its possible mechanism. METHODS: In this study, we investigated the effects of Rutaecarpine on DKD using diabetic mice model (db/db mice) and high glucose (HG)-stimulated mouse podocyte clone 5 (MPC5) cells. Quantitative reverse transcription polymerase chain reaction and western blot were performed to detect the related gene and protein levels. We applied pharmacological prediction, co-immunoprecipitation assay, cellular thermal shift assay, surface plasmon resonance to find the target and pathway of the substances. Gene knockdown experiments confirmed this view in HG-stimulated MPC5 cells. RESULTS: Rutaecarpine significantly reduced proteinuria, histopathological damage, and pyroptosis of podocytes in a dose-dependent manner in db/db mice. Rutaecarpine also protected high glucose induced MPC5 injury in vitro experiments. Mechanistically, Rutaecarpine can inhibit pyroptosis in HG-stimulated MPC5 by reducing the expression of VEGFR2. VEGFR2 is a target of Rutaecarpine in MPC5 cells and directly binds to the pyroptosis initiation signal, NLRP3. VEGFR2-knockdown disrupted the beneficial effects of Rutaecarpine in HG-stimulated MPC5 cells. CONCLUSION: Rutaecarpine inhibits renal inflammation and pyroptosis through VEGFR2/NLRP3 pathway, thereby alleviating glomerular podocyte injury. These findings highlight the potential of Rutaecarpine as a novel drug for DKD treatment.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Alcaloides Indólicos , Podócitos , Piroptose , Quinazolinonas , Animais , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Glucose/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Podócitos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Camundongos Endogâmicos C57BL , Masculino
12.
J Endocrinol ; 261(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552310

RESUMO

Diabetic nephropathy (DN) is one of the most frequent complications of diabetes. Early stages of DN are associated with hyperinsulinemia and progressive insulin resistance in insulin-sensitive cells, including podocytes. The diabetic environment induces pathological changes, especially in podocyte bioenergetics, which is tightly linked with mitochondrial dynamics. The regulatory role of insulin in mitochondrial morphology in podocytes has not been fully elucidated. Therefore, the main goal of the present study was to investigate effects of insulin on the regulation of mitochondrial dynamics and bioenergetics in human podocytes. Biochemical analyses were performed to assess oxidative phosphorylation efficiency by measuring the oxygen consumption rate (OCR) and glycolysis by measuring the extracellular acidification rate (ECAR). mRNA and protein expression were determined by real-time polymerase chain reaction and Western blot. The intracellular mitochondrial network was visualized by MitoTracker staining. All calculations were conducted using CellProfiler software. Short-term insulin exposure exerted inhibitory effects on various parameters of oxidative respiration and adenosine triphosphate production, and glycolysis flux was elevated. After a longer time of treating cells with insulin, an increase in mitochondrial size was observed, accompanied by a reduction of expression of the mitochondrial fission markers DRP1 and FIS1 and an increase in mitophagy. Overall, we identified a previously unknown role for insulin in the regulation of oxidative respiration and glycolysis and elucidated mitochondrial dynamics in human podocytes. The present results emphasize the importance of the duration of insulin stimulation for its metabolic and molecular effects, which should be considered in clinical and experimental studies of DN.


Assuntos
Metabolismo Energético , Glicólise , Insulina , Mitocôndrias , Dinâmica Mitocondrial , Podócitos , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Humanos , Dinâmica Mitocondrial/efeitos dos fármacos , Insulina/metabolismo , Insulina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Dinaminas/metabolismo , Dinaminas/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fosforilação Oxidativa/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Mitofagia/efeitos dos fármacos , Linhagem Celular
15.
In Vitro Cell Dev Biol Anim ; 59(9): 697-705, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37819479

RESUMO

Ferroptosis is a newly discovered form of cell death characterized by intracellular iron accumulation and subsequent lipid peroxidation, which has been identified in various pathological processes, such as acute kidney injury (AKI). Ulinastatin (UTI), known as an antioxidant and anti-inflammatory, has been reported to prevent kidney injury. Here, we investigated the protective effects of UTI on LPS-induced podocyte ferroptosis in vivo and in vitro. Conditionally immortalized mouse podocyte was exposed to LPS in the presence or absence of UTI in vitro for 48 h. The levels of reactive oxygen species (ROS) and intracellular Fe2+ were detected to value the effect of UTI treatment on the podocyte cell ferroptosis. We also evaluated the influence of UTI on kidney injury in vivo. LPS-induced mice were treated with vehicle or UTI at 50 U/g/d for 6 wk. We identified the important function of UTI in repressing ferroptosis and ameliorating podocyte injury. The treatment of UTI reduced accumulation of Fe2+ and lipid ROS in podocyte. The cell proliferation was induced by UTI compared with the LPS-treated group in vitro. UTI attenuated the podocyte cytoskeletal as well. Regarding the mechanism, we found that UTI upregulated solute carrier family 7 member 11 (SLC7A11) expression by reducing miR-144-3p in the cells. The overexpression of miR-144-3p blocked the protective role of UTI in podocyte ferroptosis. MiR-144-3p/SLC7A11 axis was involved in UTI-mediated podocyte cell proliferation in vitro. Furthermore, the treatment of UTI repressed podocyte injury and proteinuria in vivo, and the level of miR-144-3p was decreased while SLC7A11 expression was increased in comparison with the model mice. UTI prevents LPS-induced podocyte ferroptosis and subsequent renal dysfunction through miR-144-3p/SLC7A11 axis. These findings might provide a potential novel therapeutic option for AKI and other renal diseases affecting podocyte.


Assuntos
Injúria Renal Aguda , Ferroptose , MicroRNAs , Podócitos , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , Podócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio
16.
DNA Cell Biol ; 42(10): 594-607, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37751175

RESUMO

To investigate the effect of astragaloside IV (AS) on podocytes pyroptosis in diabetic kidney disease (DKD). Forty male Sprague-Dawley rats were randomly divided into normal group (n = 10) and model group (n = 30). Rats in model group were intraperitoneally injected streptozotocin (60 mg/kg) for 3 days to induce DKD. Then rats were divided into DKD group, AS group, and UBCS group. The AS group was given 40 mg/kg/d of AS by gavage, and UBCS group was given 50 mg/kg/d of UBCS039 by gavage, and normal group and DKD group were given the same amount saline for 8 weeks, once a day. Hematoxylin-eosin and masson staining were used to observe pathology of kidney. Rat podocytes were divided into normal group, mannitol hypertonic group, high-glucose group, UBCS group, OSS group, and AS group. Western blotting, quantitative real-time polymerase chain reaction, immunofluorescence, and flow cytometry were used to analyze pyroptosis-related markers and reactive oxygen species (ROS) levels. Results showed that AS inhibited ROS and alleviated podocytes pyroptosis in rats by increasing expression of sirtuin 6 (SIRT6) and decreasing expression of hypoxia inducible factor 1 subunit alpha (HIF-1α). UBCS039 and AS enhanced SIRT6 level, decreased HIF-1α level, and finally improved pyroptosis of podocytes in vitro, whereas OSS-128167 showed the opposite effect for podocytes pyroptosis. AS improved podocytes pyroptosis in DKD by regulating SIRT6/HIF-1α pathway, thereby alleviating injury of DKD.


Assuntos
Nefropatias Diabéticas , Podócitos , Piroptose , Saponinas , Sirtuínas , Triterpenos , Animais , Masculino , Ratos , Nefropatias Diabéticas/tratamento farmacológico , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Piroptose/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico
17.
Sci Rep ; 13(1): 14167, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644089

RESUMO

Mycophenolate mofetil (MMF) is applied in proteinuric kidney diseases, but the exact mechanism of its effect on podocytes is still unknown. Our previous in vitro experiments suggested that MMF can ameliorate podocyte damage via restoration of the Ca2+-actin cytoskeleton axis. The goal of this study was to characterize podocyte biology during MMF treatment in nephrotoxic serum (NTS) nephritis (NTN). NTN was induced in three-week old wild-type mice. On day 3, half of the mice were treated with MMF (100 mg/kgBW/d p.o.) for one week. On day 10, we performed proteomic analysis of glomeruli as well as super-resolution imaging of the slit diaphragm. For multiphoton imaging of Ca2+ concentration ([Ca2+]i), the experimental design was repeated in mice expressing podocyte-specific Ca2+ sensor. MMF ameliorated the proteinuria and crescent formation induced by NTS. We identified significant changes in the abundance of proteins involved in Ca2+ signaling and actin cytoskeleton regulation, which was further confirmed by direct [Ca2+]i imaging in podocytes showing decreased Ca2+ levels after MMF treatment. This was associated with a tendency to restoration of podocyte foot process structure. Here, we provide evidence that MPA has a substantial direct effect on podocytes. MMF contributes to improvement of [Ca2+]i and amelioration of the disorganized actin cytoskeleton in podocytes. These data extend the knowledge of direct effects of immunosuppressants on podocytes that may contribute to a more effective treatment of proteinuric glomerulopathies with the least possible side effects.


Assuntos
Ácido Micofenólico , Nefrite , Podócitos , Ácido Micofenólico/administração & dosagem , Animais , Camundongos , Podócitos/efeitos dos fármacos , Nefrite/tratamento farmacológico , Nefrite/patologia , Camundongos Endogâmicos C57BL , Glomérulos Renais/química , Glomérulos Renais/patologia , Proteoma/efeitos dos fármacos , Citoesqueleto de Actina/efeitos dos fármacos
18.
J Ethnopharmacol ; 293: 115246, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398500

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has been applied to diabetic kidney disease (DKD). A large number of animal trials each year focus on TCM for DKD, but the evidence for these preclinical studies is not clear. AIM OF THE STUDY: The aim of this study was to study the therapeutic effect of Jiedu Tongluo Baoshen formula (JTBF) on DKD proteinuria and renal protection. At the same time, it is verified that JTBF can reduce podocyte injury by enhancing autophagy function, and then achieve the effect of proteinuria. MATERIALS AND METHODS: We use high performance liquid chromatography to detect and analyze the fingerprint of JTBF to find the chemical composition. Subsequently, we constructed a DKD rat model induced by high-fat diet and streptozocin (HFD + STZ). Urine and blood biochemical automatic analyzer were used to detect 24-h urine protein quantification (24 h-UP) and renal function. The renal pathological changes were observed by H&E and transmission electron microscopy (TEM), and the levels of autophagy-related proteins and mRNA in podocytes were detected by immunohistochemistry, RT-qPCR and Western Blot. The chemical composition of JTBF was screened from traditional Chinese medicine systems pharmacol (TCMSP) and PubChem databases, and the potential targets and associated pathways of JTBF were predicted using kyoto encyclopedia of genes and genomes (KEGG) and protein-protein interaction (PPI) network analysis in network pharmacology, and confirmed in animal experiments and histopathological methods. RESULTS: We discovered 77 active ingredients of JTBF. Through animal experiments, it was found that JTBF reduced 24 h-UP and promoted the expression of podocin, nephrin, and WT-1 in podocytes, thereby reducing podocyte damage. At the same time, JTBF activates the expression of podocyte autophagy-related proteins (beclin-1, LC3 and P62). Subsequently, through network pharmacology predictions, 208 compounds were obtained from JTBF, and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) was a potential signal pathway. JTBF was obtained in DKD rat kidney tissue to inhibit the expression of PI3K, Akt and mTOR related proteins. CONCLUSIONS: JTBF enhance podocyte autophagy to reduce podocyte damage, thereby effectively treating DKD proteinuria and protecting kidney function.


Assuntos
Autofagia , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Podócitos , Proteinúria , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/efeitos dos fármacos , Proteinúria/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
19.
Bioorg Med Chem Lett ; 61: 128612, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143983

RESUMO

A deepening understanding of the relationship between transient receptor potential canonical channel 5 (TRPC5) and chronic kidney disease (CKD), has led to the emergence of several types of TRPC5 inhibitors displaying clear therapeutic effect. Herein, we report the synthesis and biological evaluation of a series of pyrroledione TRPC5 inhibitors, culminating in the discovery of compound 16g with subtype selectivity. Compared with GFB-8438, a potent TRPC5 inhibitor (Goldfinch Bio), compound 16g showed improved inhibition of TRPC5 and enhanced protective effect against protamine sulfates (PS)-induced podocyte injury in vitro. In addition, compound 16g did not induce cell death in primary cultured hepatocytes and immortalized podocytes in a preliminary toxicity assessment, indicating its utility as a potent and safe inhibitor for studying the function of TRPC5.


Assuntos
Descoberta de Drogas , Pirróis/farmacologia , Canais de Cátion TRPC/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Protaminas , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade , Canais de Cátion TRPC/metabolismo
20.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34253875

RESUMO

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Glomérulos Renais/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Flavanonas/administração & dosagem , Injeções Intraperitoneais , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA