Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Bioorg Chem ; 118: 105482, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801946

RESUMO

Podomycins A-L (1-12), 12 undescribed hypothemycin-type resorcylic acid lactones (RALs), were characterized from Podospora sp. G214, an endophyte harbored in the roots of Sanguisorba officinalis L. Their structures were addressed by spectroscopic data, X-ray crystallography, the modified Mosher's method, together with Mo2(OAc)4- and Rh2(OCOCF3)4-induced electronic circular dichroism (ICD) experiments. Podomycins A-C (1-3) represent the first class of natural RALs with a 13-membered macrolactone ring, while 4-12 are rearranged methoxycarbonyl substituted RALs. Biologically, compounds 2, 6, 8, 10, and 12 displayed immunosuppressive activities against T cell proliferation with IC50 values of 14.5-21.9 µM, and B cell proliferation with IC50 values of 22.3-36.5 µM, respectively. Further mechanism of action research demonstrated that podomycin F (6) distinctly induced apoptosis in activated T cells via MAPKs/AKT pathway.


Assuntos
Apoptose/efeitos dos fármacos , Imunossupressores/farmacologia , Lactonas/farmacologia , Podospora/química , Linfócitos T/efeitos dos fármacos , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Imunossupressores/química , Imunossupressores/isolamento & purificação , Lactonas/química , Lactonas/isolamento & purificação , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Proteínas Proto-Oncogênicas c-akt , Relação Estrutura-Atividade , Linfócitos T/metabolismo
2.
J Nat Prod ; 84(2): 483-494, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33544615

RESUMO

Twelve new hypothemycin-type resorcylic acid lactones, three 10-membered (1-3) and nine 14-membered (4-12), together with seven known analogues (13-19), were obtained from the solid rice-based culture of Podospora sp. G214. Their structures were elucidated utilizing spectroscopic analysis, and the absolute configurations were determined by modified Mosher's method, Mo2(OAc)4-induced electronic circular dichroism experiments, and single-crystal X-ray diffraction. Compounds 1, 5, 10, and 12-19 exhibited potent immunosuppressive activities against concanavalin A-induced T cell proliferation with IC50 values ranging from 6.0 to 25.1 µM and lipopolysaccharide-induced B cell proliferation with IC50 values ranging from 6.2 to 29.1 µM. Further studies revealed that 1 induced apoptosis in activated T cells through the JNK-mediated mitochondrial pathway.


Assuntos
Linfócitos B/efeitos dos fármacos , Imunossupressores/farmacologia , Lactonas/farmacologia , Podospora/química , Linfócitos T/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , China , Imunossupressores/isolamento & purificação , Lactonas/isolamento & purificação , Masculino , Camundongos Endogâmicos BALB C , Estrutura Molecular , Raízes de Plantas/microbiologia , Sanguisorba/microbiologia , Baço/citologia , Zearalenona/análogos & derivados , Zearalenona/isolamento & purificação , Zearalenona/farmacologia
3.
Chembiochem ; 20(9): 1161-1166, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548150

RESUMO

Amyloid fibrils are pathological hallmarks of various human diseases, including Parkinson's, Alzheimer's, amyotrophic lateral sclerosis (ALS or motor neurone disease), and prion diseases. Treatment of the amyloid diseases are hindered, among other factors, by timely detection and therefore, early detection of the amyloid fibrils would be beneficial for treatment against these disorders. Here, a small molecular fluorescent probe is reported that selectively recognize the fibrillar form of amyloid beta(1-42), α-synuclein, and HET-s(218-289) protein over their monomeric conformation. The rational design of the reporters relies on the well-known cross-ß-sheet repetition motif, the key structural feature of amyloids.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas Fúngicas/metabolismo , Fragmentos de Peptídeos/metabolismo , alfa-Sinucleína/metabolismo , Fluorescência , Corantes Fluorescentes/química , Humanos , Estrutura Molecular , Podospora/química , Ligação Proteica , Espectrometria de Fluorescência
4.
Proc Natl Acad Sci U S A ; 115(10): E2292-E2301, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463729

RESUMO

In plants and metazoans, intracellular receptors that belong to the NOD-like receptor (NLR) family are major contributors to innate immunity. Filamentous fungal genomes contain large repertoires of genes encoding for proteins with similar architecture to plant and animal NLRs with mostly unknown function. Here, we identify and molecularly characterize patatin-like phospholipase-1 (PLP-1), an NLR-like protein containing an N-terminal patatin-like phospholipase domain, a nucleotide-binding domain (NBD), and a C-terminal tetratricopeptide repeat (TPR) domain. PLP-1 guards the essential SNARE protein SEC-9; genetic differences at plp-1 and sec-9 function to trigger allorecognition and cell death in two distantly related fungal species, Neurospora crassa and Podospora anserina Analyses of Neurospora population samples revealed that plp-1 and sec-9 alleles are highly polymorphic, segregate into discrete haplotypes, and show transspecies polymorphism. Upon fusion between cells bearing incompatible sec-9 and plp-1 alleles, allorecognition and cell death are induced, which are dependent upon physical interaction between SEC-9 and PLP-1. The central NBD and patatin-like phospholipase activity of PLP-1 are essential for allorecognition and cell death, while the TPR domain and the polymorphic SNARE domain of SEC-9 function in conferring allelic specificity. Our data indicate that fungal NLR-like proteins function similar to NLR immune receptors in plants and animals, showing that NLRs are major contributors to innate immunity in plants and animals and for allorecognition in fungi.


Assuntos
Apoptose , Proteínas Fúngicas/metabolismo , Proteínas NLR/metabolismo , Neurospora crassa/metabolismo , Podospora/metabolismo , Proteínas SNARE/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Proteínas NLR/química , Proteínas NLR/genética , Neurospora crassa/química , Neurospora crassa/citologia , Neurospora crassa/genética , Podospora/química , Podospora/citologia , Podospora/genética , Ligação Proteica , Domínios Proteicos , Proteínas SNARE/química , Proteínas SNARE/genética , Alinhamento de Sequência
5.
Angew Chem Int Ed Engl ; 56(27): 7774-7778, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28489268

RESUMO

Self-assembled redox protein nanowires have been exploited as efficient electron shuttles for an oxygen-tolerant hydrogenase. An intra/inter-protein electron transfer chain has been achieved between the iron-sulfur centers of rubredoxin and the FeS cluster of [NiFe] hydrogenases. [NiFe] Hydrogenases entrapped in the intricated matrix of metalloprotein nanowires achieve a stable, mediated bioelectrocatalytic oxidation of H2 at low-overpotential.


Assuntos
Hidrogenase/química , Nanofios/química , Oxigênio/química , Domínio Catalítico , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Hidrogênio/química , Hidrogenase/metabolismo , Mathanococcus/metabolismo , Oxirredução , Oxigênio/metabolismo , Podospora/química , Podospora/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo
6.
J Nat Prod ; 79(9): 2357-63, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27557418

RESUMO

Eleven emestrin-type epipolythiodioxopiperazines, including four new compounds, emestrins H-K (1-4), were isolated from the crude extracts of two strains of the coprophilous fungus Podospora australis. The structures of 1-4 were established primarily by analysis of NMR data, and the absolute configuration of C-6 in 1 was independently assigned using the modified Mosher method. Four of the known emestrins obtained (emestrins C-E and MPC1001C) were found to selectively inhibit the growth of Cryptococcus neoformans. These results also represent the first report of chemistry from any strain of P. australis.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Piperazinas/isolamento & purificação , Piperazinas/farmacologia , Podospora/química , Animais , Antifúngicos/química , Defecação , Cavalos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Piperazinas/química
7.
Cell Mol Life Sci ; 73(6): 1131-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26713322

RESUMO

Prions, infectious proteins, can transmit diseases or be the basis of heritable traits (or both), mostly based on amyloid forms of the prion protein. A single protein sequence can be the basis for many prion strains/variants, with different biological properties based on different amyloid conformations, each rather stably propagating. Prions are unique in that evolution and selection work at both the level of the chromosomal gene encoding the protein, and on the prion itself selecting prion variants. Here, we summarize what is known about the evolution of prion proteins, both the genes and the prions themselves. We contrast the one known functional prion, [Het-s] of Podospora anserina, with the known disease prions, the yeast prions [PSI+] and [URE3] and the transmissible spongiform encephalopathies of mammals.


Assuntos
Amiloide/genética , Evolução Molecular , Príons/genética , Amiloide/análise , Amiloide/metabolismo , Animais , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glutationa Peroxidase/análise , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Fatores de Terminação de Peptídeos/análise , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Podospora/química , Podospora/genética , Podospora/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/análise , Príons/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Structure ; 23(11): 2055-65, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26439765

RESUMO

Linear repeat proteins often have high structural similarity and low (∼25%) pairwise sequence identities (PSI) among modules. We identified a unique P. anserina (Pa) sequence with tetratricopeptide repeat (TPR) homology, which contains longer (42 residue) repeats (42PRs) with an average PSI >91%. We determined the crystal structure of five tandem Pa 42PRs to 1.6 Å, and examined the stability and solution properties of constructs containing three to six Pa 42PRs. Compared with 34-residue TPRs (34PRs), Pa 42PRs have a one-turn extension of each helix, and bury more surface area. Unfolding transitions shift to higher denaturant concentration and become sharper as repeats are added. Fitted Ising models show Pa 42PRs to be more cooperative than consensus 34PRs, with increased magnitudes of intrinsic and interfacial free energies. These results demonstrate the tolerance of the TPR motif to length variation, and provide a basis to understand the effects of helix length on intrinsic/interfacial stability.


Assuntos
Sequência Conservada , Proteínas Fúngicas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Cinesinas/química , Dados de Sequência Molecular , Podospora/química , Estrutura Terciária de Proteína
9.
J Am Chem Soc ; 137(27): 8783-94, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26075678

RESUMO

Multicopper oxidases (MCOs) utilize an electron shuttling Type 1 Cu (T1) site in conjunction with a mononuclear Type 2 (T2) and a binuclear Type 3 (T3) site, arranged in a trinuclear copper cluster (TNC), to reduce O2 to H2O. Reduction of O2 occurs with limited overpotential indicating that all the coppers in the active site can be reduced via high-potential electron donors. Two forms of the resting enzyme have been observed in MCOs: the alternative resting form (AR), where only one of the three TNC Cu's is oxidized, and the resting oxidized form (RO), where all three TNC Cu's are oxidized. In contrast to the AR form, we show that in the RO form of a high-potential MCO, the binuclear T3 Cu(II) site can be reduced via the 700 mV T1 Cu. Systematic spectroscopic evaluation reveals that this proceeds by a two-electron process, where delivery of the first electron, forming a high energy, metastable half reduced T3 state, is followed by the rapid delivery of a second energetically favorable electron to fully reduce the T3 site. Alternatively, when this fully reduced binuclear T3 site is oxidized via the T1 Cu, a different thermodynamically favored half oxidized T3 form, i.e., the AR site, is generated. This behavior is evaluated by DFT calculations, which reveal that the protein backbone plays a significant role in controlling the environment of the active site coppers. This allows for the formation of the metastable, half reduced state and thus the complete reductive activation of the enzyme for catalysis.


Assuntos
Cobre/metabolismo , Lacase/química , Lacase/metabolismo , Podospora/enzimologia , Rhus/enzimologia , Domínio Catalítico , Cobre/química , Elétrons , Modelos Moleculares , Oxirredução , Podospora/química , Podospora/metabolismo , Conformação Proteica , Rhus/química , Rhus/metabolismo
10.
J Biol Chem ; 290(26): 16415-30, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25979334

RESUMO

Low levels of reactive oxygen species (ROS) act as important signaling molecules, but in excess they can damage biomolecules. ROS regulation is therefore of key importance. Several polyphenols in general and flavonoids in particular have the potential to generate hydroxyl radicals, the most hazardous among all ROS. However, the generation of a hydroxyl radical and subsequent ROS formation can be prevented by methylation of the hydroxyl group of the flavonoids. O-Methylation is performed by O-methyltransferases, members of the S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase superfamily involved in the secondary metabolism of many species across all kingdoms. In the filamentous fungus Podospora anserina, a well established aging model, the O-methyltransferase (PaMTH1) was reported to accumulate in total and mitochondrial protein extracts during aging. In vitro functional studies revealed flavonoids and in particular myricetin as its potential substrate. The molecular architecture of PaMTH1 and the mechanism of the methyl transfer reaction remain unknown. Here, we report the crystal structures of PaMTH1 apoenzyme, PaMTH1-SAM (co-factor), and PaMTH1-S-adenosyl homocysteine (by-product) co-complexes refined to 2.0, 1.9, and 1.9 Å, respectively. PaMTH1 forms a tight dimer through swapping of the N termini. Each monomer adopts the Rossmann fold typical for many SAM-binding methyltransferases. Structural comparisons between different O-methyltransferases reveal a strikingly similar co-factor binding pocket but differences in the substrate binding pocket, indicating specific molecular determinants required for substrate selection. Furthermore, using NMR, mass spectrometry, and site-directed active site mutagenesis, we show that PaMTH1 catalyzes the transfer of the methyl group from SAM to one hydroxyl group of the myricetin in a cation-dependent manner.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , Podospora/enzimologia , S-Adenosilmetionina/metabolismo , Biofísica , Cristalografia por Raios X , Flavonoides/química , Flavonoides/metabolismo , Proteínas Fúngicas/genética , Metiltransferases/genética , Estresse Oxidativo , Podospora/química , Podospora/genética , Podospora/crescimento & desenvolvimento
11.
Appl Microbiol Biotechnol ; 98(17): 7457-69, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24695830

RESUMO

The genome of the coprophilous fungus Podospora anserina harbors a large and highly diverse set of putative lignocellulose-acting enzymes. In this study, we investigated the enzymatic diversity of a broad range of P. anserina secretomes induced by various carbon sources (dextrin, glucose, xylose, arabinose, lactose, cellobiose, saccharose, Avicel, Solka-floc, birchwood xylan, wheat straw, maize bran, and sugar beet pulp (SBP)). Compared with the Trichoderma reesei enzymatic cocktail, P. anserina secretomes displayed similar cellulase, xylanase, and pectinase activities and greater arabinofuranosidase, arabinanase, and galactanase activities. The secretomes were further tested for their capacity to supplement a T. reesei cocktail. Four of them improved significantly the saccharification yield of steam-exploded wheat straw up to 48 %. Fine analysis of the P. anserina secretomes produced with Avicel and SBP using proteomics revealed a large array of CAZymes with a high number of GH6 and GH7 cellulases, CE1 esterases, GH43 arabinofuranosidases, and AA1 laccase-like multicopper oxidases. Moreover, a preponderance of AA9 (formerly GH61) was exclusively produced in the SBP condition. This study brings additional insights into the P. anserina enzymatic machinery and will facilitate the selection of promising targets for the development of future biorefineries.


Assuntos
Hidrolases/metabolismo , Lignina/metabolismo , Podospora/enzimologia , Caules de Planta/metabolismo , Podospora/química , Proteoma/análise , Triticum/metabolismo
12.
Appl Microbiol Biotechnol ; 98(12): 5507-16, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24531271

RESUMO

Glucuronoyl esterases (GEs) are recently discovered enzymes that are suggested to cleave the ester bond between lignin alcohols and xylan-bound 4-O-methyl-D-glucuronic acid. Although their potential use for enhanced enzymatic biomass degradation and synthesis of valuable chemicals renders them attractive research targets for biotechnological applications, the difficulty to purify natural fractions of lignin-carbohydrate complexes hampers the characterization of fungal GEs. In this work, we report the synthesis of three aryl alkyl or alkenyl D-glucuronate esters using lipase B from Candida antarctica (CALB) and their use to determine the kinetic parameters of two GEs, StGE2 from the thermophilic fungus Myceliophthora thermophila (syn. Sporotrichum thermophile) and PaGE1 from the coprophilous fungus Podospora anserina. PaGE1 was functionally expressed in the methylotrophic yeast Pichia pastoris under the transcriptional control of the alcohol oxidase (AOX1) promoter and purified to its homogeneity (63 kDa). The three D-glucuronate esters contain an aromatic UV-absorbing phenol group that facilitates the quantification of their enzymatic hydrolysis by HPLC. Both enzymes were able to hydrolyze the synthetic esters with a pronounced preference towards the cinnamyl-D-glucuronate ester. The experimental results were corroborated by computational docking of the synthesized substrate analogues. We show that the nature of the alcohol portion of the hydrolyzed ester influences the catalytic efficiency of the two GEs.


Assuntos
Esterases/metabolismo , Proteínas Fúngicas/metabolismo , Podospora/enzimologia , Sordariales/enzimologia , Biocatálise , Esterases/química , Esterases/genética , Ésteres/química , Ésteres/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Estrutura Molecular , Podospora/química , Podospora/genética , Sordariales/química , Sordariales/genética , Especificidade por Substrato
13.
Appl Environ Microbiol ; 79(14): 4220-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23645193

RESUMO

The ascomycete Podospora anserina is a coprophilous fungus that grows at late stages on droppings of herbivores. Its genome encodes a large diversity of carbohydrate-active enzymes. Among them, four genes encode glycoside hydrolases from family 6 (GH6), the members of which comprise putative endoglucanases and exoglucanases, some of them exerting important functions for biomass degradation in fungi. Therefore, this family was selected for functional analysis. Three of the enzymes, P. anserina Cel6A (PaCel6A), PaCel6B, and PaCel6C, were functionally expressed in the yeast Pichia pastoris. All three GH6 enzymes hydrolyzed crystalline and amorphous cellulose but were inactive on hydroxyethyl cellulose, mannan, galactomannan, xyloglucan, arabinoxylan, arabinan, xylan, and pectin. PaCel6A had a catalytic efficiency on cellotetraose comparable to that of Trichoderma reesei Cel6A (TrCel6A), but PaCel6B and PaCel6C were clearly less efficient. PaCel6A was the enzyme with the highest stability at 45°C, while PaCel6C was the least stable enzyme, losing more than 50% of its activity after incubation at temperatures above 30°C for 24 h. In contrast to TrCel6A, all three studied P. anserina GH6 cellulases were stable over a wide range of pHs and conserved high activity at pH values of up to 9. Each enzyme displayed a distinct substrate and product profile, highlighting different modes of action, with PaCel6A being the enzyme most similar to TrCel6A. PaCel6B was the only enzyme with higher specific activity on carboxymethylcellulose (CMC) than on Avicel and showed lower processivity than the others. Structural modeling predicts an open catalytic cleft, suggesting that PaCel6B is an endoglucanase.


Assuntos
Glicosídeo Hidrolases/genética , Podospora/genética , Sequência de Aminoácidos , Celulase/química , Celulase/genética , Celulase/metabolismo , Clonagem Molecular , DNA Complementar/metabolismo , DNA Fúngico/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Dados de Sequência Molecular , Podospora/química , Podospora/metabolismo , Reação em Cadeia da Polimerase , Alinhamento de Sequência
14.
15.
Mol Microbiol ; 82(6): 1392-405, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22050595

RESUMO

HET-s is a prion protein of the filamentous fungus Podospora anserina. An orthologue of this protein, called FgHET-s has been identified in Fusarium graminearum. The region of the FgHET-s protein corresponding to the prion forming domain of HET-s, forms amyloid fibrils in vitro. These fibrils seed HET-s(218-289) fibril formation in vitro and vice versa. The amyloid fold of HET-s(218-289) and FgHET-s(218-289) are remarkably similar although they share only 38% identity. The present work corresponds to the functional characterization of the FgHET-s(218-289) region as a prion forming domain in vivo. We show that FgHET-s(218-289) is capable of prion propagation in P. anserina and is able to substitute for the HET-s PFD in the full-length HET-s protein. In accordance with the in vitro cross-seeding experiments, we detect no species barrier between P. anserina and F. graminearum PFDs. We use the yeast Saccharomyces cerevisiae as a host to compare the prion performances of the two orthologous PFDs. We find that FgHET-s(218-289) leads to higher spontaneous prion formation rates and mitotic prion stability than HET-s(218-289). Then we analysed the outcome of HET-s(218-289)/FgHET-s(218-289) coexpression. In spite of the cross-seeding ability of HET-s(218-289) and FgHET-s(218-289), in vivo, homotypic polymerization is favoured over mixed fibril formation.


Assuntos
Fusarium/metabolismo , Expressão Gênica , Podospora/metabolismo , Príons/química , Príons/genética , Proteínas Fúngicas , Fusarium/química , Fusarium/genética , Podospora/química , Podospora/genética , Príons/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Proteins ; 79(11): 3067-81, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21989930

RESUMO

The prion-forming C-terminal domain of the fungal prion HET-s forms infectious amyloid fibrils at physiological pH. The conformational switch from the nonprion soluble form to the prion fibrillar form is believed to have a functional role, as HET-s in its prion form participates in a recognition process of different fungal strains. On the basis of the knowledge of the high-resolution structure of the prion forming domain HET-s(218-289) in its fibrillar form, we here present a numerical simulation of the fibril growth process, which emphasizes the role of the topological properties of the fibrillar structure. An accurate thermodynamic analysis of the way an intervening HET-s chain is recruited to the tip of the growing fibril suggests that elongation proceeds through a dock and lock mechanism. First, the chain docks onto the fibril by forming the longest ß-strands. Then, the re-arrangement in the fibrillar form of all the rest of the molecule takes place. Interestingly, we also predict that one side of the HET-s fibril is more suitable for sustaining its growth with respect to the other. The resulting strong polarity of fibril growth is a consequence of the complex topology of HET-s fibrillar structure, as the central loop of the intervening chain plays a crucially different role in favoring or not the attachment of the C-terminus tail to the fibril, depending on the growth side.


Assuntos
Amiloide/química , Proteínas Fúngicas/química , Príons/química , Amiloide/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Método de Monte Carlo , Podospora/química , Conformação Proteica , Estrutura Terciária de Proteína , Termodinâmica
17.
Semin Cell Dev Biol ; 22(5): 460-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21334447

RESUMO

[Het-s] is a prion from the filamentous fungus Podospora anserina and corresponds to a self-perpetuating amyloid aggregate of the HET-s protein. This prion protein is involved in a fungal self/non-self discrimination process termed heterokaryon incompatibility corresponding to a cell death reaction occurring upon fusion of genetically unlike strains. Two antagonistic allelic variants of this protein exist: HET-s, the prion form of which corresponds to [Het-s] and HET-S, incapable of prion formation. Fusion of a [Het-s] and HET-S strain triggers the incompatibility reaction, so that interaction of HET-S with the [Het-s] prion leads to cell death. HET-s and HET-S are highly homologous two domain proteins with a N-terminal globular domain termed HeLo and a C-terminal unstructured prion forming domain (PFD). The structure of the prion form of the HET-s PFD has been solved by solid state NMR and corresponds to a very well ordered ß-solenoid fold with a triangular hydrophobic core. The ability to form this ß-solenoid fold is retained in a distant homolog of HET-s from another fungal species. A model for the mechanism of [Het-s]/HET-S incompatibility has been proposed. It is believe that when interacting with the [Het-s] prion seed, the HET-S C-terminal region adopts the ß-solenoid fold. This would act as a conformational switch to induce refolding and activation of the HeLo domain which then would exert its toxicity by a yet unknown mechanism.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Estruturais , Podospora/química , Podospora/metabolismo , Príons/química , Príons/metabolismo , Alelos , Amiloide/química , Amiloide/metabolismo , Proteínas Fúngicas/genética , Príons/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência
18.
Proc Natl Acad Sci U S A ; 108(8): 3252-7, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21300906

RESUMO

HET-s is a prion protein of the fungus Podospora anserina which, in the prion state, is active in a self/nonself recognition process called heterokaryon incompatibility. Its prionogenic properties reside in the C-terminal "prion domain." The HET-s prion domain polymerizes in vitro into amyloid fibrils whose properties depend on the pH of assembly; above pH 3, infectious singlet fibrils are produced, and below pH 3, noninfectious triplet fibrils. To investigate the correlation between structure and infectivity, we performed cryo-EM analyses. Singlet fibrils have a helical pitch of approximately 410 Å and a left-handed twist. Triplet fibrils have three protofibrils whose lateral dimensions (36 × 25 Å) and axial packing (one subunit per 9.4 Å) match those of singlets but differ in their supercoiling. At 8.5-Å resolution, the cross-section of the singlet fibril reconstruction is largely consistent with that of a ß-solenoid model previously determined by solid-state NMR. Reconstructions of the triplet fibrils show three protofibrils coiling around a common axis and packed less tightly at pH 3 than at pH 2, eventually peeling off. Taken together with the earlier observation that fragmentation of triplet fibrils by sonication does not increase infectivity, these observations suggest a novel mechanism for self-propagation, whereby daughter fibrils nucleate on the lateral surface of singlet fibrils. In triplets, this surface is occluded, blocking nucleation and thereby explaining their lack of infectivity.


Assuntos
Amiloide/química , Microscopia Crioeletrônica , Príons/química , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Infecções/etiologia , Espectroscopia de Ressonância Magnética , Podospora/química
19.
J Mol Biol ; 402(2): 311-25, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20600104

RESUMO

We describe a distant homologue of the fungal HET-s prion, which is found in the fungus Fusarium graminearum. The domain FgHET-s(218-289), which corresponds to the prion domain in HET-s from Podospora anserina, forms amyloid fibrils in vitro and is able to efficiently cross-seed HET-s(218-289) prion formation. We structurally characterize FgHET-s(218-289), which displays 38% sequence identity with HET-s(218-289). Solid-state NMR and hydrogen/deuterium exchange detected by NMR show that the fold and a number of structural details are very similar for the prion domains of the two proteins. This structural similarity readily explains why cross-seeding occurs here in spite of the sequence divergence.


Assuntos
Amiloide/metabolismo , Proteínas Fúngicas/química , Fusarium/química , Podospora/química , Príons/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Proteínas Fúngicas/genética , Fusarium/genética , Substâncias Macromoleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Podospora/genética , Príons/genética , Dobramento de Proteína , Multimerização Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
20.
Aging (Albany NY) ; 1(3): 328-34, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20157520

RESUMO

PaMTH1 is an O-methyltransferase catalysing the methylation of vicinal hydroxyl groups of polyphenols. The protein accumulates during ageing of Podospora anserina in both the cytosol and in the mitochondrial matrix. The construction and characterisation of a PaMth1 deletion strain provided additional evidence about the function of the protein in the protection against metal induced oxidative stress. Deletion of PaMth1 was found to lead to a decreased resistance against exogenous oxidative stress and to a shortened lifespan suggesting a role of PaMTH1 as a longevity assurance factor in a new molecular pathway involved in lifespan control.


Assuntos
Proteínas Fúngicas/fisiologia , Metiltransferases/fisiologia , Estresse Oxidativo , Podospora/enzimologia , Podospora/crescimento & desenvolvimento , Sulfato de Cobre/metabolismo , Citosol/enzimologia , Deleção de Genes , Peróxido de Hidrogênio/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/enzimologia , Podospora/química , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA