Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Neuro Oncol ; 26(1): 100-114, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37651725

RESUMO

BACKGROUND: Temozolomide (TMZ) treatment efficacy in glioblastoma is determined by various mechanisms such as TMZ efflux, autophagy, base excision repair (BER) pathway, and the level of O6-methylguanine-DNA methyltransferase (MGMT). Here, we reported a novel small-molecular inhibitor (SMI) EPIC-1042 (C20H28N6) with the potential to decrease TMZ efflux and promote PARP1 degradation via autolysosomes in the early stage. METHODS: EPIC-1042 was obtained from receptor-based virtual screening. Co-immunoprecipitation and pull-down assays were applied to verify the blocking effect of EPIC-1042. Western blotting, co-immunoprecipitation, and immunofluorescence were used to elucidate the underlying mechanisms of EPIC-1042. In vivo experiments were performed to verify the efficacy of EPIC-1042 in sensitizing glioblastoma cells to TMZ. RESULTS: EPIC-1042 physically interrupted the interaction of PTRF/Cavin1 and caveolin-1, leading to reduced secretion of small extracellular vesicles (sEVs) to decrease TMZ efflux. It also induced PARP1 autophagic degradation via increased p62 expression that more p62 bound to PARP1 and specially promoted PARP1 translocation into autolysosomes for degradation in the early stage. Moreover, EPIC-1042 inhibited autophagy flux at last. The application of EPIC-1042 enhanced TMZ efficacy in glioblastoma in vivo. CONCLUSION: EPIC-1042 reinforced the effect of TMZ by preventing TMZ efflux, inducing PARP1 degradation via autolysosomes to perturb the BER pathway and recruitment of MGMT, and inhibiting autophagy flux in the later stage. Therefore, this study provided a novel therapeutic strategy using the combination of TMZ with EPIC-1042 for glioblastoma treatment.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/genética , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Caveolina 1/uso terapêutico , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , Metilases de Modificação do DNA/genética , Autofagia , Resistencia a Medicamentos Antineoplásicos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia , Poli(ADP-Ribose) Polimerase-1/uso terapêutico
2.
Arch Gerontol Geriatr ; 117: 105255, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37952424

RESUMO

OBJECTIVE: Aging becomes the most predominant risk factor for all age-associated pathological conditions with the increase of life expectancy and the aggravation of social aging. Slowing down the speed of aging is considered an effective way to improve health, but so far, effective anti-aging methods are relatively lacking. METHODS: Anemonin (ANE) was screened from eight existing small-molecule compounds by cell viability assay. The function of ANE was determined by the analysis of cell proliferation, ß -galactosidase (SA-ß -Gal) activity, cell cycle, SASP secretion, NAD+/NADH ratio, and other aging-related indicators. The targets of ANE were predicted by Drug Target Prediction System (DTPS) and Swiss Targe Prediction System. The effect of ANE on PARP-1-NAD+-SIRT1 signaling pathway was assessed by quantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blot, PARP1, NAD+ and SIRT1 activity detection. RESULTS: ANE can delay cell senescence; PARP1 is one of the targets of ANE and plays a crucial role in ANE anti-aging; ANE release more NAD+ by inhibiting PARP1 activity, thereby conversely promoting the function of SIRT1 and delay cell senescence. CONCLUSIONS: Our study indicates that ANE can delay cellular senescence through the PARP1-NAD+-SIRT1 signaling pathway, which may be considered as an effective anti-aging strategy.


Assuntos
NAD , Sirtuína 1 , Humanos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , NAD/metabolismo , NAD/farmacologia , Diploide , Senescência Celular/fisiologia , Transdução de Sinais , Fibroblastos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia
3.
J Transl Med ; 21(1): 679, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773127

RESUMO

BACKGROUND: Radiotherapy can cause kidney injury in patients with cervical cancer. This study aims to investigate the possible molecular mechanisms by which CpG-ODNs (Cytosine phosphate guanine-oligodeoxynucleotides) regulate the PARP1 (poly (ADP-ribose) polymerase 1)/XRCC1 (X-ray repair cross-complementing 1) signaling axis and its impact on radiation kidney injury (RKI) in cervical cancer radiotherapy. METHODS: The GSE90627 dataset related to cervical cancer RKI was obtained from the Gene Expression Omnibus (GEO) database. Bioinformatics databases and R software packages were used to analyze the target genes regulated by CpG-ODNs. A mouse model of RKI was established by subjecting C57BL/6JNifdc mice to X-ray irradiation. Serum blood urea nitrogen (BUN) and creatinine levels were measured using an automated biochemical analyzer. Renal tissue morphology was observed through HE staining, while TUNEL staining was performed to detect apoptosis in renal tubular cells. ELISA was conducted to measure levels of oxidative stress-related factors in mouse serum and cell supernatant. An in vitro cell model of RKI was established using X-ray irradiation on HK-2 cells for mechanism validation. RT-qPCR was performed to determine the relative expression of PARP1 mRNA. Cell proliferation activity was assessed using the CCK-8 assay, and Caspase 3 activity was measured in HK-2 cells. Immunofluorescence was used to determine γH2AX expression. RESULTS: Bioinformatics analysis revealed that the downstream targets regulated by CpG-ODNs in cervical cancer RKI were primarily PARP1 and XRCC1. CpG-ODNs may alleviate RKI by inhibiting DNA damage and oxidative stress levels. This resulted in significantly decreased levels of BUN and creatinine in RKI mice, as well as reduced renal tubular and glomerular damage, lower apoptosis rate, decreased DNA damage index (8-OHdG), and increased levels of antioxidant factors associated with oxidative stress (SOD, CAT, GSH, GPx). Among the CpG-ODNs, CpG-ODN2006 had a more pronounced effect. CpG-ODNs mediated the inhibition of PARP1, thereby suppressing DNA damage and oxidative stress response in vitro in HK-2 cells. Additionally, PARP1 promoted the formation of the PARP1 and XRCC1 complex by recruiting XRCC1, which in turn facilitated DNA damage and oxidative stress response in renal tubular cells. Overexpression of either PARP1 or XRCC1 reversed the inhibitory effects of CpG-ODN2006 on DNA damage and oxidative stress in the HK-2 cell model and RKI mouse model. CONCLUSION: CpG-ODNs may mitigate cervical cancer RKI by blocking the activation of the PARP1/XRCC1 signaling axis, inhibiting DNA damage and oxidative stress response in renal tubule epithelial cells.


Assuntos
Citosina , Rim , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Creatinina , Dano ao DNA , Guanina/farmacologia , Rim/lesões , Rim/efeitos da radiação , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/farmacologia , Estresse Oxidativo , Fosfatos/farmacologia , Poli(ADP-Ribose) Polimerase-1/farmacologia , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
4.
Altern Ther Health Med ; 29(5): 410-416, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37052975

RESUMO

Objective: Poly (ADP-ribose) polymerase-1 (PARP-1) is a regulatory enzyme involved in DNA damage repair, gene transcription, cell growth, death and apoptosis. In our study, we aimed to explore the dynamic role of PARP-1 in chondrocyte (CH) degeneration in vitro. Methods: We used the primary CHs and treated them with interleukin-1 beta for up to 5 days. (IL-1ß) to induce degeneration. Meanwhile, we used AG-14361 (AG) to inhibit endogenous PARP-1 expression. Cell survival and collagen II expression were used to define the cell function of CHs. In addition, other metabolic indicators were measured containing the reactive oxygen species (ROS) level, 8-Hydroxy-2'-deoxyguanosine (8-OH-dG), IL-1ß, tumor necrosis factor alpha (TNF-α) and caspase 3/9 expression. Results: With IL-1ß treatment, the PARP1 expression of CHs was gradually increased from day 1 to day 5, accompanied by a reduction in cell survival and collagen II expression, and an increase in ROS, 8-OH-dG, IL-1ß, TNF-α and caspase 3/9 levels. We suppressed PARP1 expression on the first day of IL-1ß stimulation and found severe destruction of cell survival and collagen II content with a higher expression of caspase 3/9. However, when we cultured the CHs with AG from day 3 of the 5-day IL-1ß stimulation, cell survival and collagen II expression were rescued, and the ROS, 8-OH-dG, IL-1ß, TNF-α, and caspase 3/9 were downregulated. Conclusions: On day 1 of degeneration, increased PARP-1 played a protective role in CHs. However, from days 3 to 5 of degeneration, the accumulated PARP-1 presented a more destructive function in CHs.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Fator de Necrose Tumoral alfa , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Caspase 3/metabolismo , Caspase 3/farmacologia , Condrócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/farmacologia , Apoptose
5.
Behav Brain Res ; 441: 114299, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36642102

RESUMO

Baicalin (BA), a flavonoid glycoside extracts from Scutellaria baicalensis Georgi, has been reported to exert antidepressant effects. Emerging evidence indicates that neuronal apoptosis plays a crucial role in the pathogenesis of depression. Poly (ADP-ribose) polymerase-1 (PARP1) is established as a key regulator of the cellular apoptosis. In the present study, we explored whether BA exerts antidepressant effects by regulating PARP1 signaling pathway and elucidated the underlying mechanisms. We found that administration of BA (30 mg/kg, 60 mg/kg) alleviated chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors by increasing sucrose consumption in sucrose preference test (SPT), improving activity status in open field test (OFT) and reducing rest time in tail suspension test (TST). Hematoxylin and eosin (HE) staining and Nissl staining showed that BA ameliorated CUMS-induced neuronal damage in the hippocampus. Moreover, BA significantly upregulated anti-apoptotic protein Bcl-2, downregulated pro-apoptotic protein Bax and cleaved-caspase-3 after CUMS in hippocampal of mice. Intriguingly, western blot and immunohistochemistry (IHC) results showed that the protein level of PARP1 was significantly increased in hippocampal tissue after CUMS, which was reversed by BA treatment. In primary hippocampal neurons (PHNs), BA abrogated the neuronal apoptosis caused by PARP1 overexpression. Meanwhile, BA significantly increased the protein level of SIRT1, SIRT1 inhibitor (EX-527) treatment reversed the effect of BA on reducing the protein level of PARP1 and neuronal apoptosis in CUMS-induced mice. Overall, our results indicated that BA attenuated the CUMS-induced hippocampal neuronal apoptosis through regulating the SIRT1/PARP1 signaling pathway.


Assuntos
Depressão , Sirtuína 1 , Camundongos , Animais , Depressão/metabolismo , Sirtuína 1/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia , Antidepressivos/farmacologia , Transdução de Sinais , Flavonoides/farmacologia , Flavonoides/metabolismo , Apoptose , Neurônios/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
6.
Inflamm Res ; 72(1): 159-169, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36357814

RESUMO

OBJECTIVE: Paeonia lactiflora Pall has long been recognized as an anti-inflammatory traditional Chinese herbal medicine. We aimed to study the pharmacological action of albiflorin, an active ingredient extracted from the roots of Paeonia lactiflora Pall, on diabetic vascular complications. METHODS: Human umbilical vein endothelial cells (HUVECs) were stimulated with high glucose and treated with 5, 10, and 20 µM albiflorin. CCK-8 assay, EdU staining, Annexin V-FITC staining, transwell assay, scratch test, RT-PCR, ELISA, Western blot, and immunofluorescence were carried out. SwissTargetPrediction database was used for screening targets of albiflorin and molecular docking was done using Autodock Vina software. RESULTS: Albiflorin treatment dose-dependently alleviated high glucose-induced viability loss of HUVECs. In addition, albiflorin promoted the proliferation and migration, while inhibited apoptosis and the release of TNF-α, IL-6, and IL-1ß in HUVECs. PARP1 was predicted and confirmed to be a target for albiflorin in vitro. Albiflorin targeted PARP1 to inhibit the activation of NF-κB. Transfection of HUVECs with PARP1 overexpression plasmids effectively reversed the effects of albiflorin on high glucose-treated HUVECs. CONCLUSIONS: Albiflorin suppressed high glucose-induced endothelial cell apoptosis and inflammation, suggesting its potential in treating diabetic vascular complications. The action of albiflorin possibly caused by its regulation on inhibiting PARP1/NF-κB signaling.


Assuntos
Angiopatias Diabéticas , NF-kappa B , Humanos , NF-kappa B/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Células Endoteliais da Veia Umbilical Humana , Glucose/farmacologia , Glucose/metabolismo , Apoptose , Angiopatias Diabéticas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia
7.
CNS Neurosci Ther ; 28(12): 2032-2043, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35909335

RESUMO

AIMS: Epileptic seizures or status epilepticus (SE) can cause hippocampal neuronal death, which has detrimental effects. Parthanatos, a new form of programmed cell death, is characterized by hyperactivation of poly (ADP-ribose) polymerase-1 (PARP-1), excessive synthesis of poly ADP-ribose polymer, mitochondrial depolarization, and nuclear translocation of apoptosis-inducing factor, observed in various neurodegenerative disorders but rarely reported in epilepsy. We aimed to investigate whether parthanatos participates in the mechanism of seizure-induced hippocampal neuronal death. METHODS: Glutamate-mediated excitotoxicity cell model was used to study the mechanism of seizure-induced cell injury. Injection of kainic acid into the amygdala was used to establish the epileptic rat model. Corresponding biochemical tests were carried out on hippocampal tissues and HT22 cells following indicated treatments. RESULTS: In vitro, glutamate time-dependently induced HT22 cell death, accompanied by parthanatos-related biochemical events. Pretreatment with PJ34 (PARP-1 inhibitor) or small interfering RNA-mediated PARP-1 knockdown effectively protected HT22 cells against glutamate-induced toxic effects and attenuated parthanatos-related biochemical events. Application of the antioxidant N-acetylcysteine (NAC) rescued HT22 cell death and reversed parthanatos-related biochemical events. In vivo, PJ34 and NAC afforded protection against SE-induced hippocampal neuronal damage and inhibited parthanatos-related biochemical events. CONCLUSION: Parthanatos participates in glutamate-induced HT22 cell injury and hippocampal neuronal damage in rats following epileptic seizures. ROS might be the initiating factor during parthanatos.


Assuntos
Parthanatos , Estado Epiléptico , Ratos , Animais , Ácido Caínico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ácido Glutâmico , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia , Morte Celular , Hipocampo/metabolismo , Acetilcisteína/farmacologia
8.
Cells ; 11(15)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954175

RESUMO

At present, the barrier to HIV-1 functional cure is the persistence of HIV-1 reservoirs. The "shock (reversing latency) and kill (antiretroviral therapy)" strategy sheds light on reducing or eliminating the latent reservoir of HIV-1. However, the current limits of latency-reversing agents (LRAs) are their toxicity or side effects, which limit their practicability pharmacologically and immunologically. Our previous research found that HSF1 is a key transcriptional regulatory factor in the reversion of HIV-1 latency. We then constructed the in vitro HSF1-knockout (HSF1-KO) HIV-1 latency models and found that HSF1 depletion inhibited the reactivation ability of LRAs including salubrinal, carfizomib, bortezomib, PR-957 and resveratrol, respectively. Furthermore, bortezomib/carfizomib treatment induced the increase of heat shock elements (HSEs) activity after HSF1-KO, suggesting that HSEs participated in reversing the latent HIV-1. Subsequent investigation showed that latent HIV-1-reversal by H2O2-induced DNA damage was inhibited by PARP1 inhibitors, while PARP1 was unable to down-regulate HSF1-depleted HSE activity, indicating that PARP1 could serve as a replaceable protein for HSF1 in HIV-1 latent cells. In summary, we succeeded in finding the mechanisms by which HSF1 reactivates the latent HIV-1, which also provides a theoretical basis for the further development of LRAs that specifically target HSF1.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Bortezomib/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Resposta ao Choque Térmico , Humanos , Peróxido de Hidrogênio/farmacologia , Poli(ADP-Ribose) Polimerase-1/farmacologia , Fatores de Transcrição/metabolismo , Ativação Viral/genética , Latência Viral
9.
Respir Physiol Neurobiol ; 301: 103891, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35341975

RESUMO

Superfluous human airway smooth muscle (HASM) cell proliferation is an important pathological feature of airway remodelling in asthma. This study aimed to determine whether miR-21 is involved in the regulation of HASM cell survival. Overexpressed miR-21 inhibited HASM cell apoptosis and autophagy and promoted proliferation, whereas a miR-21 inhibitor exerted the opposite effects (P < 0.05). Overexpressed poly (ADP-ribose) polymerase-1 (PARP-1) promoted apoptosis and inhibited proliferation of HASM cells (P < 0.05). Dual-luciferase assays confirmed that miR-21 directly targeted poly (ADP-ribose) polymerase-1 (PARP-1) mRNA (P < 0.05). Silencing PARP-1 based on miR-21 downregulation mimicked the role of 3-methyladenine (3-MA), an autophagy inhibitor (P < 0.05). Overexpressed PARP-1 reversed the effects of miR-21 on HASM cells, somewhat dependently on PARP-1-induced enhanced autophagy, which we elucidated by 3-MA block (P < 0.05). MicroRNA-21 mimics reduced AMPK and increased mTOR signalling by downregulating PARP-1, and a miR-21 inhibitor exerted the opposite effects (P < 0.05). Collectively, miR-21 inhibitor could upregulate PARP-1 in HASM cells to promote autophagy and thus inhibit proliferation and promote apoptosis that might be mediated by the AMPK/mTOR signalling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , MicroRNAs , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Autofagia , Proliferação de Células , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia
10.
Environ Pollut ; 304: 119202, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358632

RESUMO

Understanding the underlying interactions of nanoparticles (NPs) with cells is crucial to the nanotoxicological research. Evidences suggested lysosomes as a vital target upon the accumulation of internalized NPs, and lysosomal damage and autophagy dysfunction are emerging molecular mechanisms for NPs-elicited toxicity. Nevertheless, the interaction with lysosomes, ensuing adverse effects and the underlying mechanisms are still largely obscure, especially in NPs-induced vascular toxicity. In this study, silica nanoparticles (SiNPs) were utilized to explore the adverse effects on lysosome in vascular endothelial cells by using in vitro cultured human endothelial cells (HUVECs), and in-depth investigated the mechanisms involved. Consequently, the internalized SiNPs accumulated explicitly in the lysosomes, and caused lysosomal dysfunction, which were prominent on the increased lysosomal membrane permeability, decline in lysosomal quantity, destruction of acidic environment of lysosome, and also disruption of lysosomal enzymes activities, resulting in autophagy flux blockage and autophagy dysfunction. More importantly, mechanistic results revealed the SiNPs-caused lysosomal impairments and resultant autophagy dysfunction could promote oxidative stress, DNA damage and the eventual cell apoptosis activated by ROS/PARP1/AIF signaling pathway. These findings improved the understanding of SiNPs-induced vascular injury, and may provide novel information and warnings for SiNPs applications in the fields of nanomedicine.


Assuntos
Nanopartículas , Dióxido de Silício , Apoptose , Autofagia , Células Endoteliais/metabolismo , Humanos , Lisossomos/metabolismo , Nanopartículas/toxicidade , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Dióxido de Silício/metabolismo , Dióxido de Silício/toxicidade
11.
Cells ; 10(2)2021 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572647

RESUMO

(1) Background: Poly(ADP-ribose) polymerase 1) (PARP1) is a pleiotropic enzyme involved in several cellular processes, e.g., DNA damage repair, regulation of mitosis, and immune response. Little is known about the role of PARP1 in melanoma development and progression. We aimed to investigate the prognostic significance of PARP1 expression in cutaneous melanoma through evaluation of mRNA and protein levels of PARP1 in normal melanocytes and melanoma cell lines, as well as in patients' tissue material from surgical resections. (2) Methods: An in vitro model was based on two types of normal human melanocytes (HEMn-DP and HEMn-LP) and four melanoma cell lines (A375, WM1341D, Hs294T, and WM9). PARP1 mRNA gene expression was estimated using real-time polymerase chain reaction (RT-PCR), whereas the protein level of PARP1 was evaluated by fluorescence confocal microscopy and then confirmed by Western Blotting analysis. The expression of PARP1 was also assessed by immunohistochemistry in formalin-fixed paraffin-embedded tissues of 128 primary cutaneous melanoma patients and correlated with follow-up and clinicopathologic features. (3) Results: The in vitro study showed that melanoma cells exhibited significantly higher PARP1 expression at mRNA and protein levels than normal melanocytes. High PARP1 expression was also associated with the invasiveness of tumor cells. Elevated nuclear PARP1 expression in patients without nodal metastases strongly correlated with significantly shorter disease-free survival (p = 0.0015) and revealed a trend with shorter cancer-specific overall survival (p = 0.05). High PARP1 immunoreactivity in the lymph node-negative group of patients was significantly associated with higher Breslow tumor thickness, presence of ulceration, and a higher mitotic index (p = 0.0016, p = 0.023, and p < 0.001, respectively). In patients with nodal metastases, high PARP1 expression significantly correlated with the presence of microsatellitosis (p = 0.034), but we did not confirm the prognostic significance of PARP1 expression in these patients. In the entire analyzed group of patients (with and without nodal metastases at the time of diagnosis), PARP1 expression was associated with a high mitotic index (p = 0.001) and the presence of ulceration (p = 0.036). Moreover, in patients with elevated PARP1 expression, melanoma was more frequently located in the skin of the head and neck region (p = 0.015). In multivariate analysis, high PARP1 expression was an independent unfavorable prognosticator in lymph node-negative cutaneous melanoma patients. (4) Conclusions: In vitro molecular biology approaches demonstrated enhanced PARP1 expression in cutaneous melanoma. These results were confirmed by the immunohistochemical study with clinical parameter analysis, which showed that a high level of PARP1 correlated with unfavorable clinical outcome. These observations raise the potential role of PARP1 inhibitor-based therapy in cutaneous melanoma.


Assuntos
Melanoma/genética , Poli(ADP-Ribose) Polimerase-1/uso terapêutico , Neoplasias Cutâneas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Fenótipo , Poli(ADP-Ribose) Polimerase-1/farmacologia , Prognóstico , Neoplasias Cutâneas/patologia , Adulto Jovem , Melanoma Maligno Cutâneo
12.
Acta Pharmacol Sin ; 38(11): 1521-1532, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28770827

RESUMO

Poly (ADP-ribose) polymerase 1 (PARP1) is overexpressed in a variety of cancers, especially in breast and ovarian cancers; tumor cells that are deficient in breast cancer gene 1/2 (BRCA1/2) are highly sensitive to PARP1 inhibition. In this study, we identified a series of 2,4-difluorophenyl-linker analogs (15-55) derived from olaparib as novel PARP1 inhibitors. Four potent analogs 17, 43, 47, and 50 (IC50=2.2-4.4 nmol/L) effectively inhibited the proliferation of Chinese hamster lung fibroblast V-C8 cells (IC50=3.2-37.6 nmol/L) in vitro, and showed specificity toward BRCA-deficient cells (SI=40-510). The corresponding hydrochloride salts 56 and 57 (based on 43 and 47) were highly water soluble in pH=1.0 buffered salt solutions (1628.2 µg/mL, 2652.5 µg/mL). In a BRCA1-mutated xenograft model, oral administration of compound 56 (30 mg·kg-1·d-1, for 21 d) exhibited more prominent tumor growth inhibition (96.6%) compared with the same dose of olaparib (56.3%); in a BRCA2-mutated xenograft model, oral administration of analog 43 (10 mg·kg-1·d-1, for 28 d) significantly inhibited tumor growth (69.0%) and had no negative effects on the body weights. Additionally, compound 56 exhibited good oral bioavailability (F=32.2%), similar to that of olaparib (F=45.4%). Furthermore, the free base 43 of the hydrochloride salt 56 exhibited minimal hERG inhibition activity (IC50=6.64 µmol/L). Collectively, these data demonstrate that compound 56 may be an excellent drug candidate for the treatment of cancer, particularly BRCA-deficient tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Descoberta de Drogas/métodos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Água/química , Administração Oral , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Disponibilidade Biológica , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetulus , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração Inibidora 50 , Injeções Intravenosas , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Ftalazinas/química , Piperazinas/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Ratos Sprague-Dawley , Solubilidade , Relação Estrutura-Atividade , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA