Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.335
Filtrar
1.
PLoS One ; 19(8): e0307573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110759

RESUMO

Streptococcus pneumoniae is a bacterium of great global importance, responsible for more than one million deaths per year. This bacterium is commonly acquired in the first years of life and colonizes the upper respiratory tract asymptomatically by forming biofilms that persist for extended times in the nasopharynx. However, under conditions that alter the bacterial environment, such as viral infections, pneumococci can escape from the biofilm and invade other niches, causing local and systemic disease of varying severity. The polyamine transporter PotABCD is required for optimal survival of the organism in the host. Immunization of mice with recombinant PotD can reduce subsequent bacterial colonization. PotD has also been suggested to be involved in pneumococcal biofilm development. Therefore, in this study we aimed to elucidate the role of PotABCD and polyamines in pneumococcal biofilm formation. First, the formation of biofilms was evaluated in the presence of exogenous polyamines-the substrate transported by PotABCD-added to culture medium. Next, a potABCD-negative strain was used to determine biofilm formation in different model systems using diverse levels of complexity from abiotic surface to cell substrate to in vivo animal models and was compared with its wild-type strain. The results showed that adding more polyamines to the medium stimulated biofilm formation, suggesting a direct correlation between polyamines and biofilm formation. Also, deletion of potABCD operon impaired biofilm formation in all models tested. Interestingly, more differences between wild-type and mutant strains were observed in the more complex model, which emphasizes the significance of employing more physiological models in studying biofilm formation.


Assuntos
Biofilmes , Streptococcus pneumoniae , Biofilmes/crescimento & desenvolvimento , Streptococcus pneumoniae/fisiologia , Streptococcus pneumoniae/metabolismo , Animais , Camundongos , Poliaminas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções Pneumocócicas/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Óperon
2.
Theranostics ; 14(11): 4218-4239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113799

RESUMO

Rationale: The aryl hydrocarbon receptor (AhR) functions in the regulation of intestinal inflammation, but knowledge of the underlying mechanisms in innate immune cells is limited. Here, we investigated the role of AhR in modulating the functions of macrophages in inflammatory bowel disease pathogenesis. Methods: The cellular composition of intestinal lamina propria CD45+ leukocytes in a dextran sulfate sodium (DSS)-induced mouse colitis model was determined by single-cell RNA sequencing. Macrophage pyroptosis was quantified by analysis of lactate dehydrogenase release, propidium iodide staining, enzyme-linked immunosorbent assay, western blot, and flow cytometry. Differentially expressed genes were confirmed by RNA-seq, RT-qPCR, luciferase assay, chromatin immunoprecipitation, and immunofluorescence staining. Results: AhR deficiency mediated dynamic remodeling of the cellular composition of intestinal lamina propria (LP) CD45+ immune cells in a colitis model, with a significant increase in monocyte-macrophage lineage. Mice with AhR deficiency in myeloid cells developed more severe dextran sulfate sodium induced colitis, with concomitant increased macrophage pyroptosis. Dietary supplementation with an AhR pre-ligand, indole-3-carbinol, conferred protection against colitis while protection failed in mice lacking AhR in myeloid cells. Mechanistically, AhR signaling inhibited macrophage pyroptosis by promoting ornithine decarboxylase 1 (Odc1) transcription, to enhance polyamine biosynthesis. The increased polyamine, particularly spermine, inhibited NLRP3 inflammasome assembly and subsequent pyroptosis by suppressing K+ efflux. AHR expression was positively correlated with ODC1 in intestinal mucosal biopsies from patients with ulcerative colitis. Conclusions: These findings suggest a functional role for the AhR/ODC1/polyamine axis in maintaining intestinal homeostasis, providing potential targets for treatment of inflammatory bowel disease.


Assuntos
Colite , Sulfato de Dextrana , Macrófagos , Poliaminas , Piroptose , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Colite/metabolismo , Colite/induzido quimicamente , Colite/patologia , Humanos , Poliaminas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Knockout , Inflamação/metabolismo , Masculino , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos
3.
Sci Rep ; 14(1): 18094, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103474

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon, and its pathogenesis remains unclear. Polyamine metabolic enzymes play a crucial role in UC. In this study, we aimed to identify pivotal polyamine-related genes (PRGs) and explore the underlying mechanism between PRGs and the disease status and therapeutic response of UC. We analyzed mRNA-sequencing data and clinical information of UC patients from the GEO database and identified NNMT, PTGS2, TRIM22, TGM2, and PPARG as key PRGs associated with active UC using differential expression analysis and weighted gene co-expression network analysis (WCGNA). Receiver operator characteristic curve (ROC) analysis confirmed the accuracy of these key genes in UC and colitis-associated colon cancer (CAC) diagnosis, and we validated their relationship with therapeutic response in external verification sets. Additionally, single-cell analysis revealed that the key PRGs were specific to certain immune cell types, emphasizing the vital role of intestinal tissue stem cells in active UC. The results were validated in vitro and in vivo experiments, including the colitis mice model and CAC mice model. In conclusion, these key PRGs effectively predict the progression of UC patients and could serve as new pharmacological biomarkers for the therapeutic response of UC.


Assuntos
Biomarcadores , Colite Ulcerativa , Poliaminas , Análise de Célula Única , Colite Ulcerativa/genética , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/terapia , Animais , Humanos , Camundongos , Biomarcadores/metabolismo , Análise de Célula Única/métodos , Poliaminas/metabolismo , Modelos Animais de Doenças , Proteína 2 Glutamina gama-Glutamiltransferase , Masculino , Feminino , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismo
4.
Sensors (Basel) ; 24(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123900

RESUMO

Nanotechnology has ushered in significant advancements in drug design, revolutionizing the prevention, diagnosis, and treatment of various diseases. The strategic utilization of nanotechnology to enhance drug loading, delivery, and release has garnered increasing attention, leveraging the enhanced physical and chemical properties offered by these systems. Polyamidoamine (PAMAM) dendrimers have been pivotal in drug delivery, yet there is room for further enhancement. In this study, we conjugated PAMAM dendrimers with chitosan (CS) to augment cellular internalization in tumor cells. Specifically, doxorubicin (DOX) was initially loaded into PAMAM dendrimers to form DOX-loaded PAMAM (DOX@PAMAM) complexes via intermolecular forces. Subsequently, CS was linked onto the DOX-loaded PAMAM dendrimers to yield CS-conjugated PAMAM loaded with DOX (DOX@CS@PAMAM) through glutaraldehyde crosslinking via the Schiff base reaction. The resultant DOX@CS@PAMAM complexes were comprehensively characterized using Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Notably, while the drug release profile of DOX@CS@PAMAM in acidic environments was inferior to that of DOX@PAMAM, DOX@CS@PAMAM demonstrated effective acid-responsive drug release, with a cumulative release of 70% within 25 h attributed to the imine linkage. Most importantly, DOX@CS@PAMAM exhibited significant selective cellular internalization rates and antitumor efficacy compared to DOX@PAMAM, as validated through cell viability assays, fluorescence imaging, and flow cytometry analysis. In summary, DOX@CS@PAMAM demonstrated superior antitumor effects compared to unconjugated PAMAM dendrimers, thereby broadening the scope of dendrimer-based nanomedicines with enhanced therapeutic efficacy and promising applications in cancer therapy.


Assuntos
Quitosana , Dendrímeros , Doxorrubicina , Dendrímeros/química , Quitosana/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Poliaminas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
5.
PLoS Biol ; 22(8): e3002731, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102375

RESUMO

Bacterial pathogens utilize the factors of their hosts to infect them, but which factors they exploit remain poorly defined. Here, we show that a pathogenic Salmonella enterica serovar Typhimurium (STm) exploits host polyamines for the functional expression of virulence factors. An STm mutant strain lacking principal genes required for polyamine synthesis and transport exhibited impaired infectivity in mice. A polyamine uptake-impaired strain of STm was unable to inject effectors of the type 3 secretion system into host cells due to a failure of needle assembly. STm infection stimulated host polyamine production by increasing arginase expression. The decline in polyamine levels caused by difluoromethylornithine, which inhibits host polyamine production, attenuated STm colonization, whereas polyamine supplementation augmented STm pathogenesis. Our work reveals that host polyamines are a key factor promoting STm infection, and therefore a promising therapeutic target for bacterial infection.


Assuntos
Poliaminas , Salmonella typhimurium , Sistemas de Secreção Tipo III , Fatores de Virulência , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/genética , Animais , Poliaminas/metabolismo , Camundongos , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Humanos , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Feminino
6.
Sci Rep ; 14(1): 19202, 2024 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160181

RESUMO

Drought, which adversely affects plant growth and continuity of life and reduces product yield and quality, is one of the most common abiotic stresses at the globally. One of the polyamines that regulates plant development and reacts to abiotic stressors, including drought stress, is Putrescine (Put). This study compared the physiological and molecular effects of applying exogenous Put (10 µM) to barley (Hordeum vulgare cv. Burakbey) under drought stress (- 6.30 mPa PEG 6000). The 21-day drought stress imposed on the barley plant had a strong negative effect on plant metabolism in all experimental groups. Exogenous Put treatment under drought stress had a reformative effect on the cell cycle (transitions from G0-G1 to S and from S to G2-M), total protein content (almost 100%), endogenous polyamine content, malondialdehyde (MDA) (70%), and ascorbate peroxidase (APX) (62%) levels compared to the drought stress plants. Superoxide dismutase (SOD) (12%) and catalase (CAT) (32%) enzyme levels in the same group increased further after exogenous Put application, forming a response to drought stress. Consequently, it was discovered that the administration of exogenous Put in barley raises endogenous polyamine levels and then improves drought tolerance due to increased antioxidant capability, cell division stimulation, and total protein content.


Assuntos
Secas , Hordeum , Putrescina , Estresse Fisiológico , Hordeum/metabolismo , Hordeum/genética , Putrescina/metabolismo , Malondialdeído/metabolismo , Ciclo Celular , Antioxidantes/metabolismo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Poliaminas/metabolismo , Ascorbato Peroxidases/metabolismo , Ascorbato Peroxidases/genética , Regulação da Expressão Gênica de Plantas
7.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125742

RESUMO

Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.


Assuntos
Homeostase , Neoplasias , Poliaminas , Humanos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Poliaminas/metabolismo , Animais , Sinergismo Farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
ACS Chem Neurosci ; 15(15): 2811-2821, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39058922

RESUMO

Neonatal hypoxic-ischemic (HI) brain insult is a major cause of neonatal mortality and morbidity. To assess the underlying pathological mechanisms, we mapped the spatiotemporal changes in polyamine, amino acid, and neurotransmitter levels, following HI insult (by the Rice-Vannucci method) in the brains of seven-day-old rat pups. Matrix-assisted laser desorption/ionization mass spectrometry imaging of chemically modified small-molecule metabolites by 4-(anthracen-9-yl)-2-fluoro-1-methylpyridin-1-ium iodide revealed critical HI-related metabolomic changes of 22 metabolites in 14 rat brain subregions, much earlier than light microscopy detected signs of neuronal damage. For the first time, we demonstrated excessive polyamine oxidation and accumulation of 3-aminopropanal in HI neonatal brains, which was later accompanied by neuronal apoptosis enhanced by increases in glycine and norepinephrine in critically affected brain regions. Specifically, putrescine, cadaverine, and 3-aminopropanal increased significantly as early as 12 h postinsult, mainly in motor and somatosensory cortex, hippocampus, and midbrain, followed by an increase in norepinephrine 24 h postinsult, which was predominant in the caudate putamen, the region most vulnerable to HI. The decrease of γ-aminobutyric acid (GABA) and the continuous dysregulation of the GABAergic system together with low taurine levels up to 36 h sustained progressive neurodegenerative cellular processes. The molecular alterations presented here at the subregional rat brain level provided unprecedented insight into early metabolomic changes in HI-insulted neonatal brains, which may further aid in the identification of novel therapeutic targets for the treatment of neonatal HI encephalopathy.


Assuntos
Animais Recém-Nascidos , Encéfalo , Hipóxia-Isquemia Encefálica , Neurotransmissores , Poliaminas , Animais , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Poliaminas/metabolismo , Encéfalo/metabolismo , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley , Neurônios/metabolismo , Metabolômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
J Am Heart Assoc ; 13(15): e035837, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39082415

RESUMO

BACKGROUND: Polyamines have been reported to be associated with neurological function, but the associations between polyamines and the prognosis of ischemic stroke remain unclear. We aimed to prospectively investigate whether elevated plasma polyamine levels are associated with adverse outcomes in patients with ischemic stroke. METHODS AND RESULTS: Plasma polyamine levels were measured at admission in 3570 patients with acute ischemic stroke, and clinical outcomes were assessed at 3 months after stroke onset. The primary outcome was a composite outcome of death and major disability (modified Rankin Scale score≥3), and secondary outcomes included the individual outcomes of death and major disability. During a 3-month follow-up period, 877 participants (25.1%) experienced the primary outcome. Increased putrescines were associated with a decreased risk of the primary outcome (the highest versus the lowest tertile: odds ratio, 0.72 [95% CI, 0.58-0.91]; P=0.005) and major disability (odds ratio, 0.59 [95% CI, 0.47-0.74]; P<0.001). Conversely, increased spermidines were associated with an increased risk of death (hazard ratio, 1.86 [95% CI, 1.10-3.14]; P=0.020), and increased spermines were associated with an increased risk of the primary outcome (odds ratio, 1.36 [95% CI, 1.08-1.71]; P=0.009) and major disability (odds ratio, 1.27 [95% CI, 1.01-1.59]; P=0.041). CONCLUSIONS: Among patients with ischemic stroke, high plasma putrescine levels were associated with a decreased risk of adverse outcomes, whereas high plasma spermidine and spermine levels were associated with an increased risk of adverse outcomes. Further studies are needed to investigate whether targeting these polyamines can improve the prognosis of patients with ischemic stroke. REGISTRATION: https://clinicaltrials.gov. Identifier: NCT01840072.


Assuntos
Biomarcadores , AVC Isquêmico , Poliaminas , Humanos , Masculino , Feminino , Idoso , Estudos Prospectivos , AVC Isquêmico/sangue , AVC Isquêmico/mortalidade , AVC Isquêmico/diagnóstico , Pessoa de Meia-Idade , Poliaminas/sangue , Prognóstico , Biomarcadores/sangue , Fatores de Tempo , Espermidina/sangue , Putrescina/sangue , Fatores de Risco , Avaliação da Deficiência , Espermina/sangue , Idoso de 80 Anos ou mais , Medição de Risco
10.
Mol Cancer ; 23(1): 136, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965534

RESUMO

BACKGROUND: BRAF inhibitors are widely employed in the treatment of melanoma with the BRAF V600E mutation. However, the development of resistance compromises their therapeutic efficacy. Diverse genomic and transcriptomic alterations are found in BRAF inhibitor resistant melanoma, posing a pressing need for convergent, druggable target that reverse therapy resistant tumor with different resistance mechanisms. METHODS: CRISPR-Cas9 screens were performed to identify novel target gene whose inhibition selectively targets A375VR, a BRAF V600E mutant cell line with acquired resistance to vemurafenib. Various in vitro and in vivo assays, including cell competition assay, water soluble tetrazolium (WST) assay, live-dead assay and xenograft assay were performed to confirm synergistic cell death. Liquid Chromatography-Mass Spectrometry analyses quantified polyamine biosynthesis and changes in proteome in vemurafenib resistant melanoma. EIF5A hypusination dependent protein translation and subsequent changes in mitochondrial biogenesis and activity were assayed by O-propargyl-puromycin labeling assay, mitotracker, mitoSOX labeling and seahorse assay. Bioinformatics analyses were used to identify the association of polyamine biosynthesis with BRAF inhibitor resistance and poor prognosis in melanoma patient cohorts. RESULTS: We elucidate the role of polyamine biosynthesis and its regulatory mechanisms in promoting BRAF inhibitor resistance. Leveraging CRISPR-Cas9 screens, we identify AMD1 (S-adenosylmethionine decarboxylase 1), a critical enzyme for polyamine biosynthesis, as a druggable target whose inhibition reduces vemurafenib resistance. Metabolomic and proteomic analyses reveal that polyamine biosynthesis is upregulated in vemurafenib-resistant cancer, resulting in enhanced EIF5A hypusination, translation of mitochondrial proteins and oxidative phosphorylation. We also identify that sustained c-Myc levels in vemurafenib-resistant cancer are responsible for elevated polyamine biosynthesis. Inhibition of polyamine biosynthesis or c-Myc reversed vemurafenib resistance both in vitro cell line models and in vivo in a xenograft model. Polyamine biosynthesis signature is associated with poor prognosis and shorter progression free survival after BRAF/MAPK inhibitor treatment in melanoma cohorts, highlighting the clinical relevance of our findings. CONCLUSIONS: Our findings delineate the molecular mechanisms involving polyamine-EIF5A hypusination-mitochondrial respiration pathway conferring BRAF inhibitor resistance in melanoma. These targets will serve as effective therapeutic targets that can maximize the therapeutic efficacy of existing BRAF inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fator de Iniciação de Tradução Eucariótico 5A , Melanoma , Mutação , Fatores de Iniciação de Peptídeos , Poliaminas , Proteínas Proto-Oncogênicas B-raf , Proteínas de Ligação a RNA , Vemurafenib , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Poliaminas/metabolismo , Camundongos , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Vemurafenib/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Sistemas CRISPR-Cas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Lisina/análogos & derivados
11.
PLoS One ; 19(7): e0304658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052628

RESUMO

Polyamines (PAs) including putrescine (PUT), spermidine (SPD) and spermine (SPM) are small, versatile molecules with two or more positively charged amino groups. Despite their importance for almost all forms of life, their specific roles in molecular and cellular biology remain partly unknown. The molecular structures of PAs suggest two presumable biological functions: (i) as potential buffer systems and (ii) as interactants with poly-negatively charged molecules like nucleic acids. The present report focuses on the question, whether the molecular structures of PAs are essential for such functions, or whether other simple molecules like small peptides with closely spaced positively charged side chains might be suitable as well. Consequently, we created titration curves for PUT, SPD, and SPM, as well as for oligolysines like tri-, tetra-, and penta-lysine. None of the molecules provided substantial buffering capacity at physiological intracellular pH values. Apparently, the most important mechanism for intracellular pH homeostasis in neurons is not a buffer system but is provided by the actions of the sodium-hydrogen and the bicarbonate-chloride antiporters. In a similar approach we investigated the interaction with DNA by following the extinction at 260 nm when titrating DNA with the above molecules. Again, PUT and tri-lysine were not able to interact with herring sperm DNA, while SPD and SPM were. Obviously, the presence of several positively charged groups on its own is not sufficient for the interaction with nucleic acids. Instead, the precise spacing of these groups is necessary for biological activity.


Assuntos
DNA , Peptídeos , Poliaminas , RNA , Concentração de Íons de Hidrogênio , DNA/química , DNA/metabolismo , Soluções Tampão , RNA/química , RNA/metabolismo , Poliaminas/química , Poliaminas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Animais , Espermidina/química , Espermidina/metabolismo , Espermina/química , Espermina/metabolismo , Putrescina/química , Putrescina/metabolismo
12.
Cells ; 13(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38994986

RESUMO

Biogenic polyamines are ubiquitous compounds. Dysregulation of their metabolism is associated with the development of various pathologies, including cancer, hyperproliferative diseases, and infections. The canonical pathway of polyamine catabolism includes acetylation of spermine and spermidine and subsequent acetylpolyamine oxidase (PAOX)-mediated oxidation of acetylpolyamines (back-conversion) or their direct efflux from the cell. PAOX is considered to catalyze a non-rate-limiting catabolic step. Here, we show that PAOX transcription levels are extremely low in various tumor- and non-tumor cell lines and, in most cases, do not change in response to altered polyamine metabolism. Its enzymatic activity is undetectable in the majority of cell lines except for neuroblastoma and low passage glioblastoma cell lines. Treatment of A549 cells with N1,N11-diethylnorspermine leads to PAOX induction, but its contribution to polyamine catabolism remains moderate. We also describe two alternative enzyme isoforms and show that isoform 4 has diminished oxidase activity and isoform 2 is inactive. PAOX overexpression correlates with the resistance of cancer cells to genotoxic antitumor drugs, indicating that PAOX may be a useful therapeutic target. Finally, PAOX is dispensable for the replication of various viruses. These data suggest that a decrease in polyamine levels is achieved predominantly by the secretion of acetylated spermine and spermidine rather than by back-conversion.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Poliaminas , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Poliaminas/metabolismo , Linhagem Celular Tumoral , Espermina/metabolismo , Espermina/análogos & derivados , Acetilação , Células A549
13.
Physiol Plant ; 176(4): e14411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38973028

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are known for their role in ameliorating plant stress, including alkaline stress, yet the mechanisms involved are not fully understood. This study investigates the impact of various inoculum doses of Bacillus licheniformis Jrh14-10 on Arabidopsis growth under alkaline stress and explores the underlying mechanisms of tolerance enhancement. We found that all tested doses improved the growth of NaHCO3-treated seedlings, with 109 cfu/mL being the most effective. Transcriptome analysis indicated downregulation of ethylene-related genes and an upregulation of polyamine biosynthesis genes following Jrh14-10 treatment under alkaline conditions. Further qRT-PCR analysis confirmed the suppression of ethylene biosynthesis and signaling genes, alongside the activation of polyamine biosynthesis genes in NaHCO3-stressed seedlings treated with Jrh14-10. Genetic analysis showed that ethylene signaling-deficient mutants (etr1-3 and ein3-1) exhibited greater tolerance to NaHCO3 than the wild type, and the growth-promoting effect of Jrh14-10 was significantly diminished in these mutants. Additionally, Jrh14-10 was found unable to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indicating it does not reduce the ethylene precursor ACC in Arabidopsis. However, Jrh14-10 treatment increased the levels of polyamines (putrescine, spermidine, and spermine) in stressed seedlings, with spermidine particularly effective in reducing H2O2 levels and enhancing Fv/Fm under NaHCO3 stress. These findings reveal a novel mechanism of PGPR-induced alkaline tolerance, highlighting the crosstalk between ethylene and polyamine pathways, and suggest a strategic redirection of S-adenosylmethionine towards polyamine biosynthesis to combat alkaline stress.


Assuntos
Arabidopsis , Bacillus licheniformis , Etilenos , Poliaminas , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Etilenos/metabolismo , Poliaminas/metabolismo , Bacillus licheniformis/metabolismo , Bacillus licheniformis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Plântula/metabolismo , Álcalis/farmacologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
14.
J Am Soc Mass Spectrom ; 35(8): 1969-1975, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39013154

RESUMO

High purity plasmid DNA is a raw material for recombinant protein production as well as an active ingredient in DNA vaccines. There are four primary plasmid structures that can be observed in a typical plasmid formulation: supercoiled, relaxed (circular), linearized, and condensed. Determining what structures are present in a sample is important, as the structure can affect activity; the supercoiled structure has the highest activity, and >90% supercoiled is desired for industry standards. Recently, charge detection mass spectrometry (CD-MS) was used to distinguish two of the structures, supercoiled and condensed, by measuring the charge deposited on the ions by positive mode electrospray. Here, CD-MS is used to probe the structures of DNA plasmids during compaction with polycations, and through enzymatic treatment to relax and linearize plasmids. We find that all four structural types for plasmid DNA have unique charging profiles that can be distinguished using CD-MS. The extent of mechanical shearing of the DNA plasmids during electrospray is strongly influenced by the structural type.


Assuntos
DNA Super-Helicoidal , Plasmídeos , Plasmídeos/química , DNA Super-Helicoidal/química , DNA Super-Helicoidal/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Conformação de Ácido Nucleico , DNA/química , DNA/análise , Poliaminas/química , Polieletrólitos/química
15.
Biomaterials ; 311: 122692, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38986360

RESUMO

Branching is a key structural parameter of polymers, which can have profound impacts on physicochemical properties. It has been demonstrated that branching is a modulating factor for mRNA delivery and transfection using delivery vehicles built from cationic polymers, but the influence of polymer branching on mRNA delivery remains relatively underexplored compared to other polymer features such as monomer composition, hydrophobicity, pKa, or the type of terminal group. In this study, we examined the impact of branching on the physicochemical properties of poly(amine-co-esters) (PACE) and their efficiency in mRNA transfection in vivo and in vitro under various conditions. PACE polymers were synthesized with various degrees of branching ranging from 0 to 0.66, and their transfection efficiency was systemically evaluated. We observed that branching improves the stability of polyplexes but reduces the pH buffering capacity. Therefore, the degree of branching (DB) must be optimized in a delivery route specific manner due to differences in challenges faced by polyplexes in different physiological compartments. Through a systematic analysis of physicochemical properties and mRNA transfection in vivo and in vitro, this study highlights the influence of polymer branching on nucleic acid delivery.


Assuntos
Poliaminas , RNA Mensageiro , Transfecção , Transfecção/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Poliaminas/química , Humanos , Camundongos , Concentração de Íons de Hidrogênio , Ésteres/química , Polímeros/química
16.
Bioconjug Chem ; 35(8): 1218-1232, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39081220

RESUMO

Minimal immunogen vaccines are being developed to focus antibody responses against otherwise challenging targets, including human immunodeficiency virus (HIV), but multimerization of the minimal peptide immunogen on a carrier platform is required for activity. Star copolymers comprising multiple hydrophilic polymer chains ("arms") radiating from a central dendrimer unit ("core") were recently reported to be an effective platform for arraying minimal immunogens for inducing antibody responses in mice and primates. However, the impact of different parameters of the star copolymer (e.g., minimal immunogen density and hydrodynamic size) on antibody responses and the optimal synthetic route for controlling those parameters remains to be fully explored. We synthesized a library of star copolymers composed of poly[N-(2-hydroxypropyl)methacrylamide] hydrophilic arms extending from poly(amidoamine) dendrimer cores with the aim of identifying the optimal composition for use as minimal immunogen vaccines. Our results show that the length of the polymer arms has a crucial impact on the star copolymer hydrodynamic size and is precisely tunable over a range of 20-50 nm diameter, while the dendrimer generation affects the maximum number of arms (and therefore minimal immunogens) that can be attached to the surface of the dendrimer. In addition, high-resolution images of selected star copolymer taken by a custom-modified environmental scanning electron microscope enabled the acquisition of high-resolution images, providing new insights into the star copolymer structure. Finally, in vivo studies assessing a star copolymer vaccine comprising an HIV minimal immunogen showed the criticality of polymer arm length in promoting antibody responses and highlighting the importance of composition tunability to yield the desired biological effect.


Assuntos
Dendrímeros , Animais , Dendrímeros/química , Camundongos , Polímeros/química , Portadores de Fármacos/química , Vacinas/imunologia , Vacinas/química , Vacinas/administração & dosagem , Humanos , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/química , Vacinas contra a AIDS/administração & dosagem , Poliaminas
17.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063071

RESUMO

Bio-stimulants, such as selenium nanoparticles and melatonin, regulate melon growth. However, the effects of individual and combined applications of selenium nanoparticles and melatonin on the growth of melon seedlings have not been reported. Here, two melon cultivars were sprayed with selenium nanoparticles, melatonin, and a combined treatment, and physiological and biochemical properties were analyzed. The independent applications of selenium nanoparticles, melatonin, and their combination had no significant effects on the plant heights and stem diameters of Jiashi and Huangmengcui melons. Compared with the controls, both selenium nanoparticle and melatonin treatments increased soluble sugars (6-63%) and sucrose (11-88%) levels, as well as the activity of sucrose phosphate synthase (171-237%) in melon leaves. The phenylalanine ammonia lyase (29-95%), trans cinnamate 4-hydroxylase (32-100%), and 4-coumaric acid CoA ligase (26-113%), as well as mRNA levels, also increased in the phenylpropanoid metabolism pathway. Combining the selenium nanoparticles and melatonin was more effective than either of the single treatments. In addition, the levels of superoxide dismutase (43-130%), catalase (14-43%), ascorbate peroxidase (44-79%), peroxidase (25-149%), and mRNA in melon leaves treated with combined selenium nanoparticles and melatonin were higher than in controls. The results contribute to our understanding of selenium nanoparticles and melatonin as bio-stimulants that improve the melon seedlings' growth by regulating carbohydrate, polyamine, and antioxidant capacities.


Assuntos
Cucurbitaceae , Melatonina , Nanopartículas , Poliaminas , Plântula , Selênio , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Selênio/farmacologia , Melatonina/farmacologia , Cucurbitaceae/crescimento & desenvolvimento , Cucurbitaceae/efeitos dos fármacos , Cucurbitaceae/metabolismo , Nanopartículas/química , Poliaminas/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo
18.
Eur J Pharmacol ; 978: 176804, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38950837

RESUMO

Neurodegenerative disorders are diseases characterized by progressive degeneration of neurons and associated structures and are a major global issue growing more widespread as the global population's average age increases. Despite several investigations on their etiology, the specific cause of these disorders remains unknown. However, there are few symptomatic therapies to treat these disorders. Polyamines (PAs) (putrescine, spermidine, and spermine) are being studied for their role in neuroprotection, aging and cognitive impairment. They are ubiquitous polycations which have relatively higher concentrations in the brain and possess pleiotropic biochemical activities, including regulation of gene expression, ion channels, mitochondria Ca2+ transport, autophagy induction, programmed cell death, and many more. Their cellular content is tightly regulated, and substantial evidence indicates that their altered levels and metabolism are strongly implicated in aging, stress, cognitive dysfunction, and neurodegenerative disorders. In addition, dietary polyamine supplementation has been reported to induce anti-aging effects, anti-oxidant effects, and improve locomotor abnormalities, and cognitive dysfunction. Thus, restoring the polyamine level is considered a promising pharmacological strategy to counteract neurodegeneration. This review highlights PAs' physiological role and the molecular mechanism underpinning their proposed neuroprotective effect in aging and neurodegenerative disorders.


Assuntos
Envelhecimento , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Poliaminas , Humanos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Animais , Poliaminas/metabolismo , Poliaminas/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico
19.
Plant Physiol Biochem ; 214: 108878, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968841

RESUMO

In this paper, we discussed the physiological mechanism of enhanced chilling tolerance with combined treatment of nitric oxide (NO) and reduced glutathione (GSH) in cucumber seedlings. With prolonged low temperature (10 °C/6 °C), oxidative stress improved, which was manifested as an increase the hydrogen peroxide (H2O2) and malondialdehyde (MDA), causing cell membrane damage, particularly after 48 h of chilling stress. Exogenous sodium nitroprusside (SNP, NO donor) enhanced the activity of nitric oxide synthase NOS-like, the contents of GSH and polyamines (PAs), and the cellular redox state, thus regulating the activities of mitochondrial oxidative phosphorylation components (CI, CII, CIV, CV). However, buthionine sulfoximine (BSO, a GSH synthase inhibitor) treatment drastically reversed or attenuated the effects of NO. Importantly, the combination of SNP and GSH treatment had the best effect in alleviating chilling-induced oxidative stress by upregulating the activities of antioxidant enzyme, including superoxidase dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) and improved the PAs content, thereby increased activities of CI, CII, CIII, CIV, and CV. This potentially contributes to the maintenance of oxidative phosphorylation originating from mitochondria. In addition, the high activity of S-nitrosoglutathione reductase (GSNOR) in the combined treatment of SNP and GSH possibly mediates the conversion of NO and GSH to S-nitrosoglutathione. Our study revealed that the combined treatment with NO and GSH to synergistically improve the cold tolerance of cucumber seedlings under prolonged low-temperature stress.


Assuntos
Antioxidantes , Temperatura Baixa , Cucumis sativus , Glutationa , Mitocôndrias , Óxido Nítrico , Poliaminas , Cucumis sativus/metabolismo , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/fisiologia , Óxido Nítrico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Poliaminas/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
20.
Biomacromolecules ; 25(7): 4118-4138, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857534

RESUMO

Postmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly in vivo. Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure. We found that the postmodification can enhance or impair the mechanical resistance and biocompatibility of microcapsules implanted into a mouse model, with polycations surprisingly providing the best results. Confocal Raman microscopy and confocal laser scanning microscopy (CLSM) analyses revealed stable interpolyelectrolyte complex layers within the parent microcapsule, hindering the access of higher molar weight PEs into the microcapsule core. All microcapsules showed negative surface zeta potential, indicating that the postmodification PEs get hidden within the microcapsule membrane, which agrees with CLSM data. Human whole blood assay revealed complex behavior of microcapsules regarding their inflammatory and coagulation potential. Importantly, most of the postmodification PEs, including polycations, were found to be benign toward the encapsulated model cells.


Assuntos
Alginatos , Cápsulas , Poliaminas , Polieletrólitos , Alginatos/química , Polieletrólitos/química , Cápsulas/química , Poliaminas/química , Animais , Camundongos , Humanos , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA