Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.780
Filtrar
1.
Sensors (Basel) ; 24(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38733034

RESUMO

INTRODUCTION: The choice of materials for covering plantar orthoses or wearable insoles is often based on their hardness, breathability, and moisture absorption capacity, although more due to professional preference than clear scientific criteria. An analysis of the thermal response to the use of these materials would provide information about their behavior; hence, the objective of this study was to assess the temperature of three lining materials with different characteristics. MATERIALS AND METHODS: The temperature of three materials for covering plantar orthoses was analyzed in a sample of 36 subjects (15 men and 21 women, aged 24.6 ± 8.2 years, mass 67.1 ± 13.6 kg, and height 1.7 ± 0.09 m). Temperature was measured before and after 3 h of use in clinical activities, using a polyethylene foam copolymer (PE), ethylene vinyl acetate (EVA), and PE-EVA copolymer foam insole with the use of a FLIR E60BX thermal camera. RESULTS: In the PE copolymer (material 1), temperature increases between 1.07 and 1.85 °C were found after activity, with these differences being statistically significant in all regions of interest (p < 0.001), except for the first toe (0.36 °C, p = 0.170). In the EVA foam (material 2) and the expansive foam of the PE-EVA copolymer (material 3), the temperatures were also significantly higher in all analyzed areas (p < 0.001), ranging between 1.49 and 2.73 °C for EVA and 0.58 and 2.16 °C for PE-EVA. The PE copolymer experienced lower overall overheating, and the area of the fifth metatarsal head underwent the greatest temperature increase, regardless of the material analyzed. CONCLUSIONS: PE foam lining materials, with lower density or an open-cell structure, would be preferred for controlling temperature rise in the lining/footbed interface and providing better thermal comfort for users. The area of the first toe was found to be the least overheated, while the fifth metatarsal head increased the most in temperature. This should be considered in the design of new wearables to avoid excessive temperatures due to the lining materials.


Assuntos
Órtoses do Pé , Temperatura , Humanos , Feminino , Masculino , Adulto , Adulto Jovem , Polivinil/química , Polietileno/química , Polímeros/química , Teste de Materiais
2.
J Hazard Mater ; 471: 134328, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643575

RESUMO

The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.


Assuntos
Bactérias , Biodegradação Ambiental , Sedimentos Geológicos , Polietileno , Polipropilenos , Poluentes Químicos da Água , Polipropilenos/química , Polietileno/química , Polietileno/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/genética , Microplásticos/toxicidade , Microplásticos/metabolismo , Água Doce/microbiologia , Estuários
3.
Chemosphere ; 357: 141961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615954

RESUMO

Microplastics (MPs) poses a significant threat to ecosystems and human health, demanding immediate attention. The reported research work offers an effective and low cost method towards the detection of toxic MPs. In this study, hydrophobic cerium oxide nanoparticles (CeO2 NPs) are synthesized and applied as promising electrode material for the detection of two different types of MPs, i.e. polyethylene (PE) and polypropylene (PP). Through electrochemical analyses, such as cyclic voltammetry (CV) and linear sweep voltammetry (LSV), hydrophobic CeO2 NPs modified glassy carbon electrode (GCE) based sensor demonstrated remarkable sensitivity of ∼0.0343 AmLmg-1cm-2 and detection limit of ∼0.226 mgmL-1, with promising correlation coefficient (R2) towards the detection of PE (∼27-32 µm). Furthermore, hydrophobic CeO2 NPs modified GCE exhibited promising stability and reproducibility towards PE (∼27-32 µm), suggesting the promising potential of hydrophobic CeO2 NPs as electrode materials for an electrochemical microplastics detection.


Assuntos
Cério , Monitoramento Ambiental , Interações Hidrofóbicas e Hidrofílicas , Microplásticos , Poluentes Químicos da Água , Cério/química , Poluentes Químicos da Água/análise , Microplásticos/análise , Monitoramento Ambiental/métodos , Nanopartículas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Polietileno/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Polipropilenos/química , Limite de Detecção
5.
Water Sci Technol ; 89(8): 1981-1995, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678403

RESUMO

Biochar (BC) was used to remove trichloroethylene (TCE) from soil and water phases, and BC modification changed the sorption behavior of pollutants. Microplastics are emerging pollutants in the soil and water phases. Whether microplastics can affect the sorption of TCE by modified BC is not clear. Thus, batch sorption kinetics and isotherm experiments were conducted to elucidate the sorption of TCE on BC, and BC combined with polyethylene (PE) or polystyrene (PS). The results showed that HCl and NaOH modification increased TCE sorption on BC, while HNO3 modification inhibited TCE sorption on BC. When PE/PS and BC coexisted, the TCE sorption capacity decreased significantly on BC-CK + PE, BC-HCl + PE, BC-HNO3 + PE, BC-NaOH + PE, and BC-NaOH + PS, which was likely due to the preferential sorption of PE/PS on BC samples. We concluded that microplastics can change TCE sorption behavior and inhibit TCE sorption on BC samples. Thus, the interaction of BC and microplastics should be considered when BC is used for TCE removal in soil and water remediation.


Assuntos
Carvão Vegetal , Microplásticos , Tricloroetileno , Tricloroetileno/química , Carvão Vegetal/química , Adsorção , Microplásticos/química , Poluentes Químicos da Água/química , Cinética , Polietileno/química
6.
Chemosphere ; 356: 141875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583532

RESUMO

While passive sampling of ultra-low aqueous concentrations of hydrophobic organic compounds in environmental aqueous media has emerged as a promising analytical technique, there is a lack of good understanding of the fundamental diffusive processes. In this research, we used a fluorophore, pyrene, as a model compound to track diffusion in polymers through absorption and environmental media exchange processes. We directly tracked the penetration of pyrene into polyethylene (PE) and polyoxymethylene (POM) rods during absorption from water by sectioning the rod after different stages of absorption and observing the fluorescence signal through a microscope. Diffusion profiles of pyrene in polymers were simulated by numerical integration of Fickian diffusion. The results indicated that the uptake process in PE is governed by Fick's law and the absorption and desorption kinetics are similar in this polymer. However, the observed uptake profiles of pyrene in POM were non-Fickian and the release kinetics out of POM was slower compared to uptake into the polymer. We show that slower desorption from POM makes corrections for nonequilibrium using performance reference compounds (PRCs) problematic for deployments in water or sediment where there is significant advection. However, for static sediment deployments, the overall kinetics of exchange is controlled by slow transport through sediment and the hysteretic behavior of POM may not preclude the use of PRCs to interpret equilibrium status.


Assuntos
Monitoramento Ambiental , Polietileno , Pirenos , Resinas Sintéticas , Poluentes Químicos da Água , Pirenos/química , Polietileno/química , Difusão , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos , Cinética , Polímeros/química
7.
J Hazard Mater ; 470: 134176, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569347

RESUMO

Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased ß-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.


Assuntos
Biodegradação Ambiental , Microbiota , Microplásticos , Poliésteres , Microbiologia do Solo , Poluentes do Solo , Poliésteres/metabolismo , Poliésteres/química , Microplásticos/toxicidade , Poluentes do Solo/metabolismo , Polietileno/química , Carbono/química , Plásticos Biodegradáveis/química , Bactérias/metabolismo , Bactérias/genética , Solo/química
8.
Ecotoxicol Environ Saf ; 277: 116346, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669869

RESUMO

Microplastics, plastic particles 5 mm or less in size, are abundant in the environment; hence, the exposure of humans to microplastics is a great concern. Usually, the surface of microplastics found in the environment has undergone degradation by external factors such as ultraviolet rays and water waves. One of the characteristics of changes caused by surface degradation of microplastics is the introduction of oxygen-containing functional groups. Surface degradation alters the physicochemical properties of plastics, suggesting that the biological effects of environmentally degraded plastics may differ from those of pure plastics. However, the biological effects of plastics introduced with oxygen-containing functional groups through degradation are poorly elucidated owing to the lack of a plastic sample that imitates the degradation state of plastics found in the environment. In this study, we investigated the degradation state of microplastics collected from a beach. Next, we degraded a commercially available polyethylene (PE) particles via vacuum ultraviolet (VUV) irradiation and showed that chemical surface state of PE imitates that of microplastics in the environment. We evaluated the cytotoxic effects of degraded PE samples on immune and epithelial cell lines. We found that VUV irradiation was effective in degrading PE within a short period, and concentration-dependent cytotoxicity was induced by degraded PE in all cell lines. Our results indicate that the cytotoxic effect of PE on different cell types depends on the degree of microplastic degradation, which contributes to our understanding of the effects of PE microplastics on humans.


Assuntos
Microplásticos , Polietileno , Raios Ultravioleta , Poluentes Químicos da Água , Microplásticos/toxicidade , Polietileno/toxicidade , Polietileno/química , Humanos , Poluentes Químicos da Água/toxicidade , Praias , Sobrevivência Celular/efeitos dos fármacos , Animais , Plásticos/toxicidade , Linhagem Celular
10.
Int J Biol Macromol ; 266(Pt 2): 131287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565367

RESUMO

In the quest to enhance the performance of natural fiber-reinforced polymer composites, achieving optimal dispersion of fiber materials within a polymeric matrix has been identified as a key strategy. Traditional approaches, such as the surface modification of natural fibers, often necessitate the use of additional synthetic chemical processes, presenting a significant challenge. In this work, taking poly (acrylonitrile-styrene-acrylic) (ASA) and bamboo fiber (BF) as a model system, we attempt to use the elastomer-chlorinated polyethylene (CPE) as a compatibilizer to tailor the mechanical properties of ASA/CPE/BF ternary composites. It was found that increasing CPE content contributed to more remarkable reinforcing efficiency, where composite with 15 phr CPE exhibited a nearly four-fold increase in reinforcing efficiency of tensile strength (20 %) compared with that of composite system without CPE (4.1 %). Such improvement was ascribed to the compatibilizing effect exerted by CPE, which prevented the aggregation of BF within polymeric matrix. Surface properties suggested the stronger interface between CPE and BF compared to that between ASA and BF and thereby contributed to the compabilizing effect. Since no chemical process was involved, it is suggested that the introduction of elastomer to be a universal, green and sustainable approach to achieve the reinforcement.


Assuntos
Resinas Acrílicas , Polietileno , Polietileno/química , Resinas Acrílicas/química , Resistência à Tração , Acrilonitrila/química
11.
Environ Sci Pollut Res Int ; 31(18): 26928-26941, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502264

RESUMO

The use of waste polyethylene (WPE) in modified asphalt is frequently employed to reduce environmental pollution and improve asphalt properties. However, research has shown that using WPE alone as a modifier does not effectively enhance the low-temperature flexibility of asphalt. This study aims to investigate the potential of utilizing WPE and waste cooking oil (WCO) as composite modifiers to enhance the properties of virgin asphalt under both high and low-temperature conditions. The contents of WPE and WCO were used, and the preparation process for the modified asphalt was optimized through an orthogonal experiment. The experimental results indicate that the optimal formulation for the WPE/WCO composite modified asphalt (WPE/WCO-A) is obtained with an additive dosage of 8% and 1% by mass of virgin asphalt for WPE and WCO, respectively, as well as the maintenance process at a temperature of 140 °C and a duration of 2 h. Dynamic shear rheometer (DSR) results reveal that WPE/WCO composite modifier can greatly improve the high-temperature deformation resistance of asphalt. Bending beam rheometer (BBR) tests confirm that WPE adversely affects the low-temperature flexibility of asphalt, while the addition of WCO can improve it. WPE/WCO-A has even better low-temperature properties than virgin asphalt (VA). The Fourier transform infrared spectroscopy (FT-IR) results suggest that the composite modification of asphalt by WPE/WCO modifiers is dominated by physical action. Furthermore, the fluorescence microscopy test results demonstrate that WCO can promote WPE swelling in asphalt. This study offers a novel approach to improve the comprehensive properties of asphalt through composite modification using WPE and WCO.


Assuntos
Hidrocarbonetos , Polietileno , Polietileno/química , Hidrocarbonetos/química
12.
Environ Sci Pollut Res Int ; 31(18): 27345-27355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512575

RESUMO

Clay liners have been widely used in landfill engineering. However, large-scale clay excavation causes secondary environmental damage. This study investigates the feasibility of replacing clay liners with high-density polyethylene (HDPE) geomembranes with different specifications and parameters. Laboratory interface shear tests between municipal solid waste (MSW) samples of different ages and geomembranes were conducted to study the influence of landfill age on interface shear strength. Finite element method was adopted to compare the long-term stability of landfills with HDPE geomembrane versus clay as intermediate liner. The interfacial shear test results show that the cohesion of MSW increases in a short term and then decreases with landfill age. The internal friction angle exhibits an increasing trend with advancing age, however, the rate of its increment declines with age. The rough accuracy of the film surface can increase the interfacial shear strength between MSW. The simulation results show that, unlike clay-lined landfills, the sliding surface of geomembrane-lined landfills is discontinuous at the lining interface, which can delay the penetration of slip surfaces and block the formation of slip zone in the landfill. In addition, the maximum displacement of landfills with geomembrane is 10% lower than that with clay, and the absolute displacement of slope toe decreases with the increase of roughness at the interface of geomembrane. Compared with clay-lined landfills, the overall stability safety factor increased by 18.5-30%. This study provides references for landfill design and on-site stability evaluation, contributing to enhanced long-term stability.


Assuntos
Eliminação de Resíduos , Instalações de Eliminação de Resíduos , Resíduos Sólidos , Resistência ao Cisalhamento , Polietileno/química , Argila/química
13.
PeerJ ; 12: e17041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426135

RESUMO

Вiotic factors may be the driving force of plastic fragmentation along with abiotic factors. Since understanding the processes of biodegradation and biological depolymerization of plastic is important, a new methodological approach was proposed in this study to investigate the role of marine invertebrate digestive enzymes in plastic biodegradation. The aim of this study is to evaluate the possibility of enzymatic biodegradation of polyethylene fragments in the digestive gland homogenate of marine invertebrates differing in their feeding type (Strongylocentrotus nudus, Patiria pectinifera, Mizuhopecten yessoensis). Significant changes are found in the functional groups of the polymer after 3 days of incubation in the digestive gland homogenates of the studied marine invertebrates. A significant increase in the calculated CI (carbonyl index) and COI (сarbon-oxygen index) indices compared to the control sample was observed. The results suggest that digestive enzymes of studied organisms may play an important role in the biogeochemical cycling of plastic.


Assuntos
Polietileno , Polietileno/química , Biodegradação Ambiental
14.
Waste Manag ; 179: 99-109, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38471253

RESUMO

Fast co-pyrolysis offers a sustainable solution for upcycling polymer waste, including scrap tyre and plastics. Previous studies primarily focused on slow heating rates, neglecting synergistic mechanisms and sulphur transformation in co-pyrolysis with tyre. This research explored fast co-pyrolysis of scrap tyre with polypropylene (PP), low-density polyethylene (LDPE), and polystyrene (PS) to understand synergistic effects and sulphur transformation mechanisms. A pronounced synergy was observed between scrap tyre and plastics, with the nature of the synergy being plastic-type dependent. Remarkably, blending 75 wt% PS or LDPE with tyre effectively eliminated sulphur-bearing compounds in the liquid product. This reduction in sulphur content can substantially mitigate the release of hazardous materials into the environment, emphasizing the environmental significance of co-pyrolysis. The synergy between PP or LDPE and tyre amplified the production of lighter hydrocarbons, while PS's interaction led to the creation of monocyclic aromatics. These findings offer insights into the intricate chemistry of scrap tyre and plastic interactions and highlight the potential of co-pyrolysis in waste management. By converting potential pollutants into valuable products, this method can significantly reduce the release of hazardous materials into the environment.


Assuntos
Temperatura Alta , Polietileno , Polietileno/química , Pirólise , Polipropilenos , Poliestirenos , Enxofre , Substâncias Perigosas , Plásticos/química
15.
J Environ Manage ; 356: 120446, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484595

RESUMO

There is a serious concern about the large amount of accumulated plastic waste all around the world. Synthetic polymers such as polyethylene terephthalate (PET), polypropylene (PP), and polyethylene (HDPE, LDPE) are substantially present in the plastic waste generated. There are various methods reported to minimise such plastics waste with certain limitations. To overcome such limitations the present study have been carried out in which thermal decomposition of plastic waste of PET, PP, HDPE, and LDPE studied using a novel plasma pyrolysis reactor. The major objective of this work is to investigate the viability of the continuous plasma pyrolysis process for the treatment of various plastic wastes with respect to waste volume reduction and production of combustible hydrogen-rich fuel gas. The effect of temperature and feed flow rate on product gas yield, product gas efficiency, solid residue yield, and H2/CO ratio has been evaluated. The experiments have been carried out at different temperatures within the range of 700-1000 °C. Plasma pyrolysis system exhibited combustible hydrogen-rich gas as a product and solid residue. Liquid products have not been observed during plasma pyrolysis, unlike conventional pyrolysis. The reaction mechanism of plastic cracking has been discussed based on literature and products obtained in the present work. The effects of feed flow rate and temperature on exergy efficiency were studied using the response surface method. The mass, energy, and exergy analyses have also been carried out for all the experiments, which are in the range of 0.95-0.99, 0.48 to 0.77, and 0.30 to 0.69, respectively.


Assuntos
Plásticos , Polietileno , Polietileno/química , Plásticos/química , Hidrogênio , Pirólise , Polipropilenos/química , Polietilenotereftalatos
16.
Environ Pollut ; 345: 123502, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316252

RESUMO

Microplastics (MPs) pose a global concern due to their ubiquitous distribution. Once in the environment, they are subject to aging, which changes their chemical-physical properties and ability to interact with organic pollutants, such as pesticides. Therefore, this study investigated the interaction of the hydrophobic herbicide terbuthylazine (TBA), which is widely used in agriculture, with artificially aged polyethylene (PE) MP (PE-MP) to understand how aging affects its sorption. PE was aged by an accelerated weathering process including UV irradiation, hydrogen peroxide, and ultrasonic treatment, and aged particles were characterized in comparison to pristine particles. Sorption kinetics were performed for aged and pristine materials, while further sorption studies with aged PE-MP included determining environmental factors such as pH, temperature, and TBA concentration. Sorption of TBA was found to be significantly lower on aged PE-MP compared to pristine particles because aging led to the formation of oxygen-containing functional groups, resulting in a reduction in hydrophobicity and the formation of negatively charged sites on oxidized surfaces. For pristine PE-MP, sorption kinetics were best described by the pseudo-second-order model, while it was intra-particle diffusion for aged PE-MP as a result of crack and pore formation. Sorption followed a decreasing trend with increasing pH, while it became less favorable at higher temperatures. The isotherm data revealed a complex sorption process on altered, heterogeneous surfaces involving hydrophobic interactions, hydrogen bonding, and π-π interactions, and the process was best described by the Sips adsorption isotherm model. Desorption was found to be low, confirming a strong interaction. However, thermodynamic results imply that increased temperatures, such as those resulting from climate change, could promote the re-release of TBA from aged PE-MP into the environment. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed TBA sorption onto PE.


Assuntos
Praguicidas , Poluentes Químicos da Água , Microplásticos/química , Plásticos/química , Praguicidas/análise , Triazinas/análise , Polietileno/química , Adsorção , Poluentes Químicos da Água/análise
17.
Chemosphere ; 352: 141305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331266

RESUMO

Secondary microplastics are a product of the fragmentation of plastic debris. Despite concerns regarding the omnipresence of microplastics in the environment, knowledge about the mechanics of their actual formation is still limited. Fragmentation is usually linked to weathering, which alters the properties of the plastic and allows fragmentation to occur. Therefore, in this study, polyethylene terephthalate (PET) samples were exposed to artificial UV light or a combination of UV light and water for a total of three months to simulate natural weathering. The samples included three forms of PET with different production histories: pellets, yarns, and films. The surface alterations to the samples during weathering were characterized using scanning electron microscopy and Raman spectroscopy. Results indicated that the three different types of PET developed markedly different surface defects and also exhibited signs of weathering within different time frames. Differences were also found between samples exposed only to UV and those exposed to UV and submerged in water. In water, the first surface changes were spotted within 30 days of initial submersion and later developed into an organized crack network. Upon the introduction of mild mechanical forces, pieces of the weathered surface started to delaminate. The fragments from films had an elongated shape with a median size of 16.1 × 2.1 × 1.8 µm, resembling a fibre. If the weathered surface of a film were to detach completely, it could create 1.4-7.9 million microplastic fragments/cm2. For pellets, this number would range between 0.4 and 2.2 million microplastics/cm2. In addition to particle formation by surface delamination, particles also emerged on the weathered surfaces of all studied samples, presenting another possible source of micro-sized particles during weathering. Overall, the results of this work show that the weathering of plastics and the formation of microplastics are heavily influenced not only by the weathering mechanism but also by the type and production history of the polymers.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/química , Plásticos/química , Polietilenotereftalatos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água , Polietileno/química
18.
Ecotoxicol Environ Saf ; 272: 116066, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325269

RESUMO

Microplastics (MPs) and pesticides are two categories contaminants with proposed negative impacts to aqueous ecosystems, and adsorption of pesticides on MPs may result in their long-range transport and compound combination effects. Florpyrauxifen-benzyl, a novel pyridine-2-carboxylate auxin herbicide has been widely used to control weeds in paddy field, but the insights of which are extremely limited. Therefore, adsorption and desorption behaviors of florpyrauxifen-benzyl on polyvinyl chloride (PVC), polyethylene (PE) and disposable face masks (DFMs) in five water environment were investigated. The impacts of various environmental factors on adsorption capacity were evaluated, as well as adsorption mechanisms. The results revealed significant variations in adsorption capacity of florpyrauxifen-benzyl on three MPs, with approximately order of DFMs > PE > PVC. The discrepancy can be attributed to differences in structural and physicochemical properties, as evidenced by various characterization analysis. The kinetics and isotherm of florpyrauxifen-benzyl on three MPs were suitable for different models, wherein physical force predominantly governed adsorption process. Thermodynamic analysis revealed that both high and low temperatures weakened PE and DFMs adsorption, whereas temperature exhibited negligible impact on PVC adsorption. The adsorption capacity was significantly influenced by most environmental factors, particularly pH, cations and coexisting herbicide. This study provides valuable insights into the fate of florpyrauxifen-benzyl in presence of MPs, suggesting that PVC, PE and DFMs can serve as carriers of florpyrauxifen-benzyl in aquatic environment.


Assuntos
Herbicidas , Praguicidas , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/química , Plásticos/química , Adsorção , Ecossistema , Água , Polietileno/química , Praguicidas/análise , Herbicidas/análise , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 917: 170420, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301781

RESUMO

Advanced oxidation processes (AOPs) can significantly alter the structural properties, environmental behaviors and human exposure level of microplastics in aquatic environments. Three typical microplastics (Polyethylene (PE), polypropylene (PP), and polystyrene (PS)) and three AOPs (Heat-K2S2O8 (PDS), UV-H2O2, UV-peracetic acid (PAA)) were adopted to simulate the process when microplastics exposed to the sewage disposal system. 2-Nitrofluorene (2-NFlu) adsorption experiments found the equilibrium time decreased to 24 hours and the capacity increased up to 610 µg g-1, which means the adsorption efficiency has been greatly improved. The fitting results indicate the adsorption mechanism shifted from the partition dominant on pristine microplastic to the physical adsorption (pore filling) dominant. The alteration of specific surface area (21 to 152 m2 g-1), pore volume (0.003 to 0.148 cm3 g-1) and the particle size (123 to 16 µm) of microplastics after AOPs are implying the improvement for pore filling. Besides, the investigation of bioaccessibility is more complex, AOPs alter microplastic with more oxygen-containing functional groups and lower hydrophobicity detected by XPS and water contact angle, those modifications have increased the sorption concentration, especially in the human intestinal tract. Therefore, this indicates the actual exposure of organic compounds loaded in microplastic may be higher than in the pristine microplastic. This study can help to assess the human health risk of microplastic pollution in actual environments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/química , Plásticos/química , Adsorção , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Polietileno/química
20.
Sci Total Environ ; 918: 170616, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38311086

RESUMO

The present study investigates the morphological, physicochemical, and structural changes occurred by the UV-B aging process of low-density polyethylene microplastics (LDPE MPs), as well as the bioactive potential of both pristine and UVaged MPs towards healthy peripheral blood lymphocytes. Specifically, LDPE MPs (100-180 µm) prepared by mechanical milling of LDPE pellets, were UV-B irradiated for 120 days (wavelength 280 nm; temperature 25 °C; relative humidity 50 %) and further examined for alterations in their particle size and surface, their functional groups, thermal stability, and crystallinity (by means of SEM, FTIR spectroscopy, XRD patterns, and TGA measurements, respectively). In parallel, isolated human peripheral blood lymphocytes were treated with different concentrations (25-500 µg mL-1) of either pristine or aged MPs (UVfree and UV120d LDPE MPs) for assessing the cytogenotoxic (by means of trypan blue exclusion test and the cytokinesis-block micronucleus assay using cytochalasin-B) and oxidative effects (using the DCFH-DA staining) in both cases. According to the results, UVfree and UV120d-LDPE MPs, with a size ranging from 100 to 180 µm, can differentially promote cytogenotoxic and oxidative alterations in human lymphocytes. In fact, UVfree LDPE MPs not being able to be internalized by cells due to their size, could indirectly promote the onset of mild oxidative and cytogenotoxic damage in human peripheral lymphocytes, via a dose-dependent but size-independent manner. The latter is more profound in case of the irregular-shaped UV120d-LDPE MPs, bearing improved dispersibility and sharp edges (by means of cracks and holes), as well as oxygen-containing and carbonyl groups. To our knowledge, the present findings provide new data regarding the bioactive behavior of pristine and UV-B aged LDPE MPs, at least in the in vitro biological model tested, thus giving new evidence for their size-independent and/or indirect mode of action.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Idoso , Polietileno/toxicidade , Polietileno/química , Plásticos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA