Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
1.
ACS Appl Mater Interfaces ; 16(19): 24248-24260, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693878

RESUMO

Biomedical devices are vulnerable to infections and biofilm formation, leading to extended hospital stays, high expenditure, and increased mortality. Infections are clinically treated via the administration of systemic antibiotics, leading to the development of antibiotic resistance. A multimechanistic strategy is needed to design an effective biomaterial with broad-spectrum antibacterial potential. Recent approaches have investigated the fabrication of innately antimicrobial biomedical device surfaces in the hope of making the antibiotic treatment obsolete. Herein, we report a novel fabrication strategy combining antibacterial nitric oxide (NO) with an antibiofilm agent N-acetyl cysteine (NAC) on a polyvinyl chloride surface using polycationic polyethylenimine (PEI) as a linker. The designed biomaterial could release NO for at least 7 days with minimal NO donor leaching under physiological conditions. The proposed surface technology significantly reduced the viability of Gram-negative Escherichia coli (>97%) and Gram-positive Staphylococcus aureus (>99%) bacteria in both adhered and planktonic forms in a 24 h antibacterial assay. The composites also exhibited a significant reduction in biomass and extra polymeric substance accumulation in a dynamic environment over 72 h. Overall, these results indicate that the proposed combination of the NO donor with mucolytic NAC on a polymer surface efficiently resists microbial adhesion and can be used to prevent device-associated biofilm formation.


Assuntos
Acetilcisteína , Antibacterianos , Biofilmes , Escherichia coli , Óxido Nítrico , Staphylococcus aureus , Acetilcisteína/química , Acetilcisteína/farmacologia , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Cloreto de Polivinila/química , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia
2.
Langmuir ; 40(20): 10589-10599, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728854

RESUMO

Optically transparent glass with antifogging and antibacterial properties is in high demand for endoscopes, goggles, and medical display equipment. However, many of the previously reported coatings have limitations in terms of long-term antifogging and efficient antibacterial properties, environmental friendliness, and versatility. In this study, inspired by catfish and sphagnum moss, a novel photoelectronic synergy antifogging and antibacterial coating was prepared by cross-linking polyethylenimine-modified titanium dioxide (PEI-TiO2), polyvinylpyrrolidone (PVP), and poly(acrylic acid) (PAA). The as-prepared coating could remain fog-free under hot steam for more than 40 min. The experimental results indicate that the long-term antifogging properties are due to the water absorption and spreading characteristics. Moreover, the organic-inorganic hybrid of PEI and TiO2 was first applied to enhance the antibacterial performance. The Staphylococcus aureus and the Escherichia coli growth inhibition rates of the as-prepared coating reached 97 and 96% respectively. A photoelectronic synergy antifogging and antibacterial mechanism based on the positive electrical and photocatalytic properties of PEI-TiO2 was proposed. This investigation provides insight into designing multifunctional bioinspired surface materials to realize antifogging and antibacterial that can be applied to medicine and daily lives.


Assuntos
Antibacterianos , Escherichia coli , Staphylococcus aureus , Titânio , Antibacterianos/farmacologia , Antibacterianos/química , Titânio/química , Titânio/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Testes de Sensibilidade Microbiana , Povidona/química , Propriedades de Superfície
3.
PLoS One ; 19(5): e0285655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753593

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) is an inflammatory disease affecting the sinuses or nose. Persistent inflammatory responses can lead to tissue remodeling, which is a pathological characteristics of CRS. Activation of fibroblasts in the nasal mucosal stroma, differentiation and collagen deposition, and subepithelial fibrosis have been associated with CRS. OBJECTIVES: We aimed to assess the inhibitory effects of doxycycline and deoxycholic acid-polyethyleneimine conjugate (DA3-Doxy) on myofibroblast differentiation and extracellular matrix (ECM) production in nasal fibroblasts stimulated with TGF-ß1. METHODS: To enhance efficacy, we prepared DA3-Doxy using a conjugate of low-molecular-weight polyethyleneimine (PEI) (MW 1800) and deoxycholic acid (DA) and Doxy. The synthesis of the DA3-Doxy polymer was confirmed using nuclear magnetic resonance, and the critical micelle concentration required for cationic micelle formation through self-assembly was determined. Subsequently, the Doxy loading efficiency of DA3 was assessed. The cytotoxicity of Doxy, DA3, PEI, and DA-Doxy in nasal fibroblasts was evaluated using the WST-1 assay. The anti-tissue remodeling and anti-inflammatory effects of DA3-Doxy and DA3 were examined using real-time polymerase chain reaction (Real-time PCR), immunocytochemistry, western blot, and Sircol assay. RESULTS: Both DA3 and DA3-Doxy exhibited cytotoxicity at 10 µg/ml in nasal fibroblasts. Doxy partially inhibited α-smooth muscle actin, collagen types I and III, and fibronectin. However, DA3-Doxy significantly inhibited α-SMA, collagen types I and III, and fibronectin at 5 µg/ml. DA3-Doxy also modulated TGF-ß1-induced changes in the expression of MMP 1, 2, and 9. Nonetheless, TGF-ß1-induced expression of MMP3 was further increased by DA3-Doxy. The expression of TIMP 1 and 2 was partially reduced with 5 µg/ml DA3-Doxy. CONCLUSIONS: Although initially developed for the delivery of genetic materials or drugs, DA3 exhibits inhibitory effects on myofibroblast differentiation and ECM production. Therefore, it holds therapeutic potential for CRS, and a synergistic effect can be expected when loaded with CRS treatment drugs.


Assuntos
Diferenciação Celular , Ácido Desoxicólico , Doxiciclina , Fibroblastos , Polietilenoimina , Humanos , Polietilenoimina/química , Polietilenoimina/farmacologia , Ácido Desoxicólico/química , Ácido Desoxicólico/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Doxiciclina/química , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/citologia , Actinas/metabolismo
4.
Colloids Surf B Biointerfaces ; 238: 113904, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38603845

RESUMO

Ursodeoxycholic acid (UDCA) is the preferred treatment for various types of cholestasis, however, its effectiveness is limited because of its insolubility in water. We used polyethylene glycol (PEG) and cationic polymer polyethylenimine (PEI) to double-modify graphite oxide (PPG) as a drug delivery system. UDCA was successfully loaded onto PPG through intermolecular interactions to form UDCA-PPG nanoparticles. UDCA-PPG nanoparticles not only improve the solubility and dispersibility of UDCA, but also have good biocompatibility and stability, which significantly improve the delivery rate of UDCA. The results indicated that UDCA-PPG significantly reduced ROS levels, promoted cell proliferation, protected mitochondrial membrane potential, reduced DNA damage and reduced apoptosis in the DCA-induced cell model. In a mouse cholestasis model established by bile duct ligation (BDL), UDCA-PPG improved liver necrosis, fibrosis, and mitochondrial damage and reduced serum ALT and AST levels, which were superior to those in the UDCA-treated group. UDCA-PPG reduced the expression of the apoptosis-related proteins, Caspase-3 and Bax, increased the expression of Bcl-2, and reduced the expression of the oxidative stress-related proteins, NQO and HO-1, as well as the autophagy-related proteins LC3, p62 and p-p62. Therefore, UDCA-PPG can enhance the therapeutic effect of UDCA in cholestasis, by significantly improving drug dispersibility and stability, extending circulation time in vivo, promoting absorption, decreasing ROS levels, enhancing autophagy flow and inhibiting apoptosis via the Bcl-2/Bax signaling pathway.


Assuntos
Apoptose , Colestase , Grafite , Hepatócitos , Nanocompostos , Ácido Ursodesoxicólico , Grafite/química , Grafite/farmacologia , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/química , Animais , Apoptose/efeitos dos fármacos , Nanocompostos/química , Camundongos , Colestase/tratamento farmacológico , Colestase/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Humanos
5.
J Virol ; 98(3): e0000724, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305153

RESUMO

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which is responsible for enormous economic losses to the global pig industry. Although vaccination has been used to prevent PRV infection, the effectiveness of vaccines has been greatly diminished with the emergence of PRV variants. Therefore, there is an urgent need to develop anti-PRV drugs. Polyethylenimine (PEI) is a cationic polymer and has a wide range of antibacterial and antiviral activities. This study found that a low dose of 1 µg/mL of the 25-kDa linear PEI had significantly specific anti-PRV activity, which became more intense with increasing concentrations. Mechanistic studies revealed that the viral adsorption stage was the major target of PEI without affecting viral entry, replication stages, and direct inactivation effects. Subsequently, we found that cationic polymers PEI and Polybrene interfered with the interaction between viral proteins and cell surface receptors through electrostatic interaction to exert the antiviral function. In conclusion, cationic polymers such as PEI can be a category of options for defense against PRV. Understanding the anti-PRV mechanism also deepens host-virus interactions and reveals new drug targets for anti-PRV.IMPORTANCEPolyethylenimine (PEI) is a cationic polymer that plays an essential role in the host immune response against microbial infections. However, the specific mechanisms of PEI in interfering with pseudorabies virus (PRV) infection remain unclear. Here, we found that 25-kDa linear PEI exerted mechanisms of antiviral activity and the target of its antiviral activity was mainly in the viral adsorption stage. Correspondingly, the study demonstrated that PEI interfered with the virus adsorption stage by electrostatic adsorption. In addition, we found that cationic polymers are a promising novel agent for controlling PRV, and its antiviral mechanism may provide a strategy for the development of antiviral drugs.


Assuntos
Antivirais , Herpesvirus Suídeo 1 , Polietilenoimina , Eletricidade Estática , Animais , Adsorção/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/metabolismo , Polietilenoimina/química , Polietilenoimina/farmacologia , Pseudorraiva/tratamento farmacológico , Pseudorraiva/virologia , Suínos/virologia , Doenças dos Suínos/virologia
6.
ACS Biomater Sci Eng ; 10(3): 1589-1606, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38336625

RESUMO

Low molecular weight polyethylenimine (PEI) based lipopolymers become an attractive strategy to construct nonviral therapeutic carriers with promising transfection efficiency and minimal toxicity. Herein, this paper presents the design and synthesis of novel farnesol (Far) conjugated PEI, namely PEI1.2k-SA-Far7. The polymers had quick DNA complexation, effective DNA unpacking (dissociation), and cellular uptake abilities when complexed with plasmid DNA. However, they were unable to provide robust transfection in culture, indicating inability of Far grafting to improve the transfection efficacy significantly. To overcome this limitation, the commercially available polyanionic Trans-Booster additive, which is capable of displaying electrostatic interaction with PEI1.2k-SA-Far7, has been used to enhance the uptake of pDNA polyplexes and transgene expression. pDNA condensation was successfully achieved in the presence of the Trans-Booster with more stable polyplexes, and in vitro transfection efficacy of the polyplexes was improved to be comparable to that obtained with an established reference reagent. The PEI1.2k-SA-Far7/pDNA/Trans-Booster ternary complex exhibited good compatibility with cells and minimal hemolysis activity. This work demonstrates the exemplary potency of using additives in polyplexes and the potential of resultant ternary complexes for effective pDNA delivery.


Assuntos
Técnicas de Transferência de Genes , Polietilenoimina , Polietilenoimina/farmacologia , Farneseno Álcool , DNA/genética , DNA/metabolismo , Transfecção
7.
Adv Healthc Mater ; 13(13): e2302926, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38273674

RESUMO

The successful treatment of persistent and recurrent endodontic infections hinges upon the eradication of residual microorganisms within the root canal system, which urgently needs novel drugs to deliver potent yet gentle antimicrobial effects. Antibacterial photodynamic therapy (aPDT) is a promising tool for root canal infection management. Nevertheless, the hypoxic microenvironment within the root canal system significantly limits the efficacy of this treatment. Herein, a nanohybrid drug, Ce6/CaO2/ZIF-8@polyethylenimine (PEI), is developed using a bottom-up strategy to self-supply oxygen for enhanced aPDT. PEI provides a positively charged surface, which enables precise targeting of bacteria. CaO2 reacts with H2O to generate O2, which alleviates the hypoxia in the root canal and serves as a substrate for Ce6 under 660 nm laser irradiation, leading to the successful eradication of planktonic Enterococcus faecalis (E. faecalis) and biofilm in vitro and, moreover, the effective elimination of mature E. faecalis biofilm in situ within the root canal system. This smart design offers a viable alternative for mitigating hypoxia within the root canal system to overcome the restricted efficacy of photosensitizers, providing an exciting prospect for the clinical management of persistent endodontic infection.


Assuntos
Biofilmes , Cavidade Pulpar , Enterococcus faecalis , Oxigênio , Fotoquimioterapia , Enterococcus faecalis/efeitos dos fármacos , Fotoquimioterapia/métodos , Cavidade Pulpar/microbiologia , Biofilmes/efeitos dos fármacos , Oxigênio/química , Oxigênio/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Polietilenoimina/química , Polietilenoimina/farmacologia , Nanopartículas/química , Animais , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Clorofilídeos
8.
World J Microbiol Biotechnol ; 40(1): 6, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932532

RESUMO

Urinary tract infections (UTIs) are a significant cause of morbidity in healthcare systems and are prominently associated with applying urethral catheters, particularly in surgeries. Polyvinyl chloride (PVC) is extensively utilized in the fabrication of catheters. Biofilms, complex polymeric constructions, provide a protective milieu for cell multiplication and the enhancement of antibiotic resistance. Strategies to counteract biofilm development on medical apparatuses' surfaces incorporate antimicrobial agents such as N,N-dodecyl, and methyl polyethylenimine (DMPEI). This research endeavored to characterize the morphology of PVC and PVC-DMPEI surfaces utilizing Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) and to gauge hydrophobicity through contact angle measurements. Employing Escherichia coli, Staphylococcus aureus, and Candida albicans in adhesion assays enabled the assessment of DMPEI's efficacy in preventing microbial adherence to PVC. Butanol successfully solubilized 2 mg.mL-1 DMPEI without altering the PVC structure. SEM results substantiated the formation of a DMPEI layer on the PVC surface, which led to decreased surface roughness, as validated by AFM, and increased hydrophilicity, as demonstrated by contact angle evaluations. E. coli, S. aureus, and C. albicans exhibited significant adhesion reduction, 89.3%, 94.3%, and 86.6% on PVC-DMPEI surfaces. SEM visualizations confirmed reduced cellular colonization on PVC-DMPEI and highlighted considerable morphological modifications in E. coli. Consequently, DMPEI films effectively minimize the adhesion of E. coli, S. aureus, and C. albicans on PVC surfaces. DMPEI, with its potential as a protective coating for innovative medical devices, promises to inhibit biofilm adherence effectively.


Assuntos
Escherichia coli , Polietilenoimina , Polietilenoimina/farmacologia , Staphylococcus aureus , Catéteres , Biofilmes , Candida albicans
9.
Sci Rep ; 13(1): 17497, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840040

RESUMO

A significant problem related to the functioning of resin-based composites for dental fillings is secondary or recurrent caries, which is the reason for the need for repeated treatment. The cross-linked quaternary ammonium polyethylenimine nanoparticles (QA-PEI-NPs) have been shown to be a promising antibacterial agent against different bacteria, including cariogenic ones. However, little is known about the properties of dental dimethacrylate polymer-based composites enriched with QA-PEI-NPs. This research was carried out on experimental composites based on bis-GMA/UDMA/TEGDMA matrix enriched with 0.5, 1, 1.5, 2 and 3 (wt%) QA-PEI-NPs and reinforced with two glass fillers. The cured composites were tested for their adherence of Streptococcus Mutans bacteria, cell viability (MTT assay) with 48 h and 10-days extracts , degree of conversion (DC), water sorption (WSO), and solubility (WSL), water contact angle (CA), flexural modulus (E), flexural strength (FS), compressive strength (CS), and Vickers microhardness (HV). The investigated materials have shown a complete reduction in bacteria adherence and satisfactory biocompatibility. The QA-PEI-NPs additive has no effect on the DC, VH, and E values. QA-PEI-NPs increased the CA (a favorable change), the WSO and WSL (unfavorable changes) and decreased flexural strength, and compressive strength (unfavorable changes). The changes mentioned were insignificant and acceptable for most composites, excluding the highest antibacterial filler content. Probably the reason for the deterioration of some properties was low compatibility between filler particles and the matrix; therefore, it is worth extending the research by surface modification of QA-PEI-NPs to achieve the optimum performance characteristics.


Assuntos
Compostos de Amônio , Nanopartículas , Metacrilatos , Polietilenoimina/farmacologia , Resinas Compostas/farmacologia , Polimerização , Teste de Materiais , Ácidos Polimetacrílicos , Água , Antibacterianos/farmacologia , Bactérias
10.
Biochim Biophys Acta Biomembr ; 1865(6): 184172, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37201561

RESUMO

Bacterial infections caused by Gram-negative pathogens, such as those in the family Enterobacteriaceae, are among the most difficult to treat because effective therapeutic options are either very limited or non-existent. This raises serious concern regarding the emergence and spread of multi-drug resistant (MDR) pathogens in the community setting; and thus, creates the need for discovery efforts and/or early-stage development of novel therapies for infections. Our work is directed towards branched polyethylenimine (BPEI) modified with polyethylene glycol (PEG) as a strategy for targeting virulence from Gram-negative bacterial pathogens. Here, we neutralize lipopolysaccharide (LPS) as a barrier to the influx of antibiotics. Data demonstrate that the ß-lactam antibiotic oxacillin, generally regarded as ineffective against Gram-negative bacteria, can be potentiated by 600 Da BPEI to kill some Escherichia coli and some Klebsiella pneumoniae. Modification of 600 Da BPEI with polyethylene glycol (PEG) could increase drug safety and improves potentiation activity. The ability to use the Gram-positive agent, oxacillin, against Gram-negative pathogens could expand the capability to deliver effective treatments that simplify, reduce, or eliminate some complicated treatment regimens.


Assuntos
Escherichia coli , Klebsiella pneumoniae , Polietilenoimina/farmacologia , Virulência , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Oxacilina/farmacologia , Bactérias Gram-Negativas
11.
Int J Cosmet Sci ; 45(5): 612-626, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37133325

RESUMO

OBJECTIVES: Ascorbic acid has many benefits to the skin. Numerous attempts to promote its topical delivery show great challenges since its chemical instability and poor skin impermeability. Microneedle delivery is a simple, safe, painless and effective means to deliver therapeutic or nourishing molecules into the skin. The purpose of this study was twofold: (a) to develop a new formulation of ascorbic acid-loaded microneedles to enhance ascorbic acid stability by investigating an optimal amount of polyethyleneimine as an additive to the dextran-based microneedle formulation and (b) to assess microneedle properties in terms of dissolving rate, skin penetration ability, biocompatibility and antimicrobial activity. METHODS: The microneedles formulated with ascorbic acid and varied polyethyleneimine concentrations were fabricated and subsequently tested for ascorbic acid stability using 2,2-diphenyl-1-picrylhydrazyl assay. The dissolution rate and skin penetration depth were investigated in porcine skin and the reconstructed human full-thickness skin model respectively. The skin irritation tests were done according to the Organisation for Economic Co-operation and Development Test Guideline No. 439. An antimicrobial disc susceptibility test was performed against Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. RESULTS: Among varied amounts of 0%, 1.5%, 3.0% and 4.5% (w/v), the 3.0% polyethyleneimine showed the most desirable characteristics, including well-preserved shape integrity after demoulding, significantly improved stability of ascorbic acid (p < 0.001) from 33% to 96% antioxidant activity after 8 weeks of storage at 40°C, increased dissolving rate (p < 0.001) by being completely dissolved within 2 min after the skin insertion, passing skin penetration and biocompatibility tests as well as having a broad spectrum of antimicrobial property. CONCLUSION: With a safety profile and enhanced properties, the new formulation of ascorbic acid-loaded microneedles shows outstanding potential as commercially available cosmetics and healthcare products.


OBJECTIFS: L'acide ascorbique présente de nombreux avantages pour la peau. De nombreuses tentatives pour promouvoir sa délivrance topique présentent de grands défis en raison de son instabilité chimique et de sa faible imperméabilité cutanée. L'administration de micro-aiguilles est un moyen simple, sûr, indolore et efficace d'administrer des molécules thérapeutiques ou nourrissantes dans la peau. Le but de cette étude était double : a) développer une nouvelle formulation de microaiguilles chargées d'acide ascorbique pour améliorer la stabilité de l'acide ascorbique en étudiant une quantité optimale de polyéthylèneimine comme additif à la formulation de microaiguilles à base de dextrane ; et b) évaluer les propriétés des micro-aiguilles en termes de vitesse de dissolution, de capacité de pénétration cutanée, de biocompatibilité et d'activité antimicrobienne. MÉTHODES: Les microaiguilles formulées avec de l'acide ascorbique et des concentrations variées de polyéthylèneimine ont été fabriquées et ensuite testées pour la stabilité de l'acide ascorbique à l'aide d'un dosage de 2,2-diphényl-1-picrylhydrazyle. Le taux de dissolution et la profondeur de pénétration de la peau ont été étudiés dans la peau de porc et le modèle de peau humaine reconstruite de pleine épaisseur, respectivement. Les tests d'irritation cutanée ont été effectués conformément à la ligne directrice n° 439 de l'Organisation de coopération et de développement économiques. Un test de sensibilité du disque antimicrobien a été réalisé contre Escherichia coli, Staphylococcus aureus et Staphylococcusepidermidis. RÉSULTATS: Parmi des quantités variées de 0, 1,5, 3,0 et 4,5 % (p/v), la polyéthylèneimine à 3,0 % a montré les caractéristiques les plus souhaitables, notamment une intégrité de forme bien préservée après démoulage, une stabilité significativement améliorée de l'acide ascorbique (p ⟨ 0,001) de 33 % à 96 % d'activité antioxydante après 8 semaines de stockage à 40 °C, augmentation du taux de dissolution (p ⟨ 0,001) en étant complètement dissous dans les2 minutes suivant l'insertion de la peau, en passant les tests de pénétration cutanée et de biocompatibilité, ainsi qu'en ayant un large spectre de propriétés antimicrobiennes. CONCLUSION: Avec un profil d'innocuité et des propriétés améliorées, la nouvelle formulation de micro-aiguilles chargées d'acide ascorbique présente un potentiel exceptionnel en tant que produits cosmétiques et de soins de santé disponibles dans le commerce.


Assuntos
Anti-Infecciosos , Ácido Ascórbico , Animais , Suínos , Humanos , Administração Cutânea , Ácido Ascórbico/farmacologia , Polietilenoimina/farmacologia , Pele , Agulhas , Inflamação , Anti-Infecciosos/farmacologia , Sistemas de Liberação de Medicamentos
12.
Fish Shellfish Immunol ; 135: 108684, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36921882

RESUMO

This study examined the effectiveness of a DNA vaccine for S. agalactiae that was delivered by mannose-based polyethyleneimine (Man-PEI). The results showed that Man-PEI/pcDNA-Sip stimulated a higher serum antibody titer compared to control or other vaccine groups (p < 0.05). Additionally, it induced higher expression of immune-related genes, and increased activities of superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP). Furthermore, the Man-PEI/pcDNA-Sip group showed an improved relative percent survival (RPS) of 85.71%. These results demonstrate the potential value of Man-PEI as a vaccine delivery vehicle, and suggest that it can be effective in boosting the immune protective rate induced by pcDNA-Sip vaccines.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Vacinas Estreptocócicas , Vacinas de DNA , Animais , Polietilenoimina/farmacologia , Streptococcus agalactiae , Imunidade , Doenças dos Peixes/prevenção & controle , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária
13.
Biomed Pharmacother ; 160: 114397, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36796279

RESUMO

As an alternative strategy for cancer treatment, the combination of cancer nanomedicine and immunotherapy is promising with regard to efficacy and safety; however, precise modulation of the activation of antitumor immunity remains challenging. Therefore, the aim of the present study was to describe an intelligent nanocomposite polymer immunomodulator, drug-free polypyrrole-polyethyleneimine nanozyme (PPY-PEI NZ), which responds to the B-cell lymphoma tumor microenvironment, for precision cancer immunotherapy. Earlier engulfment of PPY-PEI NZs in an endocytosis-dependent manner resulted in rapid binding in four different types of B-cell lymphoma cells. The PPY-PEI NZ effectively suppressed B cell colony-like growth in vitro accompanied by cytotoxicity via apoptosis induction. During PPY-PEI NZ-induced cell death, mitochondrial swelling, loss of mitochondrial transmembrane potential (MTP), downregulation of antiapoptotic proteins, and caspase-dependent apoptosis were observed. Deregulated AKT and ERK signaling contributed to glycogen synthase kinase-3-regulated cell apoptosis following deregulation of Mcl-1 and MTP loss. Additionally, PPY-PEI NZs induced lysosomal membrane permeabilization while inhibiting endosomal acidification, partly protecting cells from lysosomal apoptosis. PPY-PEI NZs selectively bound and eliminated exogenous malignant B cells in a mixed culture system with healthy leukocytes ex vivo. While PPY-PEI NZs showed no cytotoxicity in wild-type mice, they provided long-term and efficient inhibition of the growth of B-cell lymphoma-driven nodules in a subcutaneous xenograft model. This study explores a potential PPY-PEI NZ-based anticancer agent against B-cell lymphoma.


Assuntos
Antineoplásicos , Linfoma de Células B , Linfoma , Humanos , Animais , Camundongos , Polietilenoimina/farmacologia , Polímeros , Pirróis , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfoma de Células B/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
14.
Colloids Surf B Biointerfaces ; 224: 113210, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841206

RESUMO

Reducing the cytotoxicity of cationic polymers is the major issue to their use as a gene delivery carrier. In this study, plasmids containing encoding vascular endothelial cell growth factor 165 and angiopoietin-1 were packaged with the conjugates of cationic fibroin (CSF) and polyethylenimine (PEI), instead of packaging pDNA with PEI alone, to prepare nanocomplexes (CSF+PEI)/pDNA. The complexes were loaded into a silk fibroin scaffold to enhance its function to induce microvascular network generation and dermal tissue regeneration. The results of transfecting EA.hy926 cells with the complexes in vitro showed that (CSF+PEI)/pDNA had a stronger transfection ability than PEI/pDNA. Importantly, compared with PEI as the gene carrier alone, the cell viability was significantly increased and the cytotoxicity was effectively reduced after the conjugate of CSF and PEI was used as the gene carrier. The results of angiogenesis in chick embryo chorioallantoic membranes showed that compared with scaffolds loaded with PEI/pDNA, the neovascularization ratio in scaffolds loaded with (CSF+PEI)/pDNA was significantly increased. In vivo experimental results of scaffolds implantation for full-thickness skin defects in SD rats showed that, compared with loading PEI/pDNA complex, loading (CSF+PEI)/pDNA complex in the scaffold more effectively promoted the formation of vascular network in the scaffold and accelerated the regeneration of dermal tissue. The gene delivery system established in this study has application potential not only in the regeneration of vascular-containing tissues, but also in tumor gene therapy.


Assuntos
Fibroínas , Polietilenoimina , Ratos , Embrião de Galinha , Animais , Polietilenoimina/farmacologia , Fibroínas/farmacologia , DNA/genética , Angiopoietina-1/genética , Ratos Sprague-Dawley , Plasmídeos/genética , Transfecção , Técnicas de Transferência de Genes
15.
Int J Biol Macromol ; 231: 123186, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36627034

RESUMO

To improve the antibacterial and physical properties of corn starch/chitosan films effectively, starch/chitosan/polyethyleneimine (PEI) blend films crosslinked by citric acid (labeled SCPC) with different contents (2.5 %, 5.0 %, 7.5 % and 10.0 %) were prepared by the solution casting method. The films were characterized in detail. The results showed that the addition of 3.75 % PEI improved the tensile strength and elongation at break of the starch/chitosan film simultaneously, but the thermal stability decreased. After CA was incorporated, the tensile strength and thermal stability of the films were enhanced significantly. FTIR, XRD, and 1H NMR analyses revealed strong interactions among CA, PEI and starch-chitosan. All films showed smooth and homogenous fragile cross-sections. The water vapor permeability of the film decreased overall after PEI and CA addition. Moisture uptake (MU) accelerated after PEI addition, but the balanced MU was reduced by CA cross-linking. All films showed an inhibitory effect on E. coli and S. aureus, and CA incorporation significantly improved the inhibition ability of the film. The SCPC film with 3.75 % PEI and 5.0 % CA addition has the best comprehensive properties, which endowed its application in the bioactive packaging field.


Assuntos
Quitosana , Amido , Amido/química , Quitosana/química , Zea mays/química , Polietilenoimina/farmacologia , Escherichia coli , Ácido Cítrico/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Permeabilidade , Embalagem de Alimentos
16.
ChemMedChem ; 18(3): e202200428, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542457

RESUMO

Carbapenem-resistant Enterobacteriaceae (CRE) are emerging pathogens that cause variety of severe infections. CRE evade antibiotic treatments because these bacteria produce enzymes that degrade a wide range of antibiotics including carbapenems and ß-lactams. The formation of biofilms aggravates CRE infections, especially in a wound environment. These difficulties lead to persistent infection and non-healing wounds. This creates the need for new compounds to overcome CRE antimicrobial resistance and disrupt biofilms. Recent studies in our lab show that 600 Da branched polyethyleneimine (BPEI) and its derivative PEG350-BPEI can overcome antimicrobial resistance and eradicate biofilms in methicillin-resistant S. aureus, methicillin-resistant S. epidermidis, P. aeruginosa, and E. coli. In this study, the ability of 600 Da BPEI and PEG350-BPEI to eradicate carbapenem-resistant Enterobacteriaceae bacteria and their biofilms is demonstrated. We show that both BPEI and PEG350-BPEI have anti-biofilm efficacy against CRE strains expressing Klebsiella pneumoniae carbapenemases (KPCs) and metallo-ß-lactamases (MBLs), such as New Delhi MBL (NDM-1). Furthermore, our results illustrate that BPEI affects planktonic CRE bacteria by increasing bacterial length and width from the inability to proceed with normal cell division processes. These data demonstrate the multi-functional properties of 600 Da BPEI and PEG350-BPEI to reduce biofilm formation and mitigate virulence in carbapenem-resistant Enterobacteriaceae.


Assuntos
Antibacterianos , Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae , Staphylococcus aureus Resistente à Meticilina , Polietilenoimina , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Biomassa , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Polietilenoglicóis/farmacologia , Polietilenoimina/farmacologia , Biofilmes/efeitos dos fármacos
17.
Chem Biol Drug Des ; 101(3): 489-499, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34923750

RESUMO

Antibiotic resistance is a growing concern in the medical field. Drug-susceptible infections are often treated with ß-lactam antibiotics, which bind to enzymes known as penicillin-binding proteins (PBPs). When the PBPs are disabled, the integrity of the cell wall is compromised, leading to cell lysis. Resistance renders ß-lactam antibiotics ineffective, and clinicians turn to be more effective, but often more toxic, antibiotics. An alternative approach is combining antibiotics with compounds that disable resistance mechanisms. Previously, we have shown that low-molecular-weight 600 Da branched polyethylenimine restores ß-lactam susceptibility to Gram-positive and Gram-negative pathogens with antibiotic resistance. In this study, this approach is extended to the homodimers of 600 Da BPEI that have improved potentiation properties compared to monomers of 600 Da BPEI and 1200 Da BPEI. The homodimers are synthesized by linking two 600 Da BPEI molecules with methylenebisacrylamide (MBAA). The resulting product was characterized with FTIR spectroscopy, 1 H NMR spectroscopy, checkerboard microbroth dilution assays, and cell toxicity assays. These data show that the 600 Da BPEI homodimer is more effective than 1200 Da BPEI toward the potentiation of oxacillin against methicillin-resistant Staphylococcus epidermidis and the potentiation of piperacillin against Pseudomonas aeruginosa.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Polietilenoimina/química , Polietilenoimina/farmacologia , Pseudomonas aeruginosa , Staphylococcus epidermidis , Dimerização , Monobactamas/farmacologia , beta-Lactamas/farmacologia , Testes de Sensibilidade Microbiana
18.
Macromol Biosci ; 23(1): e2200314, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200651

RESUMO

The delivery of nucleic acids relies on vectors that condense and encapsulate their cargo. Especially nonviral gene delivery systems are of increasing interest. However, low transgene expression levels and limited tolerability of these systems remain a challenge. The improvement of nucleic acid delivery using depolymerized chitosan-polyethylenimine DNA complexes (dCS-PEI/DNA) is investigated. The secore complexes are further combined with chitosan-based shells and functionalized with polyethylene glycol (PEG) and cell penetrating peptides. This modular approach allows to evaluate the effect of functional shell components on physicochemical particle characteristics and biological effects. The optimized ternary complex combines a core-dCS-linear PEI/DNA complex with a shell consisting of dCS-PEG-COOH, which results in improved nucleic acid encapsulation, cellular uptake and transfection potency in human hepatoma HuH-7cells and murine primary hepatocytes. Effects on transgene expression are confirmed in wild-type mice following retrograde intrabiliary infusion. After administration of only 100 ng complexed DNA, ternary complexes induced a high reporter gene signal for three days. It is concluded that ternary coreshell structured nanoparticles comprising functionalized chitosan can be used for in vitro andin vivo gene delivery.


Assuntos
Quitosana , Nanopartículas , Camundongos , Humanos , Animais , Quitosana/farmacologia , Quitosana/química , Polietilenoimina/farmacologia , Polietilenoimina/química , Transfecção , Técnicas de Transferência de Genes , DNA/genética , Nanopartículas/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química
19.
Macromol Biosci ; 23(1): e2200296, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189853

RESUMO

Gene delivery is now a part of the therapeutic arsenal for vaccination and treatments of inherited or acquired diseases. Polymers represent an opportunity to develop new synthetic vectors for gene transfer, with a prerequisite of improved delivery and reduced toxicity compared to existing polymers. Here, the synthesis in a two-step's procedure of linear poly(ethylenimine-b-2-isopropyl-2-oxazoline) block copolymers with the linear polyethylenimine (lPEI) block of various molar masses is reported; the molar mass of the poly(2-isopropyl-2-oxazoline) (PiPrOx) block has been set to 7 kg mol-1 . Plasmid DNA condensation is successfully achieved, and in vitro transfection efficiency of the copolymers is at least comparable to that obtained with the lPEI of same molar mass. lPEI-b-PiPrOx block copolymers are however less cytotoxic than their linear counterparts. PiPrOx can be a good alternative to PEG which is often used in drug delivery systems. The grafting of histidine moieties on the lPEI block of lPEI-b-PiPrOx does not provide any real improvement of the transfection efficiency. A weak DNA condensation is observed, due to increased steric hindrance along the lPEI backbone. The low cytotoxicity of lPEI-b-PiPrOx makes this family a good candidate for future gene delivery developments.


Assuntos
Aziridinas , Polímeros , Transfecção , DNA , Técnicas de Transferência de Genes , Polietilenoimina/farmacologia
20.
ACS Appl Mater Interfaces ; 14(45): 50507-50519, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36331408

RESUMO

A bacteria-infected wound can lead to being life-threatening and raises a great economic burden on the patient. Here, we developed polyethylenimine 1.8k (PEI1.8k) surface modified NO-releasing polyethylenimine 25k (PEI25k)-functionalized graphene oxide (GO) nanoparticles (GO-PEI25k/NO-PEI1.8k NPs) for enhanced antibacterial activity and infected wound healing via binding to the bacterial surface. In vitro antibacterial activity and in vivo wound healing efficacy in an infected wound model were evaluated compared with NO-releasing NPs (GO-PEI25k/NO NPs). Surface modification with PEI1.8k can enhance the ability of nanoparticles to adhere to bacteria. GO-PEI25k/NO-PEI1.8k NPs released NO in a sustained manner for 48 h and exhibited the highest bactericidal activity (99.99% killing) against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MRPA) without cytotoxicity to L929 mouse fibroblast cells at 0.1 mg/mL. In the MRPA-infected wound model, GO-PEI25k/NO-PEI1.8k NPs showed 87% wound size reduction while GO-PEI25k/NO NPs showed 23% wound size reduction at 9 days postinjury. Masson trichrome and hematoxylin and eosin staining revealed that GO-PEI25k/NO-PEI1.8k NPs enhanced re-epithelialization and collagen deposition, which are comparable to healthy mouse skin tissue. GO-PEI25k/NO-PEI1.8k NPs hold promise as effective antibacterial and wound healing agents.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Infecção dos Ferimentos , Camundongos , Animais , Óxido Nítrico/farmacologia , Pseudomonas aeruginosa , Polietilenoimina/farmacologia , Adesivos/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Cicatrização , Bactérias , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA