Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.015
Filtrar
1.
Discov Med ; 36(183): 655-665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665015

RESUMO

Incretin hormones, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 and 2 (GLP-1, 2), belong to the group of gastrointestinal hormones. Their actions occur through interaction with GIP and GLP-1/2 receptors, which are present in various target tissues. Apart from their well-established roles in pancreatic function and insulin regulation, incretins elicit significant effects that extend beyond the pancreas. Specifically, these hormones stimulate osteoblast differentiation and inhibit osteoclast activity, thereby promoting bone anabolism. Moreover, they play a pivotal role in bone mineralization and overall bone quality and function, making them potentially therapeutic for managing bone health. Thus, this review provides a summary of the crucial involvement of incretins in bone metabolism, influencing both bone formation and resorption processes. While existing evidence is persuasive, further studies are necessary for a comprehensive understanding of the therapeutic potential of incretins in modifying bone health.


Assuntos
Remodelação Óssea , Polipeptídeo Inibidor Gástrico , Peptídeo 1 Semelhante ao Glucagon , Peptídeo 2 Semelhante ao Glucagon , Incretinas , Humanos , Remodelação Óssea/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/metabolismo , Incretinas/uso terapêutico , Incretinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Animais , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/patologia
2.
J Endocrinol ; 261(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579777

RESUMO

Adipose tissue was once known as a reservoir for energy storage but is now considered a crucial organ for hormone and energy flux with important effects on health and disease. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted from the small intestinal K cells, responsible for augmenting insulin release, and has gained attention for its independent and amicable effects with glucagon-like peptide 1 (GLP-1), another incretin hormone secreted from the small intestinal L cells. The GIP receptor (GIPR) is found in whole adipose tissue, whereas the GLP-1 receptor (GLP-1R) is not, and some studies suggest that GIPR action lowers body weight and plays a role in lipolysis, glucose/lipid uptake/disposal, adipose tissue blood flow, lipid oxidation, and free-fatty acid (FFA) re-esterification, which may or may not be influenced by other hormones such as insulin. This review summarizes the research on the effects of GIP in adipose tissue (distinct depots of white and brown) using cellular, rodent, and human models. In doing so, we explore the mechanisms of GIPR-based medications for treating metabolic disorders, such as type 2 diabetes and obesity, and how GIPR agonism and antagonism contribute to improvements in metabolic health outcomes, potentially through actions in adipose tissues.


Assuntos
Tecido Adiposo , Polipeptídeo Inibidor Gástrico , Receptores dos Hormônios Gastrointestinais , Humanos , Polipeptídeo Inibidor Gástrico/metabolismo , Animais , Tecido Adiposo/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Glucose/metabolismo , Lipólise , Obesidade/metabolismo
3.
Peptides ; 176: 171198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527521

RESUMO

In recent years, significant progress has been made to pharmacologically combat the obesity pandemic, particularly with regard to biochemically tailored drugs that simultaneously target the receptors for glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide (GIP). But while the pharmacological benefits of GLP-1 receptor (GLP-1R) agonism are widely acknowledged, the role of the GIP system in regulating systems metabolism remains controversial. When given in adjunct to GLP-1R agonism, both agonism and antagonism of the GIP receptor (GIPR) improves metabolic outcome in preclinical and clinical studies, and despite persistent concerns about its potential obesogenic nature, there is accumulating evidence indicating that GIP has beneficial metabolic effects via central GIPR agonism. Nonetheless, despite growing recognition of the GIP system as a valuable pharmacological target, there remains great uncertainty as to where and how GIP acts in the brain to regulate metabolism, and how GIPR agonism may differ from GIPR antagonism in control of energy metabolism. In this review we highlight current knowledge on the central action of GIP, and discuss open questions related to its multifaceted biology in the brain and the periphery.


Assuntos
Metabolismo Energético , Polipeptídeo Inibidor Gástrico , Receptores dos Hormônios Gastrointestinais , Transdução de Sinais , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/agonistas , Humanos , Metabolismo Energético/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/metabolismo , Animais , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Encéfalo/metabolismo
4.
Mol Metab ; 83: 101915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492844

RESUMO

OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.


Assuntos
Peso Corporal , Ingestão de Alimentos , Polipeptídeo Inibidor Gástrico , Camundongos Knockout , Obesidade , Receptores dos Hormônios Gastrointestinais , Receptores para Leptina , Animais , Masculino , Camundongos , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Glucose/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Transdução de Sinais
5.
J Med Chem ; 67(6): 4998-5010, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38458970

RESUMO

Glucose-dependent insulinotropic peptide (GIP) is a 42-amino acid peptide hormone that regulates postprandial glucose levels. GIP binds to its cognate receptor, GIPR, and mediates metabolic physiology by improved insulin sensitivity, ß-cell proliferation, increased energy consumption, and stimulated glucagon secretion. Dipeptidyl peptidase-4 (DPP4) catalyzes the rapid inactivation of GIP within 6 min in vivo. Here, we report a molecular platform for the design of GIP analogues that are refractory to DPP4 action and exhibit differential activation of the receptor, thus offering potentially hundreds of GIP-based compounds to fine-tune pharmacology. The lead compound from our studies, which harbored a combination of N-terminal alkylation and side-chain lipidation, was equipotent and retained full efficacy at GIPR as the native peptide, while being completely refractory toward DPP4, and was resistant to trypsin. The GIP analogue identified from these studies was further evaluated in vivo and is one of the longest-acting GIPR agonists to date.


Assuntos
Polipeptídeo Inibidor Gástrico , Receptores dos Hormônios Gastrointestinais , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/química , Polipeptídeo Inibidor Gástrico/metabolismo , Insulina/metabolismo , Dipeptidil Peptidase 4/metabolismo , Peptídeo Hidrolases , Peptídeos , Endopeptidases , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/metabolismo
6.
Curr Opin Endocrinol Diabetes Obes ; 31(3): 115-121, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38511400

RESUMO

PURPOSE OF REVIEW: Various gut hormones interact with the brain through delicate communication, thereby influencing appetite and subsequent changes in body weight. This review summarizes the effects of gut hormones on appetite, with a focus on recent research. RECENT FINDINGS: Ghrelin is known as an orexigenic hormone, whereas glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), cholecystokinin (CCK), postprandial peptide YY (PYY), and oxyntomodulin (OXM) are known as anorexigenic hormones. Recent human studies have revealed that gut hormones act differently in various systems, including adipose tissue, beyond appetite and energy intake, and even involve in high-order thinking. Environmental factors including meal schedule, food contents and quality, type of exercise, and sleep deprivation also play a role in the influence of gut hormone on appetite, weight change, and obesity. Recently published studies have shown that retatrutide, a triple-agonist of GLP-1, GIP, and glucagon receptor, and orforglipron, a GLP-1 receptor partial agonist, are effective in weight loss and improving various metabolic parameters associated with obesity. SUMMARY: Various gut hormones influence appetite, and several drugs targeting these receptors have been reported to exert positive effects on weight loss in humans. Given that diverse dietary and environmental factors affect the actions of gut hormones and appetite, there is a need for integrated and largescale long-term studies in this field.


Assuntos
Regulação do Apetite , Hormônios Gastrointestinais , Obesidade , Humanos , Hormônios Gastrointestinais/metabolismo , Hormônios Gastrointestinais/fisiologia , Regulação do Apetite/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Colecistocinina/fisiologia , Colecistocinina/metabolismo , Polipeptídeo Inibidor Gástrico/fisiologia , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Peptídeo YY/metabolismo , Peptídeo YY/fisiologia , Oxintomodulina , Animais , Grelina/fisiologia , Grelina/metabolismo , Apetite/fisiologia , Apetite/efeitos dos fármacos
7.
Mol Cell Endocrinol ; 587: 112201, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494045

RESUMO

The gut plays a crucial role in metabolism by regulating the passage of nutrients, water and microbial-derived substances to the portal circulation. Additionally, it produces incretins, such as glucose-insulinotropic releasing peptide (GIP) and glucagon-like derived peptide 1 (GLP1, encoded by gcg gene) in response to nutrient uptake. We aimed to investigate whether offspring from overweight rats develop anomalies in the barrier function and incretin transcription. We observed pro-inflammatory related changes along with a reduction in Claudin-3 levels resulting in increased gut-permeability in fetuses and offspring from overweight rats. Importantly, we found decreased gip mRNA levels in both fetuses and offspring from overweight rats. Differently, gcg mRNA levels were upregulated in fetuses, downregulated in female offspring and unchanged in male offspring from overweight rats. When cultured with high glucose, intestinal explants showed an increase in gip and gcg mRNA levels in control offspring. In contrast, offspring from overweight rats did not exhibit any response in gip mRNA levels. Additionally, while females showed no response, male offspring from overweight rats did exhibit an upregulation in gcg mRNA levels. Furthermore, female and male offspring from overweight rats showed sex-dependent anomalies when orally challenged with a glucose overload, returning to baseline glucose levels after 120 min. These results open new research questions about the role of the adverse maternal metabolic condition in the programming of impairments in glucose homeostasis, enteroendocrine function and gut barrier function in the offspring from overweight mothers and highlight the importance of a perinatal maternal healthy metabolism.


Assuntos
Polipeptídeo Inibidor Gástrico , Sobrepeso , Ratos , Masculino , Feminino , Animais , Sobrepeso/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Incretinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Peptídeos/metabolismo , Homeostase , RNA Mensageiro/genética
8.
Peptides ; 176: 171200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555054

RESUMO

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are peptide hormones produced by enteroendocrine cells in the small intestine. Despite being produced in the gut, the leveraging of their role in potentiating glucose-stimulated insulin secretion, also known as the incretin effect, has distracted from discernment of direct intestinal signaling circuits. Both preclinical and clinical evidence have highlighted a role for the incretins in inflammation. In this review, we highlight the discoveries of GLP-1 receptor (GLP-1R)+ natural (TCRαß and TCRγδ) and induced (TCRαß+CD4+ cells and TCRαß+CD8αß+) intraepithelial lymphocytes. Both endogenous signaling and pharmacological activation of GLP-1R impact local and systemic inflammation, the gut microbiota, whole-body metabolism, as well as the control of GLP-1 bioavailability. While GIPR signaling has been documented to impact hematopoiesis, the impact of these bone marrow-derived cells in gut immunology is not well understood. We uncover gaps in the literature of the evaluation of the impact of sex in these GLP-1R and GIP receptor (GIPR) signaling circuits and provide speculations of the maintenance roles these hormones play within the gut in the fasting-refeeding cycles. GLP-1R agonists and GLP-1R/GIPR agonists are widely used as treatments for diabetes and weight loss, respectively; however, their impact on gut homeostasis has not been fully explored. Advancing our understanding of the roles of GLP-1R and GIPR signaling within the gut at homeostasis as well as metabolic and inflammatory diseases may provide targets to improve disease management.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Inflamação , Receptores dos Hormônios Gastrointestinais , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Inflamação/metabolismo , Inflamação/imunologia , Animais , Imunomodulação , Microbioma Gastrointestinal/imunologia , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Transdução de Sinais
9.
Physiology (Bethesda) ; 39(3): 142-156, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353610

RESUMO

The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Adulto , Humanos , Adolescente , Incretinas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Obesidade/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico
10.
Peptides ; 174: 171168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320643

RESUMO

The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Receptores dos Hormônios Gastrointestinais , Humanos , Incretinas/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Glicemia/metabolismo , Duodeno/metabolismo , Peptídeos/uso terapêutico , Células Enteroendócrinas/metabolismo , Receptores Acoplados a Proteínas G , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
11.
Peptides ; 175: 171179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360354

RESUMO

Glucagon-like peptide-1 receptor (GLP1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are transmembrane receptors involved in insulin, glucagon and somatostatin secretion from the pancreatic islet. Therapeutic targeting of GLP1R and GIPR restores blood glucose levels in part by influencing beta cell, alpha cell and delta cell function. Despite the importance of the incretin-mimetics for diabetes therapy, our understanding of GLP1R and GIPR expression patterns and signaling within the islet remain incomplete. Here, we present the evidence for GLP1R and GIPR expression in the major islet cell types, before addressing signaling pathway(s) engaged, as well as their influence on cell survival and function. While GLP1R is largely a beta cell-specific marker within the islet, GIPR is expressed in alpha cells, beta cells, and (possibly) delta cells. GLP1R and GIPR engage Gs-coupled pathways in most settings, although the exact outcome on hormone release depends on paracrine communication and promiscuous signaling. Biased agonism away from beta-arrestin is an emerging concept for improving therapeutic efficacy, and is also relevant for GLP1R/GIPR dual agonism. Lastly, dual agonists exert multiple effects on islet function through GIPR > GLP1R imbalance, increased GLP1R surface expression and cAMP signaling, as well as beneficial alpha cell-beta cell-delta cell crosstalk.


Assuntos
Células Secretoras de Glucagon , Receptores dos Hormônios Gastrointestinais , Células Secretoras de Somatostatina/metabolismo , Células Secretoras de Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Transdução de Sinais
12.
J Mol Endocrinol ; 72(4)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240302

RESUMO

Enteroendocrine cells located along the gastrointestinal epithelium sense different nutrients/luminal contents that trigger the secretion of a variety of gut hormones with different roles in glucose homeostasis and appetite regulation. The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are involved in the regulation of insulin secretion, appetite, food intake and body weight after their nutrient-induced secretion from the gut. GLP-1 mimetics have been developed and used in the treatment of type 2 diabetes mellitus and obesity. Modulating the release of endogenous intestinal hormones may be a promising approach for the treatment of obesity and type 2 diabetes without surgery. For that reason, current understanding of the cellular mechanisms underlying intestinal hormone secretion will be the focus of this review. The mechanisms controlling hormone secretion depend on the nature of the stimulus, involving a variety of signalling pathways including ion channels, nutrient transporters and G-protein-coupled receptors.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Humanos , Incretinas/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Insulina/metabolismo
13.
J Biomol Struct Dyn ; 42(6): 2859-2871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37254302

RESUMO

Management of type 2 diabetes mellitus (T2DM) using dipeptidyl peptidase IV (DPP IV) inhibitors is gaining precedence as this enzyme plays an indispensable role in cleaving and inactivating peptides, such as glucagon-like peptide-1 (GLP-1), incretin hormones, and glucose-dependent insulinotropic polypeptide (GIP). There are several DPP IV inhibitors used to treat T2DM, but limited by side effects such as disturbed GIT, flu-like symptoms, etc. Thus, there is an urgent need for the development of novel and better DPP IV inhibitors for the management of the same. In the present study, we investigated the effect of new boronic acid-based thiazole compounds as DPP IV inhibitors. We used substituted anilines that were progressively modified through a multi-step synthesis and then chemically characterised. These molecules have good binding affinity and molecular interactions at the active site of the DPP IV enzyme. Two boronic acid-based molecules, i.e. PC06R58 and PC06R108, were used for the assessment of their in-vitro enzymatic activities. Both molecules (PC06108 and PC06R58) exhibited potent uncompetitive DPP IV enzyme inhibition at two different concentrations of 90.9 and 15.6 nM, respectively, compared to sitagliptin having an IC50 of 17.3 nM. Furthermore, the oral glucose tolerance test suggested significantly reduced blood glucose levels at 20 mg/kg of the body weight upon administration of PC06R58 and PC06R108 molecules in rats after glucose ingestion (2 g/kg of the body weight). The compounds showed satisfactory DPP IV inhibition. Furthermore, DPP IV inhibitory activity and acceptable pre-ADME/Tox profile indicate it is a lead compound in this novel class of DPP IV inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Hiperglicemia , Ratos , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Glucose , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hiperglicemia/induzido quimicamente , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/uso terapêutico , Peso Corporal , Glicemia/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
14.
Eur J Pharm Sci ; 192: 106644, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981049

RESUMO

INTRODUCTION: SY-009 produces a hypoglycemic effect via inhibiting sodium/glucose cotransporter 1 (SGLT1) in type 2 diabetes mellitus (T2DM) patients. This randomized, double-blind, placebo-controlled, and multiple-dose escalation clinical trial aimed to evaluate the pharmacokinetic and pharmacodynamical characteristics as well as the safety and tolerability of SY-009 in T2DM patients. METHOD: Fifty T2DM patients were randomized into experimental and placebo groups, and hospitalized for 9 days managed with a unified diet and rest management. Subjects were given SY-009 or placebo from day 1 to day 7 at different frequencies and dosages. Single dose cohort was defined as the first dose on day 1 and multiple dose cohort included all the dose from day 1 to 7. Blood samples were collected for pharmacokinetic analysis. Mixed meal tolerance tests were performed. Blood samples were collected to determine glucose, C-peptide, insulin, glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP). RESULTS: PK parameters were not obtained because blood SY-009 concentrations were below the limit of quantitation in all subjects. SY-009 decreased the postprandial glucose. Blood glucose was controlled within 4 hours after taking the drug. Short-term administration of SY-009 (7 days) had no significant effects on fasting glucose but reduced the secretion of C-peptide, insulin, and GIP and increased GLP-1 secretion. The most common adverse event was gastrointestinal disorder manifesting abdominal pain, diarrhea, and bloating. CONCLUSION: Plasma exposure of SY-009 and its metabolites was fairly low in T2DM patients at doses of 1.0-4.0 mg. SY-009 reduced postprandial glucose, C-peptide, and insulin levels, showing relative safety and tolerability in the dose range of 1.0-4.0 mg. TRIALS REGISTRATION: ClinicalTrials.gov Identifier: NCT04345107.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo C/uso terapêutico , Hipoglicemiantes , Glicemia , Insulina/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon , Glucose , Polipeptídeo Inibidor Gástrico/efeitos adversos , Polipeptídeo Inibidor Gástrico/metabolismo , Método Duplo-Cego
15.
Diabetes Res Clin Pract ; 207: 111084, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154534

RESUMO

AIM: Intra-pancreatic fat deposition (IPFD) while hypothesised to impair beta-cell function, its impact on alpha-cells remains unclear. We evaluated the association between IPFD and markers of pancreatic cells function using whey protein. METHODS: Twenty overweight women with impaired fasting glucose (IFG) and low or high IPFD (<4.66% vs ≥4.66%) consumed 3 beverage treatments: 0 g (water control), 12.5 g (low-dose) and 50.0 g (high-dose) whey protein, after an overnight fast, in randomised order. Blood glucose, insulin, C-peptide, glucagon, gastric-inhibitory polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and amylin were analysed postprandially over 4 h. Incremental area-under-the-curve (iAUC), incremental maximum concentration (iCmax), and time to maximum concentration (Tmax) for these were compared between IPFD groups using repeated measures linear mixed models, also controlled for age (pcov). RESULTS: iAUC and iCmax glucose and insulin while similar between the two IPFD groups, high IPFD and ageing contributed to higher postprandial glucagon (iAUC: p = 0.012; pcov = 0.004; iCmax: p = 0.069; pcov = 0.021) and GLP-1 (iAUC: p = 0.006; pcov = 0.064; iCmax: p = 0.011; pcov = 0.122) concentrations. CONCLUSION: In our cohort, there was no evidence that IPFD impaired protein-induced insulin secretion. Conversely, IPFD may be associated with increased protein-induced glucagon secretion, a novel observation which warrants further investigation into its relevance in the pathogenesis of dysglycaemia and type-2 diabetes.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glucagon , Feminino , Humanos , Glucagon/metabolismo , Proteínas do Soro do Leite , Sobrepeso , Insulina , Glicemia/metabolismo , Glucose/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Jejum , Ingestão de Alimentos
16.
Scand J Clin Lab Invest ; 83(8): 591-598, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127365

RESUMO

BACKGROUND: Plasma concentrations of glucagon, GLP-1 and GIP are reported in numerous clinical trials as outcome measures but preanalytical guidelines are lacking. We addressed the impact of commonly used blood containers in metabolic research on measurements of glucagon, GLP-1 and GIP in humans. METHODS: Seventeen overweight individuals were subjected to an overnight fast followed by an intravenous infusion of amino acids to stimulate hormonal secretion. Blood was sampled into five containers: EDTA-coated tubes supplemented with DMSO (control), a neprilysin inhibitor, aprotinin (a kallikrein inhibitor) or a DPP-4 inhibitor, and P800 tubes. Plasma was kept on ice before and after centrifugation and stored at -80 Celsius until batch analysis using validated sandwich ELISAs or radioimmunoassays (RIA). RESULTS: Measures of fasting plasma glucagon did not depend on sampling containers, whether measured by ELISA or RIA. Amino acid-induced hyperglucagonemia was numerically higher when blood was collected into P800 tubes or tubes with aprotinin. The use of p800 tubes resulted in higher concentrations of GLP-1 by RIA compared to control tubes but not for measurements with sandwich ELISA. Plasma concentrations of GIP measured by ELISA were higher in control tubes and negatively affected by P800 and the addition of aprotinin. CONCLUSIONS: The choice of blood containers impacts on measurements of plasma concentrations of glucagon, GLP-1 and GIP, and based on this study, we recommend using EDTA-coated tubes without protease inhibitors or P800 tubes for measurements of glucagon, GLP-1 and GIP in clinical trials.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glucagon , Humanos , Glucagon/metabolismo , Aprotinina , Ácido Edético , Polipeptídeo Inibidor Gástrico/metabolismo , Glicemia/análise , Insulina , Fragmentos de Peptídeos
17.
Nat Metab ; 5(12): 2075-2085, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37946085

RESUMO

The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical1-3 and clinical studies4,5, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake3,6-8; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified. Here, we report that long-acting GIPR agonists and GIPR-GLP-1R co-agonists decrease body weight and food intake via inhibitory GABAergic neurons. We show that acyl-GIP decreases body weight and food intake in male diet-induced obese wild-type mice, but not in mice with deletion of Gipr in Vgat(also known as Slc32a1)-expressing GABAergic neurons (Vgat-Gipr knockout). Whereas the GIPR-GLP-1R co-agonist MAR709 leads, in male diet-induced obese wild-type mice, to greater weight loss and further inhibition of food intake relative to a pharmacokinetically matched acyl-GLP-1 control, this superiority over GLP-1 vanishes in Vgat-Gipr knockout mice. Our data demonstrate that long-acting GIPR agonists crucially depend on GIPR signaling in inhibitory GABAergic neurons to decrease body weight and food intake.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Obesidade/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Acoplados a Proteínas G , Glucose , Neurônios GABAérgicos/metabolismo , Ingestão de Alimentos
18.
Mol Metab ; 78: 101831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925022

RESUMO

OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) has a role in controlling postprandial metabolic tone. In humans, a GIP receptor (GIPR) variant (Q354, rs1800437) is associated with a lower body mass index (BMI) and increased risk for Type 2 Diabetes. To better understand the impacts of GIPR-Q354 on metabolism, it is necessary to study it in an isogeneic background to the predominant GIPR isoform, E354. To accomplish this objective, we used CRISPR-CAS9 editing to generate mouse models of GIPR-Q354 and GIPR-E354. Here we characterize the metabolic effects of GIPR-Q354 variant in a mouse model (GIPR-Q350). METHODS: We generated the GIPR-Q350 mice for in vivo studies of metabolic impact of the variant. We isolated pancreatic islets from GIPR-Q350 mice to study insulin secretion ex vivo. We used a ß-cell cell line to understand the impact of the GIPR-Q354 variant on the receptor traffic. RESULTS: We found that female GIPR-Q350 mice are leaner than littermate controls, and male GIPR-Q350 mice are resistant to diet-induced obesity, in line with the association of the variant with reduced BMI in humans. GIPR-Q350 mice of both sexes are more glucose tolerant and exhibit an increased sensitivity to GIP. Postprandial GIP levels are reduced in GIPR-Q350 mice, revealing feedback regulation that balances the increased sensitivity of GIP target tissues to secretion of GIP from intestinal endocrine cells. The increased GIP sensitivity is recapitulated ex vivo during glucose stimulated insulin secretion assays in islets. Generation of cAMP in islets downstream of GIPR activation is not affected by the Q354 substitution. However, post-activation traffic of GIPR-Q354 variant in ß-cells is altered, characterized by enhanced intracellular dwell time and increased localization to the Trans-Golgi Network (TGN). CONCLUSIONS: Our data link altered intracellular traffic of the GIPR-Q354 variant with GIP control of metabolism. We propose that this change in spatiotemporal signaling underlies the physiologic effects of GIPR-Q350/4 and GIPR-E350/4 in mice and humans. These findings contribute to a more complete understanding of the impact of GIPR-Q354 variant on glucose homeostasis that could perhaps be leveraged to enhance pharmacologic targeting of GIPR for the treatment of metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Masculino , Animais , Feminino , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Glucose/metabolismo , Homeostase
19.
Proc Natl Acad Sci U S A ; 120(41): e2306145120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792509

RESUMO

Glucose-dependent insulinotropic polypeptide receptor (GIPR) is a potential drug target for metabolic disorders. It works with glucagon-like peptide-1 receptor and glucagon receptor in humans to maintain glucose homeostasis. Unlike the other two receptors, GIPR has at least 13 reported splice variants (SVs), more than half of which have sequence variations at either C or N terminus. To explore their roles in endogenous peptide-mediated GIPR signaling, we determined the cryoelectron microscopy (cryo-EM) structures of the two N terminus-altered SVs (referred as GIPR-202 and GIPR-209 in the Ensembl database, SV1 and SV2 here, respectively) and investigated the outcome of coexpressing each of them in question with GIPR in HEK293T cells with respect to ligand binding, receptor expression, cAMP (adenosine 3,5-cyclic monophosphate) accumulation, ß-arrestin recruitment, and cell surface localization. It was found that while both N terminus-altered SVs of GIPR neither bound to the hormone nor elicited signal transduction per se, they suppressed ligand binding and cAMP accumulation of GIPR. Meanwhile, SV1 reduced GIPR-mediated ß-arrestin 2 responses. The cryo-EM structures of SV1 and SV2 showed that they reorganized the extracellular halves of transmembrane helices 1, 6, and 7 and extracellular loops 2 and 3 to adopt a ligand-binding pocket-occupied conformation, thereby losing binding ability to the peptide. The results suggest a form of signal bias that is constitutive and ligand-independent, thus expanding our knowledge of biased signaling beyond pharmacological manipulation (i.e., ligand specific) as well as constitutive and ligand-independent (e.g., SV1 of the growth hormone-releasing hormone receptor).


Assuntos
Polipeptídeo Inibidor Gástrico , Receptores dos Hormônios Gastrointestinais , Humanos , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Ligantes , Microscopia Crioeletrônica , Células HEK293 , Transdução de Sinais/fisiologia , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/química , Receptores dos Hormônios Gastrointestinais/metabolismo , Peptídeos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
20.
Am J Physiol Endocrinol Metab ; 325(5): E595-E609, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729025

RESUMO

Simultaneous activation of the incretin G-protein-coupled receptors (GPCRs) via unimolecular dual-receptor agonists (UDRA) has emerged as a new therapeutic approach for type 2 diabetes. Recent studies also advocate triple agonism with molecules also capable of binding the glucagon receptor. In this scoping review, we discuss the cellular mechanisms of action (MOA) underlying the actions of these novel and therapeutically important classes of peptide receptor agonists. Clinical efficacy studies of several UDRAs have demonstrated favorable results both as monotherapies and when combined with approved hypoglycemics. Although the additive insulinotropic effects of dual glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic peptide receptor (GIPR) agonism were anticipated based on the known actions of either glucagon-like peptide-1 (GLP-1) or glucose-dependent insulinotropic peptide (GIP) alone, the additional benefits from GCGR were largely unexpected. Whether additional synergistic or antagonistic interactions among these G-protein receptor signaling pathways arise from simultaneous stimulation is not known. The signaling pathways affected by dual- and tri-agonism require more trenchant investigation before a comprehensive understanding of the cellular MOA. This knowledge will be essential for understanding the chronic efficacy and safety of these treatments.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Incretinas/farmacologia , Incretinas/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores de Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA