Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
FASEB J ; 38(13): e23747, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924451

RESUMO

In this study, fibrinolytic protease was isolated and purified from Perinereis aibuhitensis Grub, and the extraction process was optimized. The properties of the enzyme, such as the amino acid composition, thermal stability, optimal temperature, and pH, were investigated. After detoxification, proteins collected from fresh Clamworm (Perinereis aibuhitensis Grub) were concentrated via ammonium sulfate precipitation. The crude protease was purified using gel filtration resin (Sephadex G-100), anion exchange resin (DEAE-Sepharose FF), and hydrophobic resin (Phenyl Sepharose 6FF). The molecular weight of the protease was determined by polyacrylamide gel electrophoresis (SDS-PAGE). The optimum temperature and optimum pH of the protease were determined. The activity of crude protease in the 40-60% salt-out section was the highest, reaching 467.53 U/mg. The optimal process for purifying crude protein involved the application of DEAE-Sepharose FF and Phenyl Sepharose 6FF, which resulted in the isolation of a single protease known as Asp60-D1-P1 with the highest fibrinolytic activity; additionally, the enzyme activity was measured at 3367.76 U/mg. Analysis by Native-PAGE and SDS-PAGE revealed that the molecular weight of Asp60-D1-P1 was 44.5 kDa, which consisted of two subunits with molecular weights of 6.5 and 37.8 kDa, respectively. The optimum temperature for Asp60-D1-P1 was 40°C, and the optimal pH was 8.0.


Assuntos
Fibrinolisina , Animais , Concentração de Íons de Hidrogênio , Fibrinolisina/metabolismo , Fibrinolisina/isolamento & purificação , Poliquetos/enzimologia , Temperatura , Peso Molecular , Estabilidade Enzimática , Metais/farmacologia , Eletroforese em Gel de Poliacrilamida , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Fibrinolíticos/metabolismo
2.
J Inorg Biochem ; 238: 112020, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272837

RESUMO

Dehaloperoxidase (DHP) from the marine polychaete Amphitrite ornata is a multifunctional enzyme that possesses peroxidase, peroxygenase, oxidase and oxygenase activities. Herein, we investigated the reactivity of DHP B with bisphenol A (BPA) and related compounds (bisphenol E, bisphenol F, tetrachlorobisphenol A, 2,2'-biphenol, 3,3'-biphenol, 4,4'-biphenol, and 3,3'-dibromo-4,4'-biphenol). As a previously unknown substrate for DHP B, BPA (as a representative substrate) is an endocrine disruptor widely used in polycarbonate and epoxy resins, thus resulting in human exposure. Reactivity studies with these substrates were investigated using high performance liquid chromatography (HPLC), and their corresponding oxidation products were determined by mass spectrometry (GC-MS/ LC-MS). BPA undergoes oxidation in the presence of DHP B and hydrogen peroxide yielding two cleavage products (4-isopropenylphenol and 4-(2-hydroxypropan-2-yl)phenol), and oligomers with varying degrees of oxidation. 18O-labeling studies confirmed that the O-atom incorporated into the products was derived exclusively from water, consistent with substrate oxidation via a peroxidase-based mechanism. The X-ray crystal structures of DHP bound with bisphenol E (1.48 Å), bisphenol F (1.75 Å), 2,2'-biphenol (1.90 Å) and 3,3'-biphenol (1.30 Å) showed substrate binding sites are in the distal pocket of the heme cofactor, similar to other previously studied DHP substrates. Stopped-flow UV-visible spectroscopy was utilized to investigate the mechanistic details and enzyme oxidation states during substrate turnover, and a reaction mechanism is proposed. The data presented here strongly suggest that DHP B can catalyze the oxidation of bisphenols and biphenols, thus providing evidence of how infaunal invertebrates can contribute to the biotransformation of these marine pollutants.


Assuntos
Hemoglobinas , Peroxidases , Fenóis , Poliquetos , Hemoglobinas/química , Oxirredutases , Peroxidases/metabolismo , Poliquetos/enzimologia
3.
Biotechnol Prog ; 37(1): e3075, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32869526

RESUMO

Dehaloperoxidase (DHP) catalyzes detoxifying halophenols. It is a heme-containing enzyme using H2 O2 as the oxidant. Heme bleaching from the active site is of great concern. In addition, the interference of DHP by H2 O2 leads to the inactivation of the enzyme. To solve these two problems, DHP is coordinated to Zn (II) in PBS buffer to form a biomineralized composite (DHP&Zn-CP). DHP&Zn-CP was characterized by measuring SEM and confocal images, as well as energy dispersive X-ray spectrometry mapping. Fluorescence spectra demonstrated that DHP&Zn-CP can prevent heme bleaching. Two-dimensional FTIR spectra were measured, dynamically providing insight into the structural change of DHP along the coordination process. Raman spectra were performed to analyze the structural change. The optical spectra confirmed that the forming of DHP&Zn-CP had a little effect on the structures of DHP. For the dehalogenation of 2,4,6-trichlorophenol, DHP&Zn-CP can tolerate the presence of H2 O2 and is resistant to the interference by H2 O2 . The catalytic efficiency of DHP&Zn-CP is much higher than that of free DHP.


Assuntos
Clorofenóis/química , Heme/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Peróxido de Hidrogênio/química , Peroxidases/química , Peroxidases/metabolismo , Zinco/química , Animais , Catálise , Oxidantes/química , Poliquetos/enzimologia , Zinco/metabolismo
4.
BMC Evol Biol ; 20(1): 117, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928118

RESUMO

BACKGROUND: Nervous system development is an interplay of many processes: the formation of individual neurons, which depends on whole-body and local patterning processes, and the coordinated growth of neurites and synapse formation. While knowledge of neural patterning in several animal groups is increasing, data on pioneer neurons that create the early axonal scaffold are scarce. Here we studied the first steps of nervous system development in the annelid Malacoceros fuliginosus. RESULTS: We performed a dense expression profiling of a broad set of neural genes. We found that SoxB expression begins at 4 h postfertilization, and shortly later, the neuronal progenitors can be identified at the anterior and the posterior pole by the transient and dynamic expression of proneural genes. At 9 hpf, the first neuronal cells start differentiating, and we provide a detailed description of axonal outgrowth of the pioneer neurons that create the primary neuronal scaffold. Tracing back the clonal origin of the ventral nerve cord pioneer neuron revealed that it is a descendant of the blastomere 2d (2d221), which after 7 cleavages starts expressing Neurogenin, Acheate-Scute and NeuroD. CONCLUSIONS: We propose that an anterior and posterior origin of the nervous system is ancestral in annelids. We suggest that closer examination of the first pioneer neurons will be valuable in better understanding of nervous system development in spirally cleaving animals, to determine the potential role of cell-intrinsic properties in neuronal specification and to resolve the evolution of nervous systems.


Assuntos
Neurogênese , Neurônios/citologia , Poliquetos/citologia , Animais , Poliquetos/enzimologia
5.
Sci Rep ; 9(1): 13015, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506523

RESUMO

The fireworms Odontosyllis spp. are globally distributed and well-known for their characteristic and fascinating mating behavior, with secreted mucus emitting bluish-green light. However, knowledge about the molecules involved in the light emission are still scarce. The fireworms are believed to emit light with a luciferin-luciferase reaction, but biochemical evidence of the luciferase is established for only one species living in Japan and no information is available for its luciferin structure. In this study, we identified a luciferase gene from a related Puerto Rican fireworm. We identified eight luciferase-like genes in this Puerto Rican fireworm, finding amino acid identities between Japanese and Puerto Rican luciferase-like genes to be less than 60%. We confirmed cross reactivity of extracts of the Japanese fireworm luciferin with a recombinant Puerto Rican luciferase (PR1). The emission spectrum of recombinant PR1 was similar to the crude extract of the native luciferase, suggesting that PR1 is a functional luciferase of this Puerto Rican fireworm. Our results indicate that the molecular mechanism of luminescence is widely conserved among fireworms.


Assuntos
Luciferases/metabolismo , Luminescência , Poliquetos/enzimologia , Poliquetos/genética , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Japão , Luciferases/genética , Poliquetos/metabolismo , Porto Rico , Proteínas Recombinantes/genética , Homologia de Sequência
6.
Mar Pollut Bull ; 144: 275-286, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31179997

RESUMO

In this study the Polychaeta Marphysa sanguinea, was tested to investigate the impact of metal pollution on the environmental state of a coastal Mediterranean lagoon, Tunis Lagoon (Tunisia). A multi-biomarker approach comprising glutathione-stransferase, cyclooxygenase, lysozyme activity, and lipid class composition of the Polychaeta was employed on a seasonal basis in the present investigation. The multivariate statistical approach (principal component analysis and Pearson correlation) clearly demonstrated different spatial patterns in biomarker values and lipid class concentrations. The phospholipids were the dominant lipid class in M. sanguinea, with the highest value found at the control station. The impact of pollution was most clearly observed on the main storage lipid class, triacylglycerol, which was lowest in the most impacted sites. Our work suggests that M. sanguinea can be used in warmer Mediterranean costal habitats as a sentinel species of contaminated ecosystems.


Assuntos
Monitoramento Ambiental/métodos , Lipídeos/química , Metais Pesados/análise , Poliquetos/efeitos dos fármacos , Oligoelementos/análise , Poluentes Químicos da Água/análise , Animais , Antioxidantes/metabolismo , Ecotoxicologia , Biomarcadores Ambientais/efeitos dos fármacos , Mar Mediterrâneo , Metais Pesados/toxicidade , Poliquetos/enzimologia , Poliquetos/metabolismo , Estações do Ano , Análise Espaço-Temporal , Oligoelementos/toxicidade , Tunísia , Poluentes Químicos da Água/toxicidade
7.
Bull Environ Contam Toxicol ; 102(3): 310-315, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30688999

RESUMO

The present study assessed biochemical responses as sublethal endpoints in the polychaete Armandia agilis exposed to contaminated sediments to in order to assess its potential use as a test organism. Sediment samples from several locations at a dredging site were obtained and used in whole-sediment exposures. Samples were tested with A. agilis to determine the 10-day toxicity of the 100% sample and the enzymatic activity of catalase (CAT), glutathione-S-transferase (GST) and acetylcholinesterase (AChE) biochemical measurements made in whole-body homogenates of a subset of the surviving organisms. Biochemical responses reported in A. agilis were not statistically different from the reference site sediment, however, the integrated analysis demonstrated that contaminants bound to sediment samples influenced the sublethal effects.


Assuntos
Sedimentos Geológicos/química , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Catalase/metabolismo , Monitoramento Ambiental/métodos , Glutationa Transferase/metabolismo , Poliquetos/enzimologia , Testes de Toxicidade
8.
Biochemistry ; 57(30): 4455-4468, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29949340

RESUMO

The dehaloperoxidase-hemoglobin (DHP) from the terebellid polychaete Amphitrite ornata is a multifunctional hemoprotein that catalyzes the oxidation of a wide variety of substrates, including halo/nitrophenols, haloindoles, and pyrroles, via peroxidase and/or peroxygenase mechanisms. To probe whether substrate substituent effects can modulate enzyme activity in DHP, we investigated its reactiviy against a panel of o-guaiacol substrates given their presence (from native/halogenated and non-native/anthropogenic sources) in the benthic environment that A. ornata inhabits. Using biochemical assays supported by spectroscopic, spectrometric, and structural studies, DHP was found to catalyze the H2O2-dependent oxidative dehalogenation of 4-haloguaiacols (F, Cl, and Br) to 2-methoxybenzoquinone (2-MeOBQ). 18O labeling studies confirmed that O atom incorporation was derived exclusively from water, consistent with substrate oxidation via a peroxidase-based mechanism. The 2-MeOBQ product further reduced DHP to its oxyferrous state, providing a link between the substrate oxidation and O2 carrier functions of DHP. Nonnative substrates resulted in polymerization of the initial substrate with varying degrees of oxidation, with 2-MeOBQ identified as a minor product. When viewed alongside the reactivity of previously studied phenolic substrates, the results presented here show that simple substituent effects can serve as functional switches between peroxidase and peroxygenase activities in this multifunctional catalytic globin. More broadly, when recent findings on DHP activity with nitrophenols and azoles are included, the results presented here further demonstrate the breadth of heterocyclic compounds of anthropogenic origin that can potentially disrupt marine hemoglobins or function as environmental stressors, findings that may be important when assessing the environmental impact of these pollutants (and their metabolites) on aquatic systems.


Assuntos
Guaiacol/metabolismo , Hemoglobinas/metabolismo , Peroxidases/metabolismo , Poliquetos/enzimologia , Animais , Cristalografia por Raios X , Guaiacol/análogos & derivados , Halogenação , Hemoglobinas/química , Peróxido de Hidrogênio/metabolismo , Modelos Moleculares , Oxirredução , Peroxidases/química , Poliquetos/química , Poliquetos/metabolismo , Especificidade por Substrato
9.
Biochimie ; 150: 37-47, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29730302

RESUMO

Multi-domain inhibitors capable to block the activity of different classes of proteases are not very common in nature. However, these kinds of molecules are attractive systems for biomedical or biotechnological applications, where two or more different targets need to be neutralized. SmCI, the Sabellastarte magnifica Carboxypeptidase Inhibitor, is a tri-domain BPTI-Kunitz inhibitor capable to inhibit serine proteases and A-like metallocarboxypeptidases. The BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases. SmCI is therefore, the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. The X-ray structure of the SmCI-carboxypeptidase A complex previously obtained by us, revealed that this enzyme interacts with SmCI N-tail. In the complex, the reactive loops for serine protease inhibition remain fully exposed to the solvent in each domain, suggesting SmCI can simultaneously interact with multiple serine proteases. The twofold goals of this study were: i) to establish serine proteases-SmCI binding stoichiometry, given that the inhibitor is comprised of three potential binding domains; and ii) to determine whether or not SmCI can simultaneously bind both classes of enzymes, to which it binds individually. Our experimental approach included a variety of techniques for the study of protein-protein interactions, using as model enzymes pancreatic trypsin, elastase and carboxypeptidase A. In particular, we combined information obtained from gel filtration chromatography, denaturing electrophoresis, nuclear magnetic resonance spectroscopy and enzyme inhibition assays. Our results show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, we demonstrated that SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes.


Assuntos
Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/metabolismo , Poliquetos/enzimologia , Inibidores de Proteases/química , Serina Proteases/metabolismo , Animais , Cinética , Espectroscopia de Ressonância Magnética , Tripsina/química , Tripsina/metabolismo
10.
Biochem Biophys Res Commun ; 502(3): 318-323, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29792858

RESUMO

Odontosyllis undecimdonta is a marine syllid polychaete that produces bright internal and exuded bioluminescence. Despite over fifty years of biochemical investigation into Odontosyllis bioluminescence, the light-emitting small molecule substrate and catalyzing luciferase protein have remained a mystery. Here we describe the discovery of a bioluminescent protein fraction from O. undecimdonta, the identification of the luciferase using peptide and RNA sequencing, and the in vitro reconstruction of the bioluminescence reaction using highly purified O. undecimdonta luciferin and recombinant luciferase. Lastly, we found no identifiably homologous proteins in publicly available datasets. This suggests that the syllid polychaetes contain an evolutionarily unique luciferase among all characterized luminous taxa.


Assuntos
Luciferases/química , Luciferases/metabolismo , Poliquetos/enzimologia , Sequência de Aminoácidos , Animais , Evolução Molecular , Japão , Luciferases/genética , Luminescência , Poliquetos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
11.
Mar Pollut Bull ; 129(1): 81-85, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29680571

RESUMO

Identification of contamination in estuarine ecosystems that are impacted by anthropogenic pressures, such as the Seine estuary, is difficult to determine without considering the role environmental variation plays on the end points selected. Currently, there is interest in identifying methods in which the influence of confounding factors can be described and accounted for. In this context, the aim of this study was to define a baseline assessment criteria (BAC) for enzymatic biomarkers in ragworms (Hediste diversicolor) collected in a reference site (Authie). The model took into consideration the weight, temperature and salinity of the site. Values collected in the Seine estuary were analyzed with the model to determine if differences between the sites could potentially be due to contamination or were explained by environmental variation. In general, biomarker responses from the Seine estuary fell within the range of BAC, suggesting that environmental variation could explain some of the results.


Assuntos
Biomarcadores/análise , Monitoramento Ambiental/métodos , Estuários , Poliquetos/enzimologia , Rios/química , Poluentes Químicos da Água/análise , Animais , Ecossistema , França , Modelos Teóricos , Poliquetos/efeitos dos fármacos , Salinidade
12.
J Inorg Biochem ; 181: 65-73, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29407909

RESUMO

Dehaloperoxidase-hemoglobin is the first hemoglobin identified with biologically-relevant oxidative functions, which include peroxidase, peroxygenase and oxidase activities. Herein we report a study of the protein backbone dynamics of DHP using heteronuclear NMR relaxation methods and molecular dynamics (MD) simulations to address the role of protein dynamics in switching from one function to another. The results show that DHP's backbone helical regions and turns have average order parameters of S2 = 0.87 ±â€¯0.03 and S2 = 0.76 ±â€¯0.08, respectively. Furthermore, DHP is primarily a monomer in solution based on the overall tumbling correlation time τm is 9.49 ±â€¯1.65 ns calculated using the prolate diffusion tensor model in the program relax. A number of amino acid residues have significant Rex using the Lipari-Szabo model-free formalism. These include Lys3, Ile6, Leu13, Gln18, Arg32, Ser48, Met49, Thr56, Phe60, Arg69, Thr71 Cys73, Ala77, Asn81, Gly95, Arg109, Phe115, Leu127 and Met136, which may experience slow conformational motions on the microseconds-milliseconds time scale according to the model. Caution should be used when the model contains >4 fitting parameters. The program caver3.0 was used to identify tunnels inside DHP obtained from MD simulation snapshots that are consistent with the importance of the Xe binding site, which is located at the central intersection of the tunnels. These tunnels provide diffusion pathways for small ligands such as O2, H2O and H2O2 to enter the distal pocket independently of the trajectory of substrates and inhibitors, both of which are aromatic molecules.


Assuntos
Hemoglobinas/metabolismo , Modelos Moleculares , Peroxidases/metabolismo , Poliquetos/enzimologia , Algoritmos , Animais , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Hemoglobinas/química , Hemoglobinas/genética , Histidina/química , Histidina/genética , Histidina/metabolismo , Cinética , Ligantes , Simulação de Dinâmica Molecular , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Peroxidases/química , Peroxidases/genética , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Xenônio/química , Xenônio/metabolismo
13.
J Biol Inorg Chem ; 23(2): 209-219, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29170897

RESUMO

Possessing both peroxidase and peroxygenase activities with a broad substrate profile that includes phenols, indoles, and pyrroles, the enzyme dehaloperoxidase (DHP) from Amphitrite ornata is a multifunctional catalytic hemoglobin that challenges many of the assumptions behind the well-established structure-function paradigm in hemoproteins. While previous studies have demonstrated that the F21W variant leads to attenuated peroxidase activity in DHP, here we have studied the impact of this mutation on peroxygenase activity to determine if it is possible to selectively tune DHP to favor one function over another. Biochemical assays with DHP B (F21W) revealed minimal decreases in peroxygenase activity of 1.2-2.1-fold as measured by 4-nitrophenol or 5-Br-indole substrate conversion, whereas the peroxidase activity catalytic efficiency for 2,4,6-trichlorophenol (TCP) was more than sevenfold decreased. Binding studies showed a 20-fold weaker affinity for 5-bromoindole (K d = 2960 ± 940 µM) in DHP B (F21W) compared to WT DHP B. Stopped-flow UV/visible studies and isotope labeling experiments together suggest that the F21W mutation neither significantly changes the nature of the catalytic intermediates, nor alters the mechanisms that have been established for peroxidase and peroxygenase activities in DHP. The X-ray crystal structure (1.96 Å; PDB 5VLX) of DHP B (F21W) revealed that the tryptophan blocks one of the two identified TCP binding sites, specifically TCPinterior, suggesting that the other site, TCPexterior, remains viable for binding peroxygenase substrates. Taken together, these studies demonstrate that blocking the TCPinterior binding site in DHP selectively favors peroxygenase activity at the expense of its peroxidase activity.


Assuntos
Hemoglobinas/metabolismo , Mutação , Peroxidases/metabolismo , Poliquetos/enzimologia , Animais , Catálise , Cristalografia por Raios X , Hemoglobinas/química , Hemoglobinas/genética , Hemoglobinas/isolamento & purificação , Peroxidases/química , Peroxidases/genética , Peroxidases/isolamento & purificação , Espectrofotometria Ultravioleta , Especificidade por Substrato
14.
J Microbiol Biotechnol ; 28(2): 275-283, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29212289

RESUMO

Ischemic stroke can result from blockage of blood vessels, forming fibrin clots in the body and causing irreparable brain damage. Remedial thrombolytic agents or anticoagulants have been studied; however, because the FDA-approved tissue plasminogen activator has low efficacy and side effects, it is necessary to develop safer and more effective treatment candidates. This study aimed at assessing the fibrinolytic and anticoagulation features of a novel serine protease extracted and purified from Diopatra sugokai, a polychaeta that inhabits tidal flats. The purified serine protease was obtained through ammonium sulfate precipitation, affinity chromatography, and ion-exchange chromatography. Its molecular size was identified via SDS-PAGE. To characterize its enzymatic activities, the protease activity at various pH and temperatures, and in the presence of various inhibitors, was measured via azocasein assay. Its fibrinolytic activity and anticoagulant effect were assessed by fibrin zymography, fibrin plate assay, and fibrinogenolytic activity assays. The novel 38 kDa serine protease had strong indirect thrombolytic activity rather than direct activity over broad pH (4-10) and temperature (37°C-70°C) ranges. In addition, the novel serine protease exhibited anticoagulant activity by degrading the α-, ß-, and γ-chains of fibrinogen. In addition, it did not produce cytotoxicity in endothelial cells. Therefore, this newly isolated serine protease is worthy of further investigation as a novel alkaline serine protease for thrombolytic therapy against brain ischemia.


Assuntos
Anticoagulantes/isolamento & purificação , Anticoagulantes/metabolismo , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/metabolismo , Poliquetos/enzimologia , Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática , Ensaios Enzimáticos , Fibrinogênio/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , Ativador de Plasminogênio Tecidual
15.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 230-241, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29128676

RESUMO

The coelomic hemoglobin of Amphitrite ornata, termed dehaloperoxidase (DHP), is the first known multifunctional catalytic globin to possess biologically-relevant peroxidase and peroxygenase activities. Although the two isoenzymes of DHP, A and B, differ in sequence by only 5 amino acids out of 137 residues, DHP B consistently exhibits a greater activity than isoenzyme A. To delineate the contributions of each amino acid substitution to the activity of either isoenzyme, the substitutions of the five amino acids were systematically investigated, individually and in combination, using 22 mutants. Biochemical assays and mechanistic studies demonstrated that the mutants that only contained the I9L substitution showed increased i) kcat values (peroxidase activity), ii) 5-Br-indole conversion and binding affinity (peroxygenase activity), and iii) rate of Compound ES formation (enzyme activation). Whereas the X-ray structures of the oxyferrous forms of DHP B (L9I) (1.96Å), DHP A (I9L) (1.20Å), and WT DHP B (1.81Å) showed no significant differences, UV-visible spectroscopy (ASoret/A380 ratio) revealed that the I9L substitution increased the 5-coordinate high-spin heme population characterized by the "open" conformation (i.e., distal histidine swung out of the pocket), which likely favors substrate binding. The positioning of the distal histidine closer to the heme cofactor in the solution state also appears to facilitate activation of DHP via the Compound ES intermediate. Taken together, the studies undertaken here shed light on the structure-function relationship in dehaloperoxidase, but also help to establish the foundation for understanding how enzymatic activity can be tuned in isoenzymes of a multifunctional catalytic globin.


Assuntos
Hemoglobinas/química , Peroxidase/química , Poliquetos/enzimologia , Substituição de Aminoácidos , Animais , Cristalografia por Raios X , Hemoglobinas/genética , Hemoglobinas/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação de Sentido Incorreto , Peroxidase/genética , Peroxidase/metabolismo , Poliquetos/genética , Domínios Proteicos
16.
Environ Toxicol Pharmacol ; 56: 361-365, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29126054

RESUMO

The marine polychaete worm Perinereis aibuhitensis was used to study the genotoxic effects of mercuric chloride by means of the comet assay and micronucleus (MN) test. P. aibuhitensis was subjected in vivo to two different concentrations of mercuric chloride (0.05mgL-1 and 0.5mgL-1) for 96h. The comet assay of coelomocytes demonstrated that TailDNA% values increased with extended exposure to or increased concentrations of HgCl2 (p<0.01). The frequency of MNs was the highest in the treatment with 96h of exposure at all concentrations (p<0.01). The genotoxic effect of HgCl2 was both dose- and time-dependent in exposed P. aibuhitensis. The activities of the antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidases (GPx) were also estimated. Significant variations in antioxidant enzyme activities depended on the sampling time and the concentrations of mercuric chloride. Compared with the control, the activities of the antioxidant enzymes (SOD and GPx) were elevated at the lower concentration of mercuric chloride (0.05mg L-1) (p<0.05) for shorter exposure periods (24h and 72h). At the higher concentration of mercury (0.5mgL-1), the activities of GPx and SOD were inhibited; no variation was observed. These results proved that the use of the comet assay and MN test in coelomocytes of P. aibuhitensis is appropriate for determining the levels of DNA damage and that P. aibuhitensis is a species that is sensitive to mercury pollutants. This species may be considered a suitable candidate for monitoring marine heavy metal pollution.


Assuntos
Dano ao DNA , Cloreto de Mercúrio/toxicidade , Poliquetos/genética , Animais , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Testes para Micronúcleos , Estresse Oxidativo , Poliquetos/efeitos dos fármacos , Poliquetos/enzimologia , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
17.
Free Radic Biol Med ; 110: 188-195, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28603086

RESUMO

To balance the production and decomposition of reactive oxygen species, living organisms have generated antioxidant enzymes and non-enzymatic antioxidant defense systems. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) are two important antioxidant enzymes. Apart from their catalytic functions, they protect each other, resulting in more efficient removal of reactive oxygen species, protection of cells against injury, and maintenance of the normal metabolism of reactive oxygen species. SOD catalyzes the dismutation of the superoxide anion (O2•-) to oxygen (O2) and hydrogen peroxide (H2O2). H2O2 is then detoxified to water by GPx. In this study, human GPx1Ser and the Alvinella pompejana SOD (ApSOD) gene were used to design and generate several recombinant proteins with both GPx and SOD activities by combining traditional fusion protein technology, a cysteine auxotrophic expression system, and a single protein production (SPP) system. Among the fusion proteins, Se-hGPx1Ser-L-ApSOD exhibited the highest SOD and GPx activities. Additional research was conducted to better understand the properties of Se-hGPx1Ser-L-ApSOD. The synergism of Se-hGPx1Ser-L-ApSOD was evaluated by using an in vitro model. This research may facilitate future studies on the cooperation and catalytic mechanisms of GPx and SOD. We believe that the bifunctional enzyme has potential applications as a potent antioxidant.


Assuntos
Antioxidantes/química , Glutationa Peroxidase/química , Peróxido de Hidrogênio/química , Proteínas Recombinantes de Fusão/química , Superóxido Dismutase/química , Superóxidos/química , Animais , Antioxidantes/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Cinética , Modelos Moleculares , Poliquetos/química , Poliquetos/enzimologia , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Glutationa Peroxidase GPX1
18.
Mar Biotechnol (NY) ; 19(4): 345-350, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28493048

RESUMO

One paradox of the trophic biochemistry of the deep sea giant tubeworm Riftia pachyptila, endemic to hydrothermal vent sites and nourished by polyunsaturated fatty acid (PUFA) deficiency chemolitoautotrophic sulfide-oxidizing bacteria, is the source of their PUFAs. Biosynthesis of PUFA starts with two precursors C18:2n-6 and C18:3n-3, which cannot be biosynthesized by most animals due to lack of ω6- and ω3-desaturase; thus, C18:2n-6 and C18:3n-3 are generally essential fatty acids for animals. Here, we characterized a gene derived from the R. pachyptila located by hydrothermal vent, which encoded a novel ω3-desaturase (Rp3Fad). The gene was identified by searching the R. pachyptila transcriptome database using known ω3-desaturases, and its predicted protein showed 37-45% identical to ω3-desaturases of fungus and microalgae, and only 31% identitical to nematode Caenorhabditis elegans ω3-desaturase. Expression in yeast Saccharomyces cerevisiae showed that the Rp3Fad could desaturate C18:2n-6 and C18:3n-6 into C18:3n-3 and C18:4n-3, respectively, displaying a Δ15 activity similar to plant ω3-desaturase, but it showed no activity towards C20 n-6 PUFA substrates, differing from the well-characterized C. elegans ω3-desaturases. Δ5, Δ6, Δ8, and Δ12 activity were also tested, resulting in no corresponding production. The function of ω3-desaturase identified in R. pachyptila could produce C18:3n - 3 used in synthesis of n - 3 series PUFAs, suggesting an adaption to PUFA deficiency environment in deep sea hydrothermal vent.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Poliquetos/enzimologia , Animais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/biossíntese , Expressão Gênica , Fontes Hidrotermais , Poliquetos/genética , Saccharomyces cerevisiae
19.
Biochemistry ; 56(17): 2294-2303, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28387506

RESUMO

The toxicities of azole pollutants that have widespread agricultural and industrial uses are either poorly understood or unknown, particularly with respect to how infaunal organisms are impacted by this class of persistent organic pollutant. To identify a molecular basis by which azole compounds may have unforeseen toxicity on marine annelids, we examine here their impact on the multifunctional dehaloperoxidase (DHP) hemoglobin from the terebellid polychaete Amphitrite ornata. Ultraviolet-visible and resonance Raman spectroscopic studies showed an increase in the six-coordinate low-spin heme population in DHP isoenzyme B upon binding of imidazole, benzotriazole, and benzimidazole (Kd values of 52, 82, and 110 µM, respectively), suggestive of their direct binding to the heme-Fe. Accordingly, atomic-resolution X-ray crystal structures, supported by computational studies, of the DHP B complexes of benzotriazole (1.14 Å), benzimidazole (1.08 Å), imidazole (1.08 Å), and indazole (1.12 Å) revealed two ligand binding motifs, one with direct ligand binding to the heme-Fe, and another in which the ligand binds in the hydrophobic distal pocket without coordinating the heme-Fe. Taken together, the results demonstrate a new mechanism by which azole pollutants can potentially disrupt hemoglobin function, thereby improving our understanding of their impact on infaunal organisms in marine and aquatic environments.


Assuntos
Benzimidazóis/metabolismo , Poluentes Ambientais/metabolismo , Hemoglobinas/metabolismo , Imidazóis/metabolismo , Modelos Moleculares , Peroxidases/metabolismo , Poliquetos/enzimologia , Triazóis/metabolismo , Motivos de Aminoácidos , Animais , Benzimidazóis/química , Benzimidazóis/toxicidade , Domínio Catalítico , Biologia Computacional , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Fungicidas Industriais/toxicidade , Hemoglobinas/antagonistas & inibidores , Hemoglobinas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Imidazóis/toxicidade , Indazóis/química , Indazóis/metabolismo , Indazóis/toxicidade , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Ligantes , Peroxidases/antagonistas & inibidores , Peroxidases/química , Praguicidas/química , Praguicidas/metabolismo , Praguicidas/toxicidade , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Triazóis/química , Triazóis/toxicidade
20.
In Vitro Cell Dev Biol Anim ; 53(6): 494-501, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28283876

RESUMO

Ischemic stroke and cardiovascular disease can occur from blockage of blood vessels by fibrin clots formed naturally in the body. Therapeutic drugs of anticoagulant or thrombolytic agents have been studied; however, various problems have been reported such as side effects and low efficacy. Thus, development of new candidates that are more effective and safe is necessary. The objective of this study is to evaluate fibrinolytic activity, anti-coagulation, and characterization of serine protease purified from Lumbrineris nipponica, polychaeta, for new thrombolytic agents. In the present study, we isolated and identified a new fibrinolytic serine protease from L. nipponica. The N-terminal sequence of the identified serine protease was EAMMDLADQLEQSLN, which is not homologous with any known serine protease. The size of the purified serine protease was 28 kDa, and the protein purification yield was 12.7%. The optimal enzyme activity was observed at 50°C and pH 2.0. A fibrin plate assay confirmed that indirect fibrinolytic activity of the purified serine protease was higher than that of urokinase-PA, whereas direct fibrinolytic activity, which causes bleeding side effects, was relatively low. The serine protease did not induce any cytotoxicity toward the endothelial cell line. In addition, anticoagulant activity was verified by an in vivo DVT animal model system. These results suggest that serine protease purified from L. nipponica has the potential to be an alternative fibrinolytic agent for the treatment of thrombosis and use in various biomedical applications.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fibrinolíticos/isolamento & purificação , Serina Proteases/isolamento & purificação , Acidente Vascular Cerebral/tratamento farmacológico , Sequência de Aminoácidos/genética , Animais , Fibrina/química , Fibrina/genética , Fibrinolíticos/química , Fibrinolíticos/uso terapêutico , Poliquetos/enzimologia , Serina Proteases/química , Serina Proteases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA