Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Biochimie ; 216: 56-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37806617

RESUMO

Ribonucleases are in charge of the processing, degradation and quality control of all cellular transcripts, which makes them crucial factors in RNA regulation. This post-transcriptional regulation allows bacteria to promptly react to different stress conditions and growth phase transitions, and also to produce the required virulence factors in pathogenic bacteria. Campylobacter jejuni is the main responsible for human gastroenteritis in the world. In this foodborne pathogen, exoribonuclease PNPase (CjPNP) is essential for low-temperature cell survival, affects the synthesis of proteins involved in virulence and has an important role in swimming, cell adhesion/invasion ability, and chick colonization. Here we report the crystallographic structure of CjPNP, complemented with SAXS, which confirms the characteristic doughnut-shaped trimeric arrangement and evaluates domain arrangement and flexibility. Mutations in highly conserved residues were constructed to access their role in RNA degradation and polymerization. Surprisingly, we found two mutations that altered CjPNP into a protein that is only capable of degrading RNA even in conditions that favour polymerization. These findings will be important to develop new strategies to combat C. jejuni infections.


Assuntos
Campylobacter jejuni , Polirribonucleotídeo Nucleotidiltransferase , Humanos , Virulência , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Endorribonucleases , RNA , Exorribonucleases/metabolismo , Ribonuclease Pancreático
2.
Nucleic Acids Res ; 48(2): 847-861, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31802130

RESUMO

RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5'-sensor pocket that renders enzyme activity maximal on 5'-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability. Here, we provide evidence that a full-length hetero-tetramer, composed of a mixture of wild-type and (recessive lethal) active-site mutant subunits, exhibits identical activity in vivo as the wild-type homo-tetramer itself ('recessive resurrection'). When all of the cognate polypeptides lacked the CTH, the active-site mutant subunits were dominant negative. A pair of C-terminally truncated polypeptides, which were individually inactive because of additional mutations in their active site and 5'-sensor pocket respectively, exhibited catalytic function in combination, both in vivo and in vitro (i.e. intragenic or allelic complementation). Our results indicate that adjacent subunits within an oligomer are separately responsible for 5'-sensing and cleavage, and that RNA binding facilitates oligomerization. We propose also that the CTH mediates a rate-determining initial step for enzyme function, which is likely the binding and channelling of substrate for NTH's endonucleolytic action.


Assuntos
Domínio Catalítico/genética , Endorribonucleases/genética , RNA/genética , Sítios de Ligação/genética , Catálise , Endorribonucleases/química , Escherichia coli/química , Escherichia coli/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutação/genética , Peptídeos/genética , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/genética , Conformação Proteica , Multimerização Proteica/genética , RNA/química , RNA Helicases/química , RNA Helicases/genética , Motivos de Ligação ao RNA/genética
3.
PLoS One ; 14(8): e0221370, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31437214

RESUMO

The family of ribosomal proteins S1 contains about 20% of all bacterial proteins including the S1 domain. An important feature of this family is multiple copies of structural domains in bacteria, the number of which changes in a strictly limited range from one to six. In this study, the automated exhaustive analysis of 1453 sequences of S1 allowed us to demonstrate that the number of domains in S1 is a distinctive characteristic for phylogenetic bacterial grouping in main phyla. 1453 sequences of S1 were identified in 25 out of 30 different phyla according to the List of Prokaryotic Names with Standing in Nomenclature. About 62% of all records are identified as six-domain S1 proteins, which belong to phylum Proteobacteria. Four-domain S1 are identified mainly in proteins from phylum Firmicutes and Actinobacteria. Records belonging to these phyla are 33% of all records. The least represented two-domain S1 are about 0.6% of all records. The third and fourth domains for the most representative four- and six-domain S1 have the highest percentage of identity with the S1 domain from polynucleotide phosphorylase and S1 domains from one-domain S1. In addition, for these groups, the central part of S1 (the third domain) is more conserved than the terminal domains.


Assuntos
Actinobacteria/classificação , Proteínas de Bactérias/química , Firmicutes/classificação , Filogenia , Proteobactérias/classificação , Proteínas Ribossômicas/química , Actinobacteria/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência Conservada , Firmicutes/genética , Expressão Gênica , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/genética , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Proteobactérias/genética , Proteínas Ribossômicas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Nucleic Acids Res ; 46(16): 8630-8640, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30020492

RESUMO

Human polynucleotide phosphorylase (PNPase) is an evolutionarily conserved 3'-to-5' exoribonuclease principally located in mitochondria where it is responsible for RNA turnover and import. Mutations in PNPase impair structured RNA transport into mitochondria, resulting in mitochondrial dysfunction and disease. PNPase is a trimeric protein with a doughnut-shaped structure hosting a central channel for single-stranded RNA binding and degradation. Here, we show that the disease-linked human PNPase mutants, Q387R and E475G, form dimers, not trimers, and have significantly lower RNA binding and degradation activities compared to wild-type trimeric PNPase. Moreover, S1 domain-truncated PNPase binds single-stranded RNA but not the stem-loop signature motif of imported structured RNA, suggesting that the S1 domain is responsible for binding structured RNAs. We further determined the crystal structure of dimeric PNPase at a resolution of 2.8 Å and, combined with small-angle X-ray scattering, show that the RNA-binding K homology and S1 domains are relatively inaccessible in the dimeric assembly. Taken together, these results show that mutations at the interface of the trimeric PNPase tend to produce a dimeric protein with destructive RNA-binding surfaces, thus impairing both of its RNA import and degradation activities and leading to mitochondria disorders.


Assuntos
Mutação com Perda de Função , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Mutação de Sentido Incorreto , Mutação Puntual , Polirribonucleotídeo Nucleotidiltransferase/química , Estabilidade de RNA , RNA/metabolismo , Transporte Biológico , Cristalografia por Raios X , Dimerização , Humanos , Sequências Repetidas Invertidas , Doenças Mitocondriais/enzimologia , Modelos Moleculares , Polirribonucleotídeo Nucleotidiltransferase/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos , RNA/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo
6.
Nat Commun ; 9(1): 97, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311576

RESUMO

Nuclease and helicase activities play pivotal roles in various aspects of RNA processing and degradation. These two activities are often present in multi-subunit complexes from nucleic acid metabolism. In the mitochondrial exoribonuclease complex (mtEXO) both enzymatic activities are tightly coupled making it an excellent minimal system to study helicase-exoribonuclease coordination. mtEXO is composed of Dss1 3'-to-5' exoribonuclease and Suv3 helicase. It is the master regulator of mitochondrial gene expression in yeast. Here, we present the structure of mtEXO and a description of its mechanism of action. The crystal structure of Dss1 reveals domains that are responsible for interactions with Suv3. Importantly, these interactions are compatible with the conformational changes of Suv3 domains during the helicase cycle. We demonstrate that mtEXO is an intimate complex which forms an RNA-binding channel spanning its entire structure, with Suv3 helicase feeding the 3' end of the RNA toward the active site of Dss1.


Assuntos
Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Candida glabrata/enzimologia , Candida glabrata/genética , Candida glabrata/metabolismo , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/química , Endorribonucleases/genética , Exorribonucleases/química , Exorribonucleases/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Conformação de Ácido Nucleico , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/genética , Ligação Proteica , Conformação Proteica , RNA/química , RNA/genética , RNA/metabolismo , RNA Helicases/química , RNA Helicases/genética , RNA Mitocondrial , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
8.
Nucleic Acids Res ; 45(8): 4655-4666, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28334892

RESUMO

Ribonucleases play essential roles in all aspects of RNA metabolism, including the coordination of post-transcriptional gene regulation that allows organisms to respond to internal changes and environmental stimuli. However, as inherently destructive enzymes, their activity must be carefully controlled. Recent research exemplifies the repertoire of regulatory strategies employed by ribonucleases. The activity of the phosphorolytic exoribonuclease, polynucleotide phosphorylase (PNPase), has previously been shown to be modulated by the Krebs cycle metabolite citrate in Escherichia coli. Here, we provide evidence for the existence of citrate-mediated inhibition of ribonucleases in all three domains of life. In silico molecular docking studies predict that citrate will bind not only to bacterial PNPases from E. coli and Streptomyces antibioticus, but also PNPase from human mitochondria and the structurally and functionally related archaeal exosome complex from Sulfolobus solfataricus. Critically, we show experimentally that citrate also inhibits the exoribonuclease activity of bacterial, eukaryotic and archaeal PNPase homologues in vitro. Furthermore, bioinformatics data, showing key citrate-binding motifs conserved across a broad range of PNPase homologues, suggests that this regulatory mechanism may be widespread. Overall, our data highlight a communicative link between ribonuclease activity and central metabolism that may have been conserved through the course of evolution.


Assuntos
Ácido Cítrico/química , Escherichia coli/enzimologia , Polirribonucleotídeo Nucleotidiltransferase/química , RNA/química , Streptomyces antibioticus/enzimologia , Sulfolobus solfataricus/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Evolução Biológica , Ácido Cítrico/metabolismo , Clonagem Molecular , Biologia Computacional , Sequência Conservada , Escherichia coli/genética , Exossomos/química , Exossomos/enzimologia , Expressão Gênica , Humanos , Cinética , Mitocôndrias/química , Mitocôndrias/enzimologia , Simulação de Acoplamento Molecular , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA/metabolismo , Estabilidade de RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Streptomyces antibioticus/genética , Homologia Estrutural de Proteína , Especificidade por Substrato , Sulfolobus solfataricus/genética , Termodinâmica
9.
Wiley Interdiscip Rev RNA ; 7(2): 241-58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26750178

RESUMO

Polynucleotide phosphorylase (PNPase) is an exoribonuclease that catalyzes the processive phosphorolytic degradation of RNA from the 3'-end. The enzyme catalyzes also the reverse reaction of polymerization of nucleoside diphosphates that has been implicated in the generation of heteropolymeric tails at the RNA 3'-end. The enzyme is widely conserved and plays a major role in RNA decay in both Gram-negative and Gram-positive bacteria. Moreover, it participates in maturation and quality control of stable RNA. PNPase autoregulates its own expression at post-transcriptional level through a complex mechanism that involves the endoribonuclease RNase III and translation control. The activity of PNPase is modulated in an intricate and still unclear manner by interactions with small molecules and recruitment in different multiprotein complexes. Not surprisingly, given the wide spectrum of PNPase substrates, PNPase-defective mutations in different bacterial species have pleiotropic effects and perturb the execution of genetic programs involving drastic changes in global gene expression such as biofilm formation, growth at suboptimal temperatures, and virulence.


Assuntos
Bactérias/enzimologia , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Adaptação Biológica , Bactérias/genética , Catálise , Ativação Enzimática , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Complexos Multiproteicos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/genética , Ligação Proteica , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Relação Estrutura-Atividade
10.
J Biol Chem ; 291(13): 6655-63, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26797123

RESUMO

Polynucleotide phosphorylase (PNPase), a 3'-to-5' phosphorolytic exoribonuclease, is thought to be the primary enzyme responsible for turnover ofBacillus subtilismRNA. The role of PNPase inB. subtilismRNA decay has been analyzed previously by comparison of mRNA profiles in a wild-type strainversusa strain that is deleted forpnpA, the gene encoding PNPase. Recent studies have provided evidence for a degradosome-like complex inB. subtilisthat is built around the major decay-initiating endonuclease, RNase Y, and there is ample evidence for a strong interaction between PNPase and RNase Y. The role of the PNPase-RNase Y interaction in the exonucleolytic function of PNPase needs to be clarified. We sought to construct aB. subtilisstrain containing a catalytically active PNPase that could not interact with RNase Y. Mapping studies of the PNPase-RNase Y interaction were guided by a homology model ofB. subtilisPNPase based on the known structure of theEscherichia coliPNPase in complex with an RNase E peptide. Mutations inB. subtilisresidues predicted to be involved in RNase Y binding showed a loss of PNPase-RNase Y interaction. Two mRNAs whose decay is dependent on RNase Y and PNPase were examined in strains containing full-length PNPase that was either catalytically active but unable to interact with RNase Y, or catalytically inactive but able to interact with RNase Y. At least for these two mRNAs, disruption of the PNPase-RNase Y interaction did not appear to affect mRNA turnover.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Polirribonucleotídeo Nucleotidiltransferase/química , RNA Mensageiro/química , Ribonucleases/química , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína
11.
Biochim Biophys Acta ; 1854(8): 950-66, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25896386

RESUMO

The bacterial Sm-like protein Hfq has been linked functionally to reactions that involve RNA; however, its explicit role and primary cellular localization remain elusive. We carried out a detailed biochemical characterization of native Escherichia coli Hfq obtained through methods that preserve its posttranslational modifications. ESI-MS analyses indicate modifications in 2-3 subunits/hexamer with a molecular mass matching that of an oxidized C:18 lipid. We show that the majority of cellular Hfq cannot be extracted without detergents and that purified Hfq can be retained on hydrophobic matrices. Analyses of purified Hfq and the native Hfq complexes observed in whole-cell E. coli extracts indicate the existence of dodecameric assemblies likely stabilized by interlocking C-terminal polypeptides originating from separate Hfq hexamers and/or accessory nucleic acid. We demonstrate that cellular Hfq is redistributed between transcription complexes and an insoluble fraction that includes protein complexes harboring polynucleotide phosphorylase (PNP). This distribution pattern is consistent with a function at the interface of the apparatuses responsible for synthesis and degradation of RNA. Taken together with the results of prior studies, these results suggest that Hfq could function as an anchor/coupling factor responsible for de-solubilization of RNA and its tethering to the degradosome complex.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Fator Proteico 1 do Hospedeiro , Complexos Multiproteicos , Processamento de Proteína Pós-Traducional/fisiologia , RNA Bacteriano , RNA , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA/biossíntese , RNA/química , RNA Bacteriano/biossíntese , RNA Bacteriano/química
12.
PLoS Genet ; 11(2): e1004961, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25647427

RESUMO

RNase E, which is the central component of the multienzyme RNA degradosome, serves as a scaffold for interaction with other enzymes involved in mRNA degradation including the DEAD-box RNA helicase RhlB. Epifluorescence microscopy under live cell conditions shows that RNase E and RhlB are membrane associated, but neither protein forms cytoskeletal-like structures as reported earlier by Taghbalout and Rothfield. We show that association of RhlB with the membrane depends on a direct protein interaction with RNase E, which is anchored to the inner cytoplasmic membrane through an MTS (Membrane Targeting Sequence). Molecular dynamics simulations show that the MTS interacts with the phospholipid bilayer by forming a stabilized amphipathic α-helix with the helical axis oriented parallel to the plane of the bilayer and hydrophobic side chains buried deep in the acyl core of the membrane. Based on the molecular dynamics simulations, we propose that the MTS freely diffuses in the membrane by a novel mechanism in which a large number of weak contacts are rapidly broken and reformed. TIRFm (Total Internal Reflection microscopy) shows that RNase E in live cells rapidly diffuses over the entire inner membrane forming short-lived foci. Diffusion could be part of a scanning mechanism facilitating substrate recognition and cooperativity. Remarkably, RNase E foci disappear and the rate of RNase E diffusion increases with rifampicin treatment. Control experiments show that the effect of rifampicin is specific to RNase E and that the effect is not a secondary consequence of the shut off of E. coli transcription. We therefore interpret the effect of rifampicin as being due to the depletion of RNA substrates for degradation. We propose a model in which formation of foci and constraints on diffusion arise from the transient clustering of RNase E into cooperative degradation bodies.


Assuntos
RNA Helicases DEAD-box/genética , Endorribonucleases/genética , Proteínas de Escherichia coli/genética , Complexos Multienzimáticos/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Helicases/genética , Estabilidade de RNA/genética , Estruturas da Membrana Celular/química , Estruturas da Membrana Celular/genética , RNA Helicases DEAD-box/química , Endorribonucleases/química , Escherichia coli/genética , Simulação de Dinâmica Molecular , Complexos Multienzimáticos/química , Conformação de Ácido Nucleico , Fosfolipídeos/química , Fosfolipídeos/genética , Polirribonucleotídeo Nucleotidiltransferase/química , Mapas de Interação de Proteínas/genética , RNA Helicases/química , RNA Mensageiro/genética
13.
Nucleic Acids Res ; 42(21): 13294-305, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25389270

RESUMO

The endoribonuclease RNase E is a key enzyme in RNA metabolism for many bacterial species. In Escherichia coli, RNase E contributes to the majority of RNA turnover and processing events, and the enzyme has been extensively characterized as the central component of the RNA degradosome assembly. A similar RNA degradosome assembly has been described in the α-proteobacterium Caulobacter crescentus, with the interacting partners of RNase E identified as the Kreb's cycle enzyme aconitase, a DEAD-box RNA helicase RhlB and the exoribonuclease polynucleotide phosphorylase. Here we report that an additional degradosome component is the essential exoribonuclease RNase D, and its recognition site within RNase E is identified. We show that, unlike its E. coli counterpart, C. crescentus RhlB interacts directly with a segment of the N-terminal catalytic domain of RNase E. The crystal structure of a portion of C. crescentus RNase E encompassing the helicase-binding region is reported. This structure reveals that an inserted segment in the S1 domain adopts an α-helical conformation, despite being predicted to be natively unstructured. We discuss the implications of these findings for the organization and mechanisms of the RNA degradosome.


Assuntos
Proteínas de Bactérias/química , Caulobacter crescentus/enzimologia , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/química , Complexos Multienzimáticos/química , Polirribonucleotídeo Nucleotidiltransferase/química , RNA Helicases/química , Ribonuclease III/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , RNA Helicases DEAD-box/química , Endorribonucleases/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/metabolismo , RNA Bacteriano/metabolismo , Ribonuclease III/química
14.
Mol Phylogenet Evol ; 73: 77-86, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24503483

RESUMO

Polynucleotide phosphorylase (PNPase) is an evolutionarily conserved 3'→5' phosphate-dependent exoribonucease belonging to the PDX family of proteins. It consists of two catalytic RNase PH domains (PNP1 and PNP2), an α-helical domain and two RNA-binding domains. The PNP1 and PNP2 domains share substantial sequence and structural homology with RNase PH (RPH), which is another PDX family member found in all the three major kingdoms of life, suggesting that these three domains originated from a common ancestor. Phylogenetic analysis (based on the PNPase/RNase PH sequence information for 43 vertebrate taxa) shows that PNP2 and RPH are sister taxa which arose through duplication of the ancestral PNP1 domain. Also, all three domains (PNP1, PNP2 and RPH), along with the KH and S1 domains have undergone significant and directional sequence change, as determined by branch and site-specific dN/dS analyses. In general, codons that show dN/dS ratios that are significantly greater than 1.0 are outside the ordered regions (α-helices and ß-sheets) of these protein domains. In addition, sites that have been selected for mutagenesis in these proteins lie embedded in regions where there is a preponderance of codons with dN/dS values that are not significantly different from 0.0. Overall, this report is an attempt to further our understanding of the evolutionary history of these three protein domains, and define the evolutionary events that led to their refinement in the vertebrate lineage leading to mammals.


Assuntos
Evolução Molecular , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/genética , Animais , Domínio Catalítico/genética , Códon/genética , Sequência Conservada/genética , Filogenia , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Estrutura Secundária de Proteína , Seleção Genética , Análise de Sequência de DNA
15.
Biochimie ; 97: 49-59, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24075876

RESUMO

Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Šaway from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.


Assuntos
Difosfato de Adenosina/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Fosfatos/química , Polirribonucleotídeo Nucleotidiltransferase/química , RNA Bacteriano/química , Difosfato de Adenosina/metabolismo , Alanina/química , Alanina/metabolismo , Sequência de Aminoácidos , Arginina/química , Arginina/metabolismo , Domínio Catalítico , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutação , Fosfatos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Bacteriano/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
16.
Biochimie ; 95(11): 2034-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23927922

RESUMO

We report an analysis in vivo of the RNA degradosome assembly of Escherichia coli. Employing fluorescence microscopy imaging and fluorescence energy transfer (FRET) measurements, we present evidence for in vivo pairwise interactions between RNase E-PNPase (polynucleotide phosphorylase), and RNase E-Enolase. These interactions are absent in a mutant strain with genomically encoded RNase E that lacks the C-terminal half, supporting the role of the carboxy-end domain as the scaffold for the degradosome. We also present evidence for in vivo proximity of Enolase-PNPase and Enolase-RhlB. The data support a model for the RNA degradosome (RNAD), in which the RNase E carboxy-end is proximal to PNPase, more distant to Enolase, and more than 10 nm from RhlB helicase. Our measurements were made in strains with mono-copy chromosomal fusions of the RNAD enzymes with fluorescent proteins, allowing measurement of the expression of the different proteins under different growth and stress conditions.


Assuntos
Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/química , Endorribonucleases/genética , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Plasmídeos/genética , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/genética , Mapas de Interação de Proteínas/genética , RNA Helicases/química , RNA Helicases/genética
17.
Biochemistry ; 52(17): 2967-81, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23560592

RESUMO

Polynucleotide phosphorylase (PNPase) plays synthetic and degradative roles in bacterial RNA metabolism; it is also suggested to participate in bacterial DNA transactions. Here we characterize and compare the RNA and DNA modifying activities of Mycobacterium smegmatis PNPase. The full-length (763-aa) M. smegmatis PNPase is a homotrimeric enzyme with Mg(2+)•PO(4)-dependent RNA 3'-phosphorylase and Mg(2+)•ADP-dependent RNA polymerase activities. We find that the enzyme is also a Mn(2+)•dADP-dependent DNA polymerase and a Mn(2+)•PO(4)-dependent DNA 3'-phosphorylase. The Mn(2+)•DNA and Mg(2+)•RNA end modifying activities of mycobacterial PNPase are coordinately ablated by mutating the putative manganese ligand Asp526, signifying that both metals likely bind to the same site on PNPase. Deletions of the C-terminal S1 and KH domains of mycobacterial PNPase exert opposite effects on the RNA and DNA modifying activities. Subtracting the S1 domain diminishes RNA phosphorylase and polymerase activity; simultaneous deletion of the S1 and KH domains further cripples the enzyme with respect to RNA substrates. By contrast, the S1 and KH domain deletions enhance the DNA polymerase and phosphorylase activity of mycobacterial PNPase. We observe two distinct modes of nucleic acid binding by mycobacterial PNPase: (i) metal-independent RNA-specific binding via the S1 domain, and (ii) metal-dependent binding to RNA or DNA that is optimal when the S1 domain is deleted. These findings add a new dimension to our understanding of PNPase specificity, whereby the C-terminal modules serve a dual purpose: (i) to help capture an RNA polynucleotide substrate for processive 3' end additions or resections, and (ii) to provide a specificity filter that selects against a DNA polynucleotide substrate.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Manganês/metabolismo , Mycobacterium smegmatis/enzimologia , Fosforilases/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , DNA Polimerase Dirigida por DNA/química , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos , Modelos Moleculares , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/genética
18.
Cell ; 153(1): 166-77, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23540697

RESUMO

Many bacteria contain an ortholog of the Ro autoantigen, a ring-shaped protein that binds noncoding RNAs (ncRNAs) called Y RNAs. In the only studied bacterium, Deinococcus radiodurans, the Ro ortholog Rsr functions in heat-stress-induced ribosomal RNA (rRNA) maturation and starvation-induced rRNA decay. However, the mechanism by which this conserved protein and its associated ncRNAs act has been obscure. We report that Rsr and the exoribonuclease polynucleotide phosphorylase (PNPase) form an RNA degradation machine that is scaffolded by Y RNA. Single-particle electron microscopy, followed by docking of atomic models into the reconstruction, suggests that Rsr channels single-stranded RNA into the PNPase cavity. Biochemical assays reveal that Rsr and Y RNA adapt PNPase for effective degradation of structured RNAs. A Ro ortholog and ncRNA also associate with PNPase in Salmonella Typhimurium. Our studies identify another ribonucleoprotein machine and demonstrate that ncRNA, by tethering a protein cofactor, can alter the substrate specificity of an enzyme.


Assuntos
Deinococcus/química , Complexo Multienzimático de Ribonucleases do Exossomo/química , Estabilidade de RNA , RNA Bacteriano/química , RNA não Traduzido/metabolismo , Ribonucleoproteínas/metabolismo , Salmonella typhimurium/metabolismo , Animais , Sequência de Bases , Deinococcus/genética , Deinococcus/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Dados de Sequência Molecular , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/ultraestrutura , RNA Bacteriano/ultraestrutura , RNA não Traduzido/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Xenopus laevis/metabolismo
19.
Biochim Biophys Acta ; 1829(6-7): 514-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23459248

RESUMO

Bacterial transcripts each have a characteristic half-life, suggesting that the processes of RNA degradation work in an active and selective manner. Moreover, the processes are well controlled, thereby ensuring that degradation is orderly and coordinated. Throughout much of the bacterial kingdom, RNA degradation processes originate through the actions of assemblies of key RNA enzymes, known as RNA degradosomes. Neither conserved in composition, nor unified by common evolutionary ancestry, RNA degradosomes nonetheless can be found in divergent bacterial lineages, implicating a common requirement for the co-localisation of RNA metabolic activities. We describe how the cooperation of components in the representative degradosome of Escherichia coli may enable controlled access to transcripts, so that they have defined and programmable lifetimes. We also discuss how this cooperation contributes to precursor processing and to the riboregulation of intricate post-transcriptional networks in the control of gene expression. The E. coli degradosome interacts with the cytoplasmic membrane, and we discuss how this interaction may spatially organise the assembly and contribute to subunit cooperation and substrate capture. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Assuntos
Endorribonucleases/genética , Complexos Multienzimáticos , Polirribonucleotídeo Nucleotidiltransferase , RNA Helicases , Estabilidade de RNA , RNA Bacteriano/genética , Membrana Celular/química , Membrana Celular/genética , Endorribonucleases/química , Escherichia coli/enzimologia , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/genética , Conformação Proteica , Estrutura Terciária de Proteína , RNA Helicases/química , RNA Helicases/genética , RNA Bacteriano/química
20.
J Bacteriol ; 195(9): 2021-31, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23457244

RESUMO

To better understand the roles of the KH and S1 domains in RNA binding and polynucleotide phosphorylase (PNPase) autoregulation, we have identified and investigated key residues in these domains. A convenient pnp::lacZ fusion reporter strain was used to assess autoregulation by mutant PNPase proteins lacking the KH and/or S1 domains or containing point mutations in those domains. Mutant enzymes were purified and studied by using in vitro band shift and phosphorolysis assays to gauge binding and enzymatic activity. We show that reductions in substrate affinity accompany impairment of PNPase autoregulation. A remarkably strong correlation was observed between ß-galactosidase levels reflecting autoregulation and apparent KD values for the binding of a model RNA substrate. These data show that both the KH and S1 domains of PNPase play critical roles in substrate binding and autoregulation. The findings are discussed in the context of the structure, binding sites, and function of PNPase.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Enzimológica da Expressão Gênica , Homeostase , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Bacteriano/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cinética , Polirribonucleotídeo Nucleotidiltransferase/genética , Ligação Proteica , Estrutura Terciária de Proteína , RNA Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA