Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Mar Drugs ; 20(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36547893

RESUMO

Alginate is abundant in the cell walls of brown algae. Alginate lyases can degrade alginate, and thus play an important role in the marine carbon cycle and industrial production. Currently, most reported alginate lyases contain only one functional alginate lyase domain. AlyC8 is a putative alginate lyase with two alginate lyase domains (CD1 and CD2) from the marine alginate-degrading strain Vibrio sp. C42. To characterize AlyC8 and its two catalytic domains, AlyC8 and its two catalytic domain-deleted mutants, AlyC8-CD1 and AlyC8-CD2, were expressed in Escherichia coli. All three proteins have noticeable activity toward sodium alginate and exhibit optimal activities at pH 8.0-9.0 and at 30-40 °C, demonstrating that both CD1 and CD2 are functional. However, CD1 and CD2 showed opposite substrate specificity. The differences in substrate specificity and degradation products of alginate between the mutants and AlyC8 demonstrate that CD1 and CD2 can act synergistically to enable AlyC8 to degrade various alginate substrates into smaller oligomeric products. Moreover, kinetic analysis indicated that AlyC8-CD1 plays a major role in the degradation of alginate by AlyC8. These results demonstrate that AlyC8 is a novel alginate lyase with two functional catalytic domains that are synergistic in alginate degradation, which is helpful for a better understanding of alginate lyases and alginate degradation.


Assuntos
Proteínas de Bactérias , Polissacarídeo-Liases , Vibrio , Alginatos/química , Concentração de Íons de Hidrogênio , Cinética , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/isolamento & purificação , Especificidade por Substrato , Vibrio/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Mutação , Domínio Catalítico
2.
Mar Drugs ; 20(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35323467

RESUMO

Marine macroalgae, contributing much to the bioeconomy, have inspired tremendous attention as sustainable raw materials. Ulvan, as one of the main structural components of green algae cell walls, can be degraded by ulvan lyase through the ß-elimination mechanism to obtain oligosaccharides exhibiting several good physiological activities. Only a few ulvan lyases have been characterized until now. This thesis explores the properties of a new polysaccharide lyase family 25 ulvan lyase TsUly25B from the marine bacterium Thalassomonas sp. LD5. Its protein molecular weight was 54.54 KDa, and it was most active under the conditions of 60 °C and pH 9.0. The Km and kcat values were 1.01 ± 0.05 mg/mL and 10.52 ± 0.28 s-1, respectively. TsUly25B was salt-tolerant and NaCl can significantly improve its thermal stability. Over 80% of activity can be preserved after being incubated at 30 °C for two days when the concentration of NaCl in the solution is above 1 M, while 60% can be preserved after incubation at 40 °C for 10 h with 2 M NaCl. TsUly25B adopted an endolytic manner to degrade ulvan polysaccharides, and the main end-products were unsaturated ulvan disaccharides and tetrasaccharides. In conclusion, our research enriches the ulvan lyase library and advances the utilization of ulvan lyases in further fundamental research as well as ulvan oligosaccharides production.


Assuntos
Proteínas de Bactérias , Gammaproteobacteria/enzimologia , Polissacarídeo-Liases , Polissacarídeos/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Gammaproteobacteria/genética , Conformação Molecular , Filogenia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/isolamento & purificação , Proteínas Recombinantes/química , Cloreto de Sódio/química
3.
Mar Drugs ; 20(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35200655

RESUMO

As an important enzyme involved in the marine carbon cycle, alginate lyase has received extensive attention because of its excellent degradation ability on brown algae, which is widely utilized for alginate oligosaccharide preparation or bioethanol production. In comparison with endo-type alginate lyases (PL-5, PL-7, and PL-18 families), limited studies have focused on PL-17 family alginate lyases, especially for those with special characteristics. In this study, a novel PL-17 family alginate lyase, Aly23, was identified and cloned from the marine bacterium Pseudoalteromonas carrageenovora ASY5. Aly23 exhibited maximum activity at 35 °C and retained 48.93% of its highest activity at 4 °C, representing an excellent cold-adaptation property. Comparative molecular dynamics analysis was implemented to explore the structural basis for the cold-adaptation property of Aly23. Aly23 had a high substrate preference for poly ß-D-mannuronate and exhibited both endolytic and exolytic activities; its hydrolysis reaction mainly produced monosaccharides, disaccharides, and trisaccharides. Furthermore, the enzymatic hydrolyzed oligosaccharides displayed good antioxidant activities to reduce ferric and scavenge radicals, such as hydroxyl, ABTS+, and DPPH. Our work demonstrated that Aly23 is a promising cold-adapted biocatalyst for the preparation of natural antioxidants from brown algae.


Assuntos
Antioxidantes/farmacologia , Oligossacarídeos/farmacologia , Polissacarídeo-Liases/metabolismo , Pseudoalteromonas/metabolismo , Antioxidantes/metabolismo , Dissacarídeos/metabolismo , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/farmacologia , Hidrólise , Simulação de Dinâmica Molecular , Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/isolamento & purificação , Temperatura , Trissacarídeos/metabolismo
4.
Glycobiology ; 31(11): 1557-1570, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34245266

RESUMO

The polysaccharide lyase family 6 (PL6) represents one of the 41 polysaccharide lyase families classified in the CAZy database with the vast majority of its members being alginate lyases grouped into three subfamilies, PL6_1-3. To decipher the mode of recognition and action of the enzymes belonging to subfamily PL6_1, we solved the crystal structures of Pedsa0632, Patl3640, Pedsa3628 and Pedsa3807, which all show different substrate specificities and mode of action (endo-/exolyase). Thorough exploration of the structures of Pedsa0632 and Patl3640 in complex with their substrates as well as docking experiments confirms that the conserved residues in subsites -1 to +3 of the catalytic site form a common platform that can accommodate various types of alginate in a very similar manner but with a series of original adaptations bringing them their specificities of action. From comparative studies with existing structures of PL6_1 alginate lyases, we observe that in the right-handed parallel ß-helix fold shared by all these enzymes, the substrate-binding site harbors the same overall conserved structures and organization. Despite this apparent similarity, it appears that members of the PL6_1 subfamily specifically accommodate and catalyze the degradation of different alginates suggesting that this common platform is actually a highly adaptable and specific tool.


Assuntos
Polissacarídeo-Liases/metabolismo , Sequência de Aminoácidos , Configuração de Carboidratos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Especificidade por Substrato
5.
Mar Drugs ; 19(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802659

RESUMO

The alginate lyases have unique advantages in the preparation of alginate oligosaccharides and processing of brown algae. Herein, a gene alg2951 encoding a PL7 family alginate lyase with exo/endo-type activity was cloned from a novel marine bacterium Alteromonas portus HB161718T and then expressed in Escherichia coli. The recombinant Alg2951 in the culture supernatant reached the activity of 63.6 U/mL, with a molecular weight of approximate 60 kDa. Alg2951 exhibited the maximum activity at 25 °C and pH 8.0, was relatively stable at temperatures lower than 30 °C, and showed a special preference to poly-guluronic acid (polyG) as well. Both NaCl and KCl had the most promotion effect on the enzyme activity of Alg2951 at 0.2 M, increasing by 21.6 and 19.1 times, respectively. The TCL (Thin Layer Chromatography) and ESI-MS (Electrospray Ionization Mass Spectrometry) analyses suggested that Alg2951 could catalyze the hydrolysis of sodium alginate to produce monosaccharides and trisaccharides. Furthermore, the enzymatic hydrolysates displayed good antioxidant activity by assays of the scavenging abilities towards radicals (hydroxyl and ABTS+) and the reducing power. Due to its cold-adapted and dual exo/endo-type properties, Alg2951 can be a potential enzymatic tool for industrial production.


Assuntos
Alteromonas/enzimologia , Antioxidantes/farmacologia , Polissacarídeo-Liases/isolamento & purificação , Alginatos/metabolismo , Antioxidantes/química , Antioxidantes/isolamento & purificação , Clonagem Molecular , Temperatura Baixa , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Peso Molecular , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/farmacologia , Temperatura
6.
Protein Expr Purif ; 182: 105840, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561520

RESUMO

Hyaluronate lyases have received extensive attention due to their applications in medical science, drug and biochemical engineering. However, few thermotolerant and pH-stable hyaluronate lyases have been found. In this study, hyaluronate lyase TcHly8B from Thermasporomyces composti DSM22891 was expressed in Escherichia coli BL21(DE3), purified, and characterized. Phylogenetic analysis revealed that TcHly8B belonged to a new subfamily in PL8. The molecular mass of recombinant TcHly8B determined by SDS-PAGE was approximately 86 kDa. The optimal temperature of TcHly8B was 70 °C, which was higher than that of previously reported hyaluronate lyases. TcHly8B was very stable at temperatures from 0 to 60 °C. The optimal pH of TcHly8B was 6.6. It could retain more than 80% of its original enzyme activity after incubation for 12 h in the pH range of 3.0-10.6. TcHly8B degraded hyaluronic acid into unsaturated disaccharides as the end products. The amino acid sequence and structure analysis of TcHly8B demonstrated that the amino acid composition and salt bridges might contribute to the thermostability of TcHly8B. Overall, this study provides an excellent example for the discovery of thermotolerant hyaluronate lyases and can be applied to the industrialized production and basic research of hyaluronate oligosaccharides.


Assuntos
Actinobacteria , Proteínas de Bactérias , Polissacarídeo-Liases , Actinobacteria/enzimologia , Actinobacteria/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Polissacarídeo-Liases/biossíntese , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
7.
Int J Biol Macromol ; 169: 551-563, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385459

RESUMO

Alginate lyases are essential tools for depolymerizing alginate into bioactive oligosaccharides and fermentable monosaccharides. Herein, we characterized a novel polysaccharide lyase AlgSH17 from marine bacterium Microbulbifer sp. SH-1. The recombinant enzyme exhibited the maximum activity at 30 °C, pH 7.0 and retained 86.20% and 65.43% of its maximum activity at 20 °C and 15 °C, respectively, indicating that AlgSH17 has an excellent cold-adapted property. The final products of AlgSH17 mainly consisted of monosaccharides with small amounts of oligosaccharides with degrees of polymerization (DP) 2-6, suggesting that AlgSH17 possesses both exolytic and endolytic activity. Degradation pattern analysis indicated that AlgSH17 could degrade DP ≥ 4 oligosaccharides into disaccharides and trisaccharides by cleaving the endo-glycosidic bonds and further digest disaccharides and trisaccharides into monosaccharides in an exolytic manner. Products distribution and molecular docking analysis revealed that AlgSH17 could cleave the glycosidic bonds between -1 and +2 within the substrate. Furthermore, The ABTS+, hydroxyl and DPPH radicals scavenging activity of the enzymatic hydrolysates prepared by AlgSH17 reached up to 91.53%, 81.23% and 61.06%, respectively, and the enzymatic hydrolysates displayed an excellent preservation effect on fresh-cut apples. The above results suggested that AlgSH17 could be utilized for the production of monosaccharides, antioxidants and food additives.


Assuntos
Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Alginatos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Gammaproteobacteria/enzimologia , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Concentração de Íons de Hidrogênio , Peso Molecular , Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/química , Especificidade por Substrato
8.
Int J Biol Macromol ; 169: 452-462, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33358946

RESUMO

Alginate and its derivatives are annually produced approximately 30,000 tons or more and are applied to various industries as they are natural polymers. The global market for alginate and its derivatives has been growing steadily. There is little research compared to other enzymes produced through biomass degradation or modification. An alginate lyase, MtAl138, from Microbulbifer thermotolerans DAU221 was cloned and identified in Escherichia coli BL21 (DE3). MtAl138 contains a highly conserved motif (R538TELR, Q607IH609, and YFKAGVY716NQ), which indicates that it belongs to the polysaccharide lyase family 7 (PL7). MtAl138, with a molecular weight of 77 kDa worked optimally at 45 °C and pH 7.4. MtAl138 showed twice as much activity as when there was no NaCl when there was between 100 and 600 mM NaCl. Moreover, its activity increased in organic solvents such as benzene, hexane, methanol, and toluene. Based on the thin layer chromatography analyses, MtAl38 is an endo-type enzyme that produces di-, tri-, or tetrasaccharides from polyG and polyM. This study provided that MtAl138 is an endoenzyme that showed outstanding enzymatic activity at concentrated salt solutions and organic solvents, which makes it a reasonably attractive enzyme for use in various industries.


Assuntos
Gammaproteobacteria/metabolismo , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Alginatos/química , Alginatos/metabolismo , Proteínas de Bactérias/química , Cromatografia em Camada Fina/métodos , Clonagem Molecular/métodos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/química , Solventes/metabolismo , Especificidade por Substrato , Temperatura
9.
Int J Biol Macromol ; 166: 1272-1279, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159942

RESUMO

Alginate lyases are essential tools to prepare alginate oligosaccharides with various biological activities. However, alginate lyases with excellent properties such as high activity and good thermal stability are still in shortage. Therefore, it is crucial to exploit new alginate lyases with high activity and polysaccharide-degrading efficiency for alginate oligosaccharide preparation. Herein, we proposed to construct a novel hybrid alginate lyase with improved property by module recombination. The hybrid alginate lyase, designated as Aly7C, was successfully constructed by recombining the carbohydrate binding module (CBM) of Aly7A with the catalytic module of Aly7B. Interestingly, the hybrid enzyme Aly7C exhibited higher activity than the catalytic domain. Moreover, it could degrade sodium alginate, polyM and polyG into oligosaccharides with degrees of polymerization (Dps) 2-5, which exhibit perfect product specificity. This work provides a new insight into well-defined generation of alginate oligosaccharides with associated CBMs and enhances the understanding of functions of the modules.


Assuntos
Alginatos/metabolismo , Oligossacarídeos/biossíntese , Polissacarídeo-Liases/metabolismo , Recombinação Genética , Sequência de Aminoácidos , Cinética , Simulação de Acoplamento Molecular , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Homologia Estrutural de Proteína , Especificidade por Substrato
10.
Sci Rep ; 10(1): 20177, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214682

RESUMO

Sunflower pollen was reported to contain respiratory allergens responsible for occupational allergy and pollinosis. The present study describes the comprehensive characterization of a major sunflower allergen Hel a 6. Natural Hel a 6 was purified from sunflower pollen by anion exchange and gel filtration chromatography. Hel a 6 reacted with IgE-antibodies from 57% of 39 sunflower-sensitized patient sera suggesting it to be a major allergen. The patients were of Indian origin and suffering from pollinosis and allergic rhinitis. Hel a 6 exhibited allergenic activity by stimulating mediator release from basophils. Monomeric Hel a 6 displayed pectate lyase activity. The effect of various physicochemical parameters such as temperature, pH, and calcium ion on the functional activity of Hel a 6 revealed a stable nature of the protein. Hel a 6 was folded, and its melting curve showed reversible denaturation in which it refolded back to its native conformation from a denatured state. Hel a 6 displayed a high degree of sequence conservation with the pectate lyase allergens from related taxonomic families such as Amb a 1 (67%) and Art v 6 (57%). The IgE-cross reactivity was observed between Hel a 6 and its ragweed and mugwort homologs. The cross-reactivity was further substantiated by the mediator release when Hel a 6-sensitized effector cells were cross-stimulated with Art v 6 and Amb a 1. Several putative B cell epitopes were predicted and mapped on these 3 allergens. Two antigenic regions were found to be commonly shared by these 3 allergens, which could be crucial for cross-reactivity. In conclusion, Hel a 6 serves as a candidate molecule for diagnosis and immunotherapy for weed allergy.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Helianthus/química , Hipersensibilidade/imunologia , Polissacarídeo-Liases/imunologia , Alérgenos/isolamento & purificação , Alérgenos/metabolismo , Ambrosia/imunologia , Dicroísmo Circular , Reações Cruzadas , Epitopos/imunologia , Fazendas , Helianthus/imunologia , Histamina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Soros Imunes , Espectrometria de Massas , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/isolamento & purificação , Pólen/enzimologia , Pólen/imunologia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Dobramento de Proteína , Testes Cutâneos , Temperatura
11.
BMC Microbiol ; 20(1): 302, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-33036549

RESUMO

BACKGROUND: Yaks are able to utilize the gastrointestinal microbiota to digest plant materials. Although the cellulolytic bacteria in the yak rumen have been reported, there is still limited information on the diversity of the major microorganisms and putative carbohydrate-metabolizing enzymes for the degradation of complex lignocellulosic biomass in its gut ecosystem. RESULTS: Here, this study aimed to decode biomass-degrading genes and genomes in the yak fecal microbiota using deep metagenome sequencing. A comprehensive catalog comprising 4.5 million microbial genes from the yak feces were established based on metagenomic assemblies from 92 Gb sequencing data. We identified a full spectrum of genes encoding carbohydrate-active enzymes, three-quarters of which were assigned to highly diversified enzyme families involved in the breakdown of complex dietary carbohydrates, including 120 families of glycoside hydrolases, 25 families of polysaccharide lyases, and 15 families of carbohydrate esterases. Inference of taxonomic assignments to the carbohydrate-degrading genes revealed the major microbial contributors were Bacteroidaceae, Ruminococcaceae, Rikenellaceae, Clostridiaceae, and Prevotellaceae. Furthermore, 68 prokaryotic genomes were reconstructed and the genes encoding glycoside hydrolases involved in plant-derived polysaccharide degradation were identified in these uncultured genomes, many of which were novel species with lignocellulolytic capability. CONCLUSIONS: Our findings shed light on a great diversity of carbohydrate-degrading enzymes in the yak gut microbial community and uncultured species, which provides a useful genetic resource for future studies on the discovery of novel enzymes for industrial applications.


Assuntos
Esterases/genética , Microbioma Gastrointestinal/genética , Glicosídeo Hidrolases/genética , Metagenômica , Consórcios Microbianos/genética , Polissacarídeo-Liases/genética , Rúmen/microbiologia , Animais , Bacteroidaceae/enzimologia , Bacteroidaceae/genética , Bacteroidaceae/isolamento & purificação , Bacteroidetes/enzimologia , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Metabolismo dos Carboidratos , Bovinos , Clostridiaceae/enzimologia , Clostridiaceae/genética , Clostridiaceae/isolamento & purificação , Esterases/classificação , Esterases/isolamento & purificação , Esterases/metabolismo , Fezes/microbiologia , Expressão Gênica , Variação Genética , Glicosídeo Hidrolases/classificação , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/metabolismo , Metagenoma , Metagenômica/métodos , Polissacarídeo-Liases/classificação , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Prevotella/enzimologia , Prevotella/genética , Prevotella/isolamento & purificação , Rúmen/enzimologia , Ruminococcus/enzimologia , Ruminococcus/genética , Ruminococcus/isolamento & purificação
12.
Int J Biol Macromol ; 165(Pt A): 1211-1218, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33038404

RESUMO

Hyaluronic acid (HA) is an anionic linear polysaccharide abundantly distributed in the extracellular matrix of mammalian connective, growing, and tumor tissues. Hyaluronidase is used as an important drug diffusion promoter and a tool enzyme to produce HA oligosaccharides. However, there is no thermostable hyaluronidase suitable for application to date. In this study, a thermophilic hyaluronate lyase, TcHly8C, from Thermasporomyces composti DSM22891 was expressed in Escherichia coli. The recombinant TcHly8C was most active at 70 °C, and it retained about 30% of initial activity after incubation at 60 °C for 28 days. The half-lives of TcHly8C at 60 °C and 70 °C were 16.1 d and 2.3 h, respectively. The optimum pH of TcHly8C is 5.93, and it was stable at pH 6.15-10.90. The presence of Mg2+ could enhance its enzymatic activity significantly. Km, kcat, and kcat/Km of TcHly8C towards HA were 3.69 mg∙ml-1, 17.82 s-1, and 4.82 ml∙mg-1∙s-1, respectively. TcHly8C degraded HA in an exolytic mode, and the end product was unsaturated HA disaccharide (ΔUA-GlcNAc). Overall, our results show that TcHly8C is the first reported PL8 exo-type hyaluronate lyase with high thermostability, which provides a potential enzyme used in medicine and production of HA oligosaccharides.


Assuntos
Actinobacteria/enzimologia , Oligossacarídeos/química , Polissacarídeo-Liases/genética , Actinobacteria/genética , Estabilidade Enzimática/genética , Escherichia coli/genética , Temperatura Alta/efeitos adversos , Ácido Hialurônico/química , Oligossacarídeos/biossíntese , Oligossacarídeos/genética , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Especificidade por Substrato
13.
Mar Drugs ; 18(8)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784864

RESUMO

Alginate lyases play an important role in alginate oligosaccharides (AOS) preparation and brown seaweed processing. Many extracellular alginate lyases have been characterized to develop efficient degradation tools needed for industrial applications. However, few studies focusing on intracellular alginate lyases have been conducted. In this work, a novel intracellular alkaline alginate lyase Alyw202 from Vibrio sp. W2 was cloned, expressed and characterized. Secretory expression was performed in a food-grade host, Yarrowia lipolytica. Recombinant Alyw202 with a molecular weight of approximately 38.3 kDa exhibited the highest activity at 45 °C and more than 60% of the activity in a broad pH range of 3.0 to 10.0. Furthermore, Alyw202 showed remarkable metal ion-tolerance, NaCl independence and the capacity of degrading alginate into oligosaccharides of DP2-DP4. Due to the unique pH-stable and high salt-tolerant properties, Alyw202 has potential applications in the food and pharmaceutical industries.


Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Polissacarídeo-Liases/metabolismo , Cloreto de Sódio/química , Vibrio/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Catálise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Íons , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
14.
Sci Rep ; 10(1): 10920, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616809

RESUMO

Alginate-degrading bacteria or alginate lyases can be used to oligomerize alginate. In this study, an alginate-degrading bacterium with high alginolytic activity was successfully screened by using Sargassum fusiforme sludge. When the strain was grown on a plate containing sodium alginate, the transparent ring diameter (D) was 2.2 cm and the ratio (D/d) of transparent ring diameter to colony diameter (d) was 8.8. After 36 h in culture at a temperature of 28 °C shaken at 150 r/min, the enzymatic activity of the fermentation supernatant reached 160 U/mL, and the enzymatic activity of the bacterial precipitate harvested was 2,645 U/mL. The strain was named Cobetia sp. cqz5-12. Its genome is circular in shape, 4,209,007 bp in size, with a 62.36% GC content. It contains 3,498 predicted coding genes, 72 tRNA genes, and 21 rRNA genes. The functional annotations for the coding genes demonstrated that there were 181 coding genes in the genome related to carbohydrate transport and metabolism and 699 coding genes with unknown functions. Three putative coding genes, alg2107, alg2108 and alg2112, related to alginate degradation were identified by analyzing the carbohydrate active enzyme (CAZy) database. Moreover, proteins Alg2107 and Alg2112 were successfully expressed and exhibited alginate lyase activity.


Assuntos
Genoma Bacteriano , Halomonadaceae/genética , Alginatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Mapeamento Cromossômico , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , DNA Circular/genética , Ontologia Genética , Halomonadaceae/enzimologia , Halomonadaceae/crescimento & desenvolvimento , Halomonadaceae/isolamento & purificação , Filogenia , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/isolamento & purificação , Sargassum/microbiologia , Sequenciamento Completo do Genoma
15.
Molecules ; 25(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526868

RESUMO

Pectinases are an important class of enzymes distributed in many higher plants and microorganisms. One of these enzymes is pectin lyase which has an important role in industrial applications such as clarification of fruit juices. Pectin lyase was purified with 73% yield from Pseudomonas putida bacteria and was 220.7-fold using three phase precipitation technique. Molecular weight of purified pectin lyase was determined as 32.88 kDa with SDS-polyacrylamide gel electrophoresis. The pectin lyase was immobilized covalently via the L-glutaraldehyde spacer to the cellulosic structures of lily flowers (Lilium candidum L.). The immobilized enzyme was then magnetized by modifying with γ-Fe3O4 nanoparticles and determined the most appropriate immobilization conditions as pH 6 and 30 °C. Purified pectin lyase was connected to magnetized support material after 60 min at the rate of 86.4%. The optimum pH and temperatures for the free and immobilized pectin lyase was found to be 6.0 and 40 °C. pH and thermal stabilities of the free and immobilized pectin lyase enzyme have been preserved at high-low temperatures and pH. The structural characterization of the immobilized pectin lyase was performed by SEM, FT-IR, and XRD chromatographic analyses and it was observed that the support materials structure was appropriated to immobilization with pectin lyase and to modify with Fe3O4 nanoparticles.


Assuntos
Enzimas Imobilizadas/metabolismo , Flores/química , Lilium/química , Fenômenos Magnéticos , Nanopartículas/química , Polissacarídeo-Liases/metabolismo , Pseudomonas putida/enzimologia , Celulose/química , Celulose/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/química , Glutaral/química , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação
16.
Mar Drugs ; 18(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244418

RESUMO

Alginate, an important acidic polysaccharide in marine multicellular algae, has attracted attention as a promising biomass resource for the production of medical and agricultural chemicals. Alginate lyase is critical for saccharification and utilization of alginate. Discovering appropriate and efficient enzymes for depolymerizing alginate into fermentable fractions plays a vital role in alginate commercial exploitation. Herein, a unique alginate lyase, AlgSH7, belonging to polysaccharide lyase 7 family is purified and characterized from an alginate-utilizing bacterium Microbulbifer sp. SH-1. The purified AlgSH7 shows a specific activity of 12,908.26 U/mg, and its molecular weight is approximately 66.4 kDa. The optimal temperature and pH of AlgSH7 are 40 °C and pH 9.0, respectively. The enzyme exhibits stability at temperatures below 30 °C and within an extensive pH range of 5.0-9.0. Metal ions including Na+, K+, Al3+, and Fe3+ considerably enhance the activity of the enzyme. AlgSH7 displays a preference for poly-mannuronic acid (polyM) and a very low activity towards poly-guluronic acid (polyG). TLC and ESI-MS analysis indicated that the enzymatic hydrolysates mainly include disaccharides, trisaccharides, and tetrasaccharides. Noteworthy, the alginate oligosaccharides (AOS) prepared by AlgSH7 have an eliciting activity against chilling stress in Chinese flowering cabbage (Brassica parachinensis L.). These results suggest that AlgSH7 has a great potential to design an effective process for the production of alginate oligomers for agricultural applications.


Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Brassica/efeitos dos fármacos , Gammaproteobacteria/enzimologia , Polissacarídeo-Liases/metabolismo , Alginatos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Brassica/fisiologia , Resposta ao Choque Frio/efeitos dos fármacos , Produção Agrícola , Ensaios Enzimáticos , Estabilidade Enzimática , Gammaproteobacteria/isolamento & purificação , Peso Molecular , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Microbiologia do Solo , Especificidade por Substrato
17.
Mar Drugs ; 18(2)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023889

RESUMO

Alginate extracted from widely cultured brown seaweed can be hydrolyzed by alginate lyase to produce alginate oligosaccharides (AOS) with intriguing biological activities. Herein, a novel alginate lyase Aly1281 was cloned from marine bacterium Pseudoalteromonas carrageenovora ASY5 isolated from mangrove soil and found to belong to polysaccharide lyase family 7. Aly1281 exhibited maximum activity at pH 8.0 and 50 °C and have broad substrate specificity for polyguluronate and polymannuronate. Compared with other alginate lyases, Aly1281 exhibited high degradation specificity and mainly produced di-alginate oligosaccharides which displayed good antioxidant function to reduce ferric and scavenge radicals such as hydroxyl, ABTS+ and DPPH. Moreover, the catalytic activity and kinetic performance of Aly1281 were highly improved with the addition of salt, demonstrating a salt-activation property. A putative conformational structural feature of Aly1281 was found by MD simulation analysis for understanding the salt-activation effect.


Assuntos
Polissacarídeo-Liases/isolamento & purificação , Pseudoalteromonas/enzimologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Concentração de Íons de Hidrogênio , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Pseudoalteromonas/isolamento & purificação , Microbiologia do Solo , Especificidade por Substrato , Temperatura
18.
Biotechnol Lett ; 41(10): 1187-1200, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31418101

RESUMO

OBJECTIVES: Bifunctional alginate lyase can efficiently saccharify alginate biomass and prepare functional oligosaccharides of alginate. RESULTS: A new BP-2 strain that produces alginate lyase was screened and identified from rotted Sargassum. A new alginate lyase, Alg17B, belonging to the polysaccharide lyase family 17, was isolated and purified from BP-2 fermentation broth by freeze-drying, dialysis, and ion exchange chromatography. The enzymatic properties of the purified lyase were investigated. The molecular weight of Alg17B was approximately 77 kDa, its optimum reaction temperature was 40-45 °C, and its optimum reaction pH was 7.5-8.0. The enzyme was relatively stable at pH 7.0-8.0, with a temperature range of 25-35 °C, and the specific activity of the purified enzyme reached 4036 U/mg. A low Na+ concentration stimulated Alg17B enzyme activity, but Ca2+, Zn2+, and other metal ions inhibited it. Substrate specificity analysis, thin-layer chromatography, and mass spectrometry showed that Alg17B is an alginate lyase that catalyses the hydrolysis of sodium alginate, polymannuronic acid (polyM) and polyguluronic acid to produce monosaccharides and low molecular weight oligosaccharides. Alg17B is also bifunctional, exhibiting both endolytic and exolytic activities toward alginate, and has a wide substrate utilization range with a preference for polyM. CONCLUSIONS: Alg17B can be used to saccharify the main carbohydrate, alginate, in the ethanolic production of brown algae fuel as well as in preparing and researching oligosaccharides.


Assuntos
Organismos Aquáticos/enzimologia , Gammaproteobacteria/enzimologia , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Sargassum/microbiologia , Alginatos/metabolismo , Ácido Algínico/metabolismo , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Ativadores de Enzimas/análise , Inibidores Enzimáticos/análise , Estabilidade Enzimática , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidrólise , Peso Molecular , Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeos Bacterianos/metabolismo , Especificidade por Substrato , Temperatura
19.
Mar Drugs ; 17(5)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137685

RESUMO

Alginate oligosaccharides (AOS) show versatile bioactivities. Although various alginate lyases have been characterized, enzymes with special characteristics are still rare. In this study, a polysaccharide lyase family 7 (PL7) alginate lyase-encoding gene, aly08, was cloned from the marine bacterium Vibrio sp. SY01 and expressed in Escherichia coli. The purified alginate lyase Aly08, with a molecular weight of 35 kDa, showed a specific activity of 841 U/mg at its optimal pH (pH 8.35) and temperature (45 °C). Aly08 showed good pH-stability, as it remained more than 80% of its initial activity in a wide pH range (4.0-10.0). Aly08 was also a thermo-tolerant enzyme that recovered 70.8% of its initial activity following heat shock treatment for 5 min. This study also demonstrated that Aly08 is a polyG-preferred enzyme. Furthermore, Aly08 degraded alginates into disaccharides and trisaccharides in an endo-manner. Its thermo-tolerance and pH-stable properties make Aly08 a good candidate for further applications.


Assuntos
Organismos Aquáticos/enzimologia , Polissacarídeo-Liases/metabolismo , Temperatura , Vibrio/enzimologia , Organismos Aquáticos/genética , Estabilidade Enzimática , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vibrio/genética
20.
Mar Drugs ; 17(4)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934874

RESUMO

Seaweeds are of significant interest in the food, pharmaceutical, and agricultural industries as they contain several commercially relevant bioactive compounds. Current extraction methods for macroalgal-derived metabolites are, however, problematic due to the complexity of the algal cell wall which hinders extraction efficiencies. The use of advanced extraction methods, such as enzyme-assisted extraction (EAE), which involve the application of commercial algal cell wall degrading enzymes to hydrolyze the cell wall carbohydrate network, are becoming more popular. Ascophyllum nodosum samples were collected from the Irish coast and incubated in artificial seawater for six weeks at three different temperatures (18 °C, 25 °C, and 30 °C) to induce decay. Microbial communities associated with the intact and decaying macroalga were examined using Illumina sequencing and culture-dependent approaches, including the novel ichip device. The bacterial populations associated with the seaweed were observed to change markedly upon decay. Over 800 bacterial isolates cultured from the macroalga were screened for the production of algal cell wall polysaccharidases and a range of species which displayed multiple hydrolytic enzyme activities were identified. Extracts from these enzyme-active bacterial isolates were then used in EAE of phenolics from Fucus vesiculosus and were shown to be more efficient than commercial enzyme preparations in their extraction efficiencies.


Assuntos
Ascophyllum/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fracionamento Químico/métodos , Polissacarídeo-Liases/biossíntese , Polissacarídeo-Liases/química , Bactérias/enzimologia , Bactérias/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Fucus/química , Hidrólise , Microbiota , Fenóis/isolamento & purificação , Polissacarídeo-Liases/isolamento & purificação , Proteólise , Alga Marinha/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA