Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.812
Filtrar
1.
Carbohydr Polym ; 337: 122139, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710550

RESUMO

A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked ß-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.


Assuntos
Proteína HMGB1 , NF-kappa B , Hepatopatia Gordurosa não Alcoólica , Pectinas , Rosa , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Rosa/química , Receptor 4 Toll-Like/metabolismo , Proteína HMGB1/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Pectinas/farmacologia , Pectinas/química , Pectinas/isolamento & purificação , Masculino , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos
2.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710561

RESUMO

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Assuntos
Antioxidantes , Glucanos , Glucanos/química , Glucanos/farmacologia , Glucanos/isolamento & purificação , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Agaricales/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Peso Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Basidiomycota/química , Sobrevivência Celular/efeitos dos fármacos
3.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710573

RESUMO

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Assuntos
Antivirais , Herpesvirus Humano 1 , Polissacarídeos , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Herpesvirus Humano 1/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Células Vero , Humanos , Sulfatos/química , Sulfatos/farmacologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos
4.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732217

RESUMO

The Euganean Thermal District, situated in North-East Italy, is one of Europe's largest and oldest thermal centres. The topical application of its therapeutic thermal muds is recognised by the Italian Health System as a beneficial treatment for patients suffering from arthro-rheumatic diseases. Polysaccharides produced by the mud microbiota have been recently identified as anti-inflammatory bioactive molecules. In this paper we analysed the efficacy of Microbial-Polysaccharides (M-PS) derived from mature muds obtained at different maturation temperatures, both within and outside the codified traditional mud maturation range. M-PSs were extracted from six mature muds produced by five spas of the Euganean Thermal District and investigated for their chemical properties, monosaccharide composition and in vivo anti-inflammatory potential, using the zebrafish model organism. Additionally, mature muds were characterized for their microbiota composition using Next-Generation Sequencing. The results showed that all M-PSs exhibit similar anti-inflammatory potential, referable to their comparable chemical composition. This consistency was observed despite changes in cyanobacteria populations, suggesting a possible role of the entire microbial community in shaping the properties of these biomolecules. These findings highlight the importance of scientific research in untangling the origins of the therapeutic efficacy of Euganean Thermal muds in the treatment of chronic inflammatory conditions.


Assuntos
Anti-Inflamatórios , Peixe-Zebra , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Itália , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Microbiota/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Peloterapia
5.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731534

RESUMO

Two unreported heteropolysaccharides, denoted as YCJP-1 and YCJP-2, were isolated from the herbs of Chloranthus japonicus. YCJP-1 was a heteropolysaccharide composed of glucose, galactose, arabinose, mannose, rhamnose, and a minor proportion of uronic acids, with the molecular weight mainly distributed in the 74,475-228,443 Da range. YCJP-2 was mainly composed of glucose, mannose, and galactose, with the molecular weights ranging from 848 to 5810 Da. To further evaluate the anti-gastric cancer effects of C. japonicus, the inhibitory effects of the crude polysaccharide (YCJP) and the purified polysaccharides (YCJP-1 and YCJP-2) were determined using a CCK-8 assay and colon-forming assay on MGC-803 and AGS gastric cancer cell lines. Our results showed that YCJP, YCJP-1, and YCJP-2 possess prominent inhibitory effects on the proliferation of MGC-803 and AGS cells, and the AGS cell was more sensitive to YCJP, YCJP-1, and YCJP-2. Moreover, YCJP-2 demonstrated superior anti-gastric cancer effects compared to YCJP-1. This could potentially be attributed to YCJP-2's higher glucose content and narrower molecular weight distribution.


Assuntos
Proliferação de Células , Polissacarídeos , Neoplasias Gástricas , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Peso Molecular , Caryophyllaceae/química
6.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731567

RESUMO

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Assuntos
Macrófagos , Fagocitose , Polygonatum , Polissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Polygonatum/química , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Fagocitose/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Células RAW 264.7 , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Peso Molecular
7.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731576

RESUMO

In order to reduce the waste of Akebia trifoliata peel and maximize its utilization, in this study, on the basis of a single-factor experiment and the response surface method, the optimum technological conditions for the extraction of soluble dietary fiber from Akebia trifoliata peel with the compound enzyme method were obtained. The chemical composition, physical and chemical properties, structural characterization and biological activity of the purified soluble dietary fiber (AP-SDF) from the Akebia trifoliata peel were analyzed. We discovered that that the optimum yield was 20.87% under the conditions of cellulase addition 600 U/g, enzymolysis time 100 min, solid-liquid ratio 1:24 g/mL and enzymolysis temperature 51 °C. At the same time, AP-SDF was a porous network structure cellulose type I acidic polysaccharose mainly composed of arabinoxylan (36.03%), galacturonic acid (27.40%) and glucose (19.00%), which possessed the structural characteristic peaks of the infrared spectra of polysaccharides and the average molecular weight (Mw) was 95.52 kDa with good uniformity. In addition, the AP-SDF exhibited high oil-holding capacity (15.11 g/g), good water-holding capacity and swelling capacity, a certain antioxidant capacity in vitro, hypoglycemic activity in vitro for α-glucosidase inhibition and hypolipidemic activity in vitro for the binding ability of bile acids and cholesterol. These results will provide a theoretical basis for the development of functional products with antioxidant, hypoglycemic and hypolipidemic effects, which have certain application value in related industries.


Assuntos
Fibras na Dieta , Fibras na Dieta/análise , Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solubilidade , Celulase/química , Celulase/metabolismo , Peso Molecular , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação
8.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731598

RESUMO

Obtaining high-added value compounds from agricultural waste receives increasing attention, as it can both improve resource utilization efficiency and reduce waste generation. In this study, polysaccharides are extracted from the discarded roots of Abelmoschus manihot (L.) by the high-efficiency ultrasound-assisted extraction (UAE). The optimized condition was determined as solid-liquid ratio SL ratio = 1:20, temperature T = 30 °C and time T = 40 min, achieving an extraction yield of 13.41%. Composition analysis revealed that glucose (Glc, 44.65%), rhamnose (Rha, 26.30%), galacturonic acid (GalA, 12.50%) and galactose (Gal, 9.86%) are the major monosaccharides of the extract. The extract showed a low degree of esterification (DE) value of 40.95%, and its Fourier-transform infrared (FT-IR) spectrum exhibited several characteristic peaks of polysaccharides. Inspired by the wide cosmetic applications of polysaccharides, the skincare effect of the extract was evaluated via the moisture retention, total phenolic content (TPC) quantification, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity, anti-hyaluronidase and anti-elastase activity experiments. The extract solutions demonstrated a 48 h moisture retention rate of 10.75%, which is superior to that of commercially available moisturizer hyaluronic acid (HA). Moreover, both the TPC value of 16.16 mg GAE/g (dw) and DPPH-free radical scavenging activity of 89.20% at the concentration of 2 mg/mL indicated the strong anti-oxidant properties of the extract. Furthermore, the anti-hyaluronidase activity and moderate anti-elastase activity were determined as 72.16% and 42.02%, respectively. In general, in vitro skincare effect experiments suggest moisturizing, anti-oxidant, anti-radical and anti-aging activities of the A. manihot root extract, indicating its potential applications in the cosmetic industry.


Assuntos
Abelmoschus , Antioxidantes , Extratos Vegetais , Raízes de Plantas , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Abelmoschus/química , Antioxidantes/química , Antioxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Higiene da Pele/métodos , Ramnose/química , Galactose , Ácidos Hexurônicos/química , Fenóis/química , Fenóis/análise , Fenóis/farmacologia , Humanos
9.
Int J Biol Macromol ; 266(Pt 2): 131254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565362

RESUMO

Acorus tatarinowii, a famous traditional Chinese medicine, is used for the clinical treatment of memory impairment and dementia. In this research, AT50, the crude polysaccharide extracted from A. tatarinowii rhizome, significantly improved the memory and learning ability of mice with Alzheimer's disease (AD) and exerted excellent anti-neuroinflammatory effects. More importantly, AT50 returned the levels of NO, TNF-α, IL-1ß, PGE-2, and IL-6 in AD mouse brains to normal levels. To identify the active ingredients in AT50, a heteropolysaccharide ATP50-3 was obtained from AT50. Structural analysis indicated ATP50-3 consisted of α-L-Araf-(1→, →2)-α-L-Araf-(1→, →3)-α-L-Araf-(1→, →5)-α-L-Araf-(1→, α-D-Xylp-(1→, →3,4)-ß-D-Xylp-(1→, →3)-α-D-Galp-(1→, →3,6)-α-D-Galp-(1→, →6)-4-OAc-α-D-Galp-(1→, →3,4,6)-α-D-Galp-(1→, →4)-α-D-Glcp-(1→, →2,3,6)-ß-D-Glcp-(1→, →4,6)-α-D-Manp-(1→, →3,4)-α-L-Rhap-(1→, →4)-α-D-GalpA-(1→, and →4)-α-D-GlcpA-(1 â†’ residues and terminated with Xyl and Ara. Additionally, ATP50-3 significantly inhibited the release of proinflammatory factors in lipopolysaccharide-stimulated BV2 cells. ATP50-3 may be an active constituent of AT50, responsible for its anti-neuroinflammatory effects, with great potential to treat AD.


Assuntos
Acorus , Anti-Inflamatórios , Polissacarídeos , Rizoma , Acorus/química , Animais , Rizoma/química , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Modelos Animais de Doenças
10.
Int J Biol Macromol ; 267(Pt 1): 131396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582468

RESUMO

In this study, the novel polysaccharides named HSP-0 M and HSP-0.1 M were successfully purified from Huangshui (HS), and their structural properties and bioactivities were investigated. Structural analysis revealed that HSP-0 M had a molecular weight of 493.87 kDa and was composed of arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 1.48:1.09:26.52:1.33:1.00. On the other hand, HSP-0.1 M was made up of fructose, arabinose, galactose, glucose, xylose, mannose, ribose, galacturonic acid and glucuronic acid in a ratio of 2.67:26.00:29.10:36.83:16.22:30.53:1.00:1.43:3.64 with a molecular weight of 157.6 kDa. Methylated and 2D NMR analyses indicated that T-Glcp-(1 â†’ 4)-Glcp-(1 â†’ 2)-Glcp-(1 â†’ 3)-Glcp was the primary chain of HSP-0 M, and the backbone of HSP-0.1 M was made up of →3)-Galp-(1 â†’ 6)-Manp-(1 â†’ 3)-Glcp-(1 â†’ 6)-Glcp-(1 â†’ 2)-Manp-(1 â†’ 6)-Glcp-(1 â†’ 3)-Galp. Morphological research showed that both polysaccharides were homogeneous as well as exhibit a web-like structure and an irregular lamellar structure. Furthermore, HSP-0 M demonstrated the capacity to safeguard Lactococcus lactis from damage caused by low temperatures and freeze-drying, while HSP-0.1 M exhibited noteworthy antioxidant activity. These results established a theoretical foundation for the applications of HSPs in food products, cosmetics, and medicines.


Assuntos
Antioxidantes , Peso Molecular , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Monossacarídeos/análise , Monossacarídeos/química , Metilação
11.
Int J Biol Macromol ; 267(Pt 1): 131336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583840

RESUMO

Fucoidan, a sulfated polysaccharide of marine origin found in brown algae and sea cucumbers, has been identified as a neuroprotective compound. In this study, a novel fucoidan MF4 was extracted from Fucus vesiculosus and isolated using Q-Sepharose fast-flow ion-exchange chromatography. The physicochemical properties of MF4 were characterized. MF4 is primarily composed of fucose, xylose, galactose, glucose, and mannose in a molar ratio of 12.3: 4.9: 1.1: 1.0: 1.1, with an average molecular weight of 67.7 kDa. Notably, MF4 demonstrated suppression of LLC tumor growth in vivo. RNA-sequencing analysis revealed that MF4 enhanced the expression of type I interferon-associated downstream genes in macrophages. Furthermore, MF4 increased the levels of phosphorylated TBK1 and IRF3 proteins in vitro. By activating the STING-TBK1-IRF3 signaling pathway, MF4 may enhance the antitumor activity of macrophages. Taken together, MF4 has promising potential as an antitumor and immunomodulatory agent.


Assuntos
Carcinoma Pulmonar de Lewis , Fator Regulador 3 de Interferon , Polissacarídeos , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Camundongos , Fator Regulador 3 de Interferon/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Células RAW 264.7
12.
Int J Biol Macromol ; 267(Pt 1): 131467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599436

RESUMO

In recent years, Flammulina velutipes (F. velutipes) has attracted consequential attention in various research fields due to its rich composition of proteins, vitamins, amino acids, polysaccharides, and polyphenols. F. velutipes polysaccharides (FVPs) are considered as key bioactive components of F. velutipes, demonstrating multiple physiological activities, including immunomodulatory, anti-inflammatory, and antibacterial properties. Moreover, they offer health benefits such as antioxidant and anti-aging properties, which have exceptionally valuable clinical applications. Polysaccharides derived from different sources exhibit a wide range of biomedical functions and distinct biological activities. The varied biological functions of polysaccharides, coupled with their extensive application in functional foods and clinical applications, have prompted a heightened focus on polysaccharide research. Additionally, the extraction, deproteinization, and purification of FVPs are fundamental to investigate the structure and biological activities of polysaccharides. Therefore, this review provides a comprehensive and systematic overview of the extraction, deproteinization, purification, characterization, and structural elucidation of FVPs. Furthermore, the biological activities and mechanisms of FVPs have been further explored through in vivo and in vitro experiments. This review aims to provide a theoretical foundation and guide future research and development of FVPs.


Assuntos
Flammulina , Flammulina/química , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Antibacterianos/farmacologia , Antibacterianos/química
13.
Food Funct ; 15(9): 4703-4723, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38606510

RESUMO

Sea buckthorn (Hippophae L.), a well-known medicinal and edible plant, is known as the "king of VC". Due to its excellent medicinal and nutritional value, it has been developed into a variety of functional products. Sea buckthorn polysaccharides (SPs), one of the important and representative active components, have attracted the attention of researchers in the fields of health food and medicine because of their potential beneficial effects on human health. Recently, SPs have shown various biological activities in in vitro and in vivo studies, such as anti-obesity, immunomodulatory, anti-tumor, antioxidant, anti-inflammatory, anti-fatigue, and hepatoprotective activities. This review provides a comprehensive and systematic summary of the extraction and purification methods, structural characterization, biological activity, and market trends of SPs to provide a theoretical basis for their therapeutic potential and sanitarian functions. A future scope is needed to further explore the medicinal and nutritional value of SPs and incorporate them in functional food products.


Assuntos
Hippophae , Extratos Vegetais , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Hippophae/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Plantas Comestíveis/química , Plantas Medicinais/química , Animais , Alimento Funcional
14.
Int J Biol Macromol ; 267(Pt 1): 131499, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614164

RESUMO

The genus Lilium (Lilium) has been widely used in East Asia for over 2000 years due to its rich nutritional and medicinal value, serving as both food and medicinal ingredient. Polysaccharides, as one of the most important bioactive components in Lilium, offer various health benefits. Recently, polysaccharides from Lilium plants have garnered significant attention from researchers due to their diverse biological properties including immunomodulatory, anti-oxidant, anti-diabetic, anti-tumor, anti-bacterial, anti-aging and anti-radiation effects. However, the limited comprehensive understanding of polysaccharides from Lilium plants has hindered their development and utilization. This review focuses on the extraction, purification, structural characteristics, biological activities, structure-activity relationships, applications, and relevant bibliometrics of polysaccharides from Lilium plants. Additionally, it delves into the potential development and future research directions. The aim of this article is to provide a comprehensive understanding of polysaccharides from Lilium plants and to serve as a basis for further research and development as therapeutic agents and multifunctional biomaterials.


Assuntos
Lilium , Polissacarídeos , Lilium/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Relação Estrutura-Atividade , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação
15.
Carbohydr Polym ; 336: 122080, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670772

RESUMO

Traditional Chinese medicine polysaccharides have numerous biological activities with broad applications in the biomedical industries. However, a clear understanding of the pharmacological activities of compound polysaccharides with multi-component structures remain challenging. This study aimed to investigate the immune boosting effect of compound polysaccharides on the influenza vaccine and assess the preliminary structure-activity relationship. The compound polysaccharide (CP) was isolated from the combined Chinese herbs lentinan, pachymaran and tremellan, and purified by gradient ethanol precipitation to obtain its subcomponents of CP-20, CP-40, CP-60, and CP-80 with decreasing molecular weights. These polysaccharides were mainly composed of glucans with different linkage patterns, including α-(1 â†’ 3)-glucan, α-(1 â†’ 4)-glucan and ß-(1 â†’ 6)-glucan. A significant improvement was observed in the survival of mice vaccinated with inactivated (IAV) vaccine and the isolated polysaccharides as adjuvants. A reduction in the pulmonary virus titer and weight loss were also observed. Moreover, CP-40 and CP-60, as well as the original CP, significantly enhanced the serum anti-IAV antibody titers and interleukin IL-2, IL-5, and IL-6 concentrations. These preliminary results indicate the immune boosting effect of the compound polysaccharides is highly relevant to the specific structural properties of the subcomponent, and CP-40 is worthy of further exploration as a glycan adjuvant for the IAV vaccine.


Assuntos
Adjuvantes Imunológicos , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Polissacarídeos , Vacinas de Produtos Inativados , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/farmacologia , Animais , Vacinas de Produtos Inativados/imunologia , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Citocinas/metabolismo
16.
Mar Drugs ; 22(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667770

RESUMO

Shrimp processing generates substantial waste, which is rich in valuable components such as polysaccharides, proteins, carotenoids, and fatty acids. This review provides a comprehensive overview of the valorization of shrimp waste, mainly shrimp shells, focusing on extraction methods, bioactivities, and potential applications of these bioactive compounds. Various extraction techniques, including chemical extraction, microbial fermentation, enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pressurized techniques are discussed, highlighting their efficacy in isolating polysaccharides, proteins, carotenoids, and fatty acids from shrimp waste. Additionally, the bioactivities associated with these compounds, such as antioxidant, antimicrobial, anti-inflammatory, and antitumor properties, among others, are elucidated, underscoring their potential in pharmaceutical, nutraceutical, and cosmeceutical applications. Furthermore, the review explores current and potential utilization avenues for these bioactive compounds, emphasizing the importance of sustainable resource management and circular economy principles in maximizing the value of shrimp waste. Overall, this review paper aims to provide insights into the multifaceted aspects of shrimp waste valorization, offering valuable information for researchers, industries, and policymakers interested in sustainable resource utilization and waste-management strategies.


Assuntos
Carotenoides , Ácidos Graxos , Polissacarídeos , Animais , Ácidos Graxos/isolamento & purificação , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/química , Carotenoides/farmacologia , Carotenoides/isolamento & purificação , Carotenoides/química , Penaeidae/química , Proteínas/isolamento & purificação , Resíduos , Humanos , Gerenciamento de Resíduos/métodos , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química
17.
Mar Drugs ; 22(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667805

RESUMO

Three Laminaria japonica polysaccharides (LJPs) extracted via water extraction (LJP-W), acid extraction (LJP-A), and enzymatic extraction (LJP-E) were used as raw materials to be cross-linked with chitosan and polyvinyl alcohol to prepare hydrogels. Compared with conventional hydrogel systems, all three types of LJP-based polysaccharide hydrogels exhibited better swelling properties (14 times their original weight) and the absorption ability of simulated body fluid (first 2 h: 6-10%). They also demonstrated better rigidity and mechanical strength. Young's modulus of LJP-E was 4 times that of the blank. In terms of hemostatic properties, all three polysaccharide hydrogels did not show significant cytotoxic and hemolytic properties. The enzyme- and acid-extracted hydrogels (LJP-Gel-A and LJP-Gel-E) demonstrated better whole-blood coagulant ability compared with the water-extracted hydrogel (LJP-Gel-W), as evidenced by the whole blood coagulation index being half that of LJP-Gel-W. Additionally, the lactate dehydrogenase viabilities of LJP-Gel-A and LJP-Gel-E were significantly higher, at about four and three times those of water extraction, respectively. The above results suggested that LJP-Gel-A and LJP-Gel-E exhibited better blood coagulation capabilities than LJP-Gel-W, due to their enhanced platelet enrichment and adhesion properties. Consequently, these hydrogels are more conducive to promoting coagulation and have good potential for wound hemostasis.


Assuntos
Coagulação Sanguínea , Algas Comestíveis , Hemostáticos , Hidrogéis , Laminaria , Polissacarídeos , Hidrogéis/química , Hidrogéis/farmacologia , Laminaria/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Coagulação Sanguínea/efeitos dos fármacos , Hemostáticos/farmacologia , Hemostáticos/química , Hemostáticos/isolamento & purificação , Humanos , Animais , Quitosana/química , Quitosana/farmacologia , Álcool de Polivinil/química , Hemostasia/efeitos dos fármacos , Hemólise/efeitos dos fármacos
18.
Toxins (Basel) ; 16(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668613

RESUMO

BACKGROUND: Snakebite envenomation (SBE) causes diverse toxic effects in humans, including disability and death. Current antivenom therapies effectively prevent death but fail to block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking alternative treatments is crucial. METHODS: This study analyzed the potential of two fucoidan sulfated polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF) against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed by the hemocompatibility test. RESULTS: FVF and UPF did not lyse human red blood cells. FVF and UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2 activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of fibrinogen induced by all these Bothropic venoms. CONCLUSION: FVF and UPF may be of importance as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite incidents in South America, especially Brazil.


Assuntos
Coagulação Sanguínea , Venenos de Crotalídeos , Fucus , Fosfolipases A2 , Polissacarídeos , Undaria , Animais , Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Bothrops , Bothrops jararaca , Venenos de Crotalídeos/toxicidade , Venenos de Crotalídeos/enzimologia , Algas Comestíveis/química , Fucus/química , Fosfolipases A2/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Proteólise/efeitos dos fármacos , Alga Marinha/química , Undaria/química , Serpentes Peçonhentas
19.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675571

RESUMO

Phyllanthus emblica is a natural medicinal herb with diverse bioactivities. Certain extracts from this herb have been confirmed to possess anti-glycolipid metabolic disorder activity. To further develop its utility value and explore its potential in combating glycolipid metabolic disorders, we designed a series of experiments to investigate the structure, antioxidant activity, and anti-glycolipid metabolic disorder activity of Phyllanthus emblica polysaccharides. In this study, we extracted and purified polysaccharides from Phyllanthus emblica and thoroughly analyzed their structure using various techniques, including NMR, methylation analysis, and surface-enhanced Raman spectroscopy. We investigated the hypolipidemic and anti-glycolipid metabolism disorder activity of Phyllanthus emblica polysaccharides for the first time utilizing oleic acid (OA) and advanced glycation end products (AGEs) as inducers. Additionally, the antioxidant activity of Phyllanthus emblica polysaccharides was assessed in vitro. These findings lay the groundwork for future investigations into the potential application of Phyllanthus emblica polysaccharides as an intervention for preventing and treating diabetes.


Assuntos
Antioxidantes , Phyllanthus emblica , Polissacarídeos , Phyllanthus emblica/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Glicolipídeos/química , Glicolipídeos/farmacologia , Glicolipídeos/isolamento & purificação , Produtos Finais de Glicação Avançada/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Ácido Oleico/química , Ácido Oleico/farmacologia , Humanos
20.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675630

RESUMO

AHP-3a, a triple-helix acidic polysaccharide isolated from Alpinia officinarum Hance, was evaluated for its anticancer and antioxidant activities. The physicochemical properties and structure of AHP-3a were investigated through gel permeation chromatography, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. The weight-average molecular weight of AHP-3a was 484 kDa, with the molar percentages of GalA, Gal, Ara, Xyl, Rha, Glc, GlcA, and Fuc being 35.4%, 21.4%, 16.9%, 11.8%, 8.9%, 3.1%, 2.0%, and 0.5%, respectively. Based on the results of the monosaccharide composition analysis, methylation analysis, and NMR spectroscopy, the main chain of AHP-3a was presumed to consist of (1→4)-α-D-GalpA and (1→2)-α-L-Rhap residues, which is a pectic polysaccharide with homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) structural domains containing side chains. In addition, the results of the antioxidant activity assay revealed that the ability of AHP-3a to scavenge DPPH, ABTS, and OH free radicals increased with an increase in its concentration. Moreover, according to the results from the EdU, wound healing, and Transwell assays, AHP-3a can control the proliferation, migration, and invasion of HepG2 and Huh7 hepatocellular carcinoma cells without causing any damage to healthy cells. Thus, AHP-3a may be a natural antioxidant and anticancer component.


Assuntos
Alpinia , Antioxidantes , Compostos de Bifenilo , Polissacarídeos , Alpinia/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células Hep G2 , Peso Molecular , Linhagem Celular Tumoral , Monossacarídeos/análise , Monossacarídeos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Picratos/química , Picratos/antagonistas & inibidores , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA