Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.901
Filtrar
1.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776134

RESUMO

Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.


Assuntos
Polissacarídeos , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Glicosilação , Animais , Suínos , Polissacarídeos/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Linhagem Celular , Receptores de Superfície Celular/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Envelope Viral/metabolismo
2.
Microb Cell Fact ; 23(1): 131, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711081

RESUMO

BACKGROUND: Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS: This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS: This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.


Assuntos
Fermentação , Proteínas Recombinantes , Saccharomycetales , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales/metabolismo , Saccharomycetales/genética , Biomassa , Técnicas de Cultura Celular por Lotes , Polissacarídeos/metabolismo , Polissacarídeos/biossíntese
3.
Nat Commun ; 15(1): 3975, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729930

RESUMO

Oxidoreductases have evolved tyrosine/tryptophan pathways that channel highly oxidizing holes away from the active site to avoid damage. Here we dissect such a pathway in a bacterial LPMO, member of a widespread family of C-H bond activating enzymes with outstanding industrial potential. We show that a strictly conserved tryptophan is critical for radical formation and hole transference and that holes traverse the protein to reach a tyrosine-histidine pair in the protein's surface. Real-time monitoring of radical formation reveals a clear correlation between the efficiency of hole transference and enzyme performance under oxidative stress. Residues involved in this pathway vary considerably between natural LPMOs, which could reflect adaptation to different ecological niches. Importantly, we show that enzyme activity is increased in a variant with slower radical transference, providing experimental evidence for a previously postulated trade-off between activity and redox robustness.


Assuntos
Proteínas de Bactérias , Oxigenases de Função Mista , Oxirredução , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Domínio Catalítico , Triptofano/metabolismo , Polissacarídeos/metabolismo , Mutação , Estresse Oxidativo , Tirosina/metabolismo , Modelos Moleculares , Histidina/metabolismo , Histidina/genética
4.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731824

RESUMO

Agar, as a seaweed polysaccharide mainly extracted from Gracilariopsis lemaneiformis, has been commercially applied in multiple fields. To investigate factors indicating the agar accumulation in G. lemaneiformis, the agar content, soluble polysaccharides content, and expression level of 11 genes involved in the agar biosynthesis were analysed under 4 treatments, namely salinity, temperature, and nitrogen and phosphorus concentrations. The salinity exerted the greatest impact on the agar content. Both high (40‱) and low (10‱, 20‱) salinity promoted agar accumulation in G. lemaneiformis by 4.06%, 2.59%, and 3.00%, respectively. The content of agar as a colloidal polysaccharide was more stable than the soluble polysaccharide content under the treatments. No significant correlation was noted between the two polysaccharides, and between the change in the agar content and the relative growth rate of the algae. The expression of all 11 genes was affected by the 4 treatments. Furthermore, in the cultivar 981 with high agar content (21.30 ± 0.95%) compared to that (16.23 ± 1.59%) of the wild diploid, the transcriptional level of 9 genes related to agar biosynthesis was upregulated. Comprehensive analysis of the correlation between agar accumulation and transcriptional level of genes related to agar biosynthesis in different cultivation conditions and different species of G. lemaneiformis, the change in the relative expression level of glucose-6-phosphate isomerase II (gpiII), mannose-6-phosphate isomerase (mpi), mannose-1-phosphate guanylyltransferase (mpg), and galactosyltransferase II (gatII) genes was highly correlated with the relative agar accumulation. This study lays a basis for selecting high-yield agar strains, as well as for targeted breeding, by using gene editing tools in the future.


Assuntos
Ágar , Rodófitas , Rodófitas/genética , Rodófitas/metabolismo , Rodófitas/crescimento & desenvolvimento , Salinidade , Regulação da Expressão Gênica de Plantas , Polissacarídeos/metabolismo , Polissacarídeos/biossíntese , Temperatura , Nitrogênio/metabolismo
5.
Nat Commun ; 15(1): 3755, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704385

RESUMO

Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.


Assuntos
Anticoagulantes , Escherichia coli , Heparina , Sulfotransferases , Sulfotransferases/metabolismo , Sulfotransferases/genética , Heparina/metabolismo , Heparina/biossíntese , Anticoagulantes/metabolismo , Anticoagulantes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/química , Mutagênese Sítio-Dirigida , Engenharia de Proteínas/métodos , Dissacarídeos/metabolismo , Dissacarídeos/biossíntese , Dissacarídeos/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
6.
Front Immunol ; 15: 1361240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698868

RESUMO

N-glycosylation influences the effectiveness of immune globulin G (IgG) and thus the immunological downstream responses of immune cells. This impact arises from the presence of N-glycans within the Fc region, which not only alters the conformation of IgG but also influences its steric hindrance. Consequently, these modifications affect the interaction between IgG and its binding partners within the immune system. Moreover, this posttranslational modification vary according to the physiological condition of each individual. In this study, we examined the N-glycosylation of IgG in pigs from birth to five months of age. Our analysis identified a total of 48 distinct N-glycan structures. Remarkably, we observed defined changes in the composition of these N-glycans during postnatal development. The presence of agalactosylated and sialylated structures increases in relation to the number of N-glycans terminated by galactose residues during the first months of life. This shift may indicate a transition from passively transferred antibodies from the colostrum of the sow to the active production of endogenous IgG by the pig's own immune system.


Assuntos
Imunoglobulina G , Polissacarídeos , Animais , Glicosilação , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Suínos , Polissacarídeos/metabolismo , Polissacarídeos/imunologia , Processamento de Proteína Pós-Traducional , Animais Recém-Nascidos , Feminino
7.
Front Immunol ; 15: 1372927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742105

RESUMO

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Assuntos
Antígenos de Helmintos , Células Dendríticas , Dinoprostona , Lectinas Tipo C , Manose , Polissacarídeos , Schistosoma mansoni , Células Th2 , Animais , Schistosoma mansoni/imunologia , Dinoprostona/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/imunologia , Manose/metabolismo , Manose/imunologia , Camundongos , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Antígenos de Helmintos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Óvulo/imunologia , Óvulo/metabolismo , Camundongos Endogâmicos C57BL , Ligante OX40/metabolismo
8.
BMC Genomics ; 25(1): 495, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769483

RESUMO

Bacteria of the genera Xylanibacter and Segatella are among the most dominant groups in the rumen microbiota. They are characterized by the ability to utilize different hemicelluloses and pectin of plant cell-wall as well as plant energy storage polysaccharides. The degradation is possible with the use of cell envelope bound multiprotein apparatuses coded in polysaccharide utilization loci (PULs), which have been shown to be substrate specific. The knowledge of PUL presence in rumen Xylanibacter and Segatella based on bioinformatic analyses is already established and transcriptomic and genetic approaches confirmed predicted PULs for a limited number of substrates. In this study, we transcriptomically identified additional different PULs in Xylanibacter ruminicola KHP1 and Segatella bryantii TF1-3. We also identified substrate preferences and found that specific growth rate and extent of growth impacted the choice of substrates preferentially used for degradation. These preferred substrates were used by both strains simultaneously as judged by their PUL upregulation. Lastly, ß-glucan and xyloglucan were used by these strains in the absence of bioinformatically and transcriptomically identifiable PUL systems.


Assuntos
Perfilação da Expressão Gênica , Polissacarídeos , Rúmen , Xilanos , Animais , Xilanos/metabolismo , Polissacarídeos/metabolismo , Rúmen/microbiologia , Rúmen/metabolismo , Glucanos/metabolismo , beta-Glucanas/metabolismo , Especificidade por Substrato , Bacteroidetes/genética , Bacteroidetes/metabolismo , Transcriptoma
9.
Proc Natl Acad Sci U S A ; 121(22): e2317227121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771870

RESUMO

The biophysical properties of lipid vesicles are important for their stability and integrity, key parameters that control the performance when these vesicles are used for drug delivery. The vesicle properties are determined by the composition of lipids used to form the vesicle. However, for a given lipid composition, they can also be tailored by tethering polymers to the membrane. Typically, synthetic polymers like polyethyleneglycol are used to increase vesicle stability, but the use of polysaccharides in this context is much less explored. Here, we report a general method for functionalizing lipid vesicles with polysaccharides by binding them to cholesterol. We incorporate the polysaccharides on the outer membrane leaflet of giant unilamellar vesicles (GUVs) and investigate their effect on membrane mechanics using micropipette aspiration. We find that the presence of the glycolipid functionalization produces an unexpected softening of GUVs with fluid-like membranes. By contrast, the functionalization of GUVs with polyethylene glycol does not reduce their stretching modulus. This work provides the potential means to study membrane-bound meshworks of polysaccharides similar to the cellular glycocalyx; moreover, it can be used for tuning the mechanical properties of drug delivery vehicles.


Assuntos
Polissacarídeos , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Polietilenoglicóis/química , Colesterol/química , Colesterol/metabolismo , Lipídeos/química
10.
Life Sci ; 348: 122689, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710281

RESUMO

Glycans and their glycoconjugates are complex biomolecules that are crucial for various biological processes. Glycoconjugates are found in all domains of life. They are covalently linked to key biomolecules such as proteins and lipids to play a pivotal role in cell signaling, adhesion, and recognition. The diversity of glycan structures and the associated complexity of glycoconjugates is the reason for their role in intricate biosynthetic pathways. Glycoconjugates play an important role in various diseases where they are actively involved in the immune response as well as in the pathogenicity of infectious diseases. In addition, various autoimmune diseases have been linked to glycosylation defects of different biomolecules, making them an important molecule in the field of medicine. The glycoconjugates have been explored for the development of therapeutics and vaccines, representing a breakthrough in medical science. They also hold significance in research studies to understand the mechanisms behind various biological processes. Finally, glycoconjugates have found an emerging role in various industrial and environmental applications which have been discussed here.


Assuntos
Glicoconjugados , Glicoconjugados/metabolismo , Glicoconjugados/química , Humanos , Polissacarídeos/química , Polissacarídeos/metabolismo , Glicosilação , Animais , Vacinas
11.
J Agric Food Chem ; 72(20): 11773-11781, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722333

RESUMO

Ulvan is a complex sulfated polysaccharide extracted from Ulva, and ulvan lyases can degrade ulvan through a ß-elimination mechanism to obtain oligosaccharides. In this study, a new ulvan lyase, EPL15085, which belongs to the polysaccharide lyase (PL) 28 family from Tamlana fucoidanivorans CW2-9, was characterized in detail. The optimal pH and salinity are 9.0 and 0.4 M NaCl, respectively. The Km and Vmax of recombinant EPL15085 toward ulvan are 0.80 mg·mL-1 and 11.22 µmol·min -1 mg-1·mL-1, respectively. Unexpectedly, it is very resistant to high temperatures. After treatment at 100 °C, EPL15085 maintained its ability to degrade ulvan. Molecular dynamics simulation analysis and site-directed mutagenesis analysis indicated that the strong rigidity of the disulfide bond between Cys74-Cys102 in the N-terminus is related to its thermostability. In addition, oligosaccharides with disaccharides and tetrasaccharides were the end products of EPL15085. Based on molecular docking and site-directed mutagenesis analysis, Tyr177 and Leu134 are considered to be the crucial residues for enzyme activity. In conclusion, our study identified a new PL28 family of ulvan lyases, EPL15085, with excellent heat resistance that can expand the database of ulvan lyases and provide the possibility to make full use of ulvan.


Assuntos
Estabilidade Enzimática , Polissacarídeo-Liases , Polissacarídeos , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Cinética , Temperatura Alta , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Simulação de Acoplamento Molecular , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ulva/química , Ulva/enzimologia , Ulva/genética , Simulação de Dinâmica Molecular
12.
Biochemistry ; 63(10): 1335-1346, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38690768

RESUMO

Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.


Assuntos
Lipoxigenase , Glicosilação , Lipoxigenase/metabolismo , Lipoxigenase/química , Lipoxigenase/genética , Especificidade por Substrato , Conformação Proteica , Domínio Catalítico , Processamento de Proteína Pós-Traducional , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Modelos Moleculares , Polissacarídeos/metabolismo , Polissacarídeos/química , Cinética , Ativação Enzimática
13.
J Microbiol Methods ; 221: 106942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704038

RESUMO

Methylation analysis was performed on methylated alditol acetate standards and Streptococcus mutans extracellular polymeric substances (EPS) produced from wild-type and Gtf knockout strains (∆GtfB, ∆GtfB, and ∆GtfD). The methylated alditol acetate standards were representative of glycosidic linkages found in S. mutans EPS and were used to calibrate the GC-MS system for an FID detector and MS (TIC) and produce molar response factor, a necessary step in quantitative analysis. FID response factors were consistent with literature values (Sweet et al., 1975) and found to be the superior option for quantitative results, although the TIC response factors now give researchers without access to an FID detector a needed option for molar response factor correction. The GC-MS analysis is then used to deliver the ratio of the linkage types within a biofilm.


Assuntos
Biofilmes , Cromatografia Gasosa-Espectrometria de Massas , Polissacarídeos Bacterianos , Streptococcus mutans , Biofilmes/crescimento & desenvolvimento , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polissacarídeos Bacterianos/metabolismo , Glicosídeos/metabolismo , Metilação , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Polissacarídeos/metabolismo
14.
J Transl Med ; 22(1): 456, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745252

RESUMO

BACKGROUND: Changes in plasma protein glycosylation are known to functionally affect proteins and to associate with liver diseases, including cirrhosis and hepatocellular carcinoma. Autoimmune hepatitis (AIH) is a liver disease characterized by liver inflammation and raised serum levels of IgG, and is difficult to distinguish from other liver diseases. The aim of this study was to examine plasma and IgG-specific N-glycosylation in AIH and compare it with healthy controls and other liver diseases. METHODS: In this cross-sectional cohort study, total plasma N-glycosylation and IgG Fc glycosylation analysis was performed by mass spectrometry for 66 AIH patients, 60 age- and sex-matched healthy controls, 31 primary biliary cholangitis patients, 10 primary sclerosing cholangitis patients, 30 non-alcoholic fatty liver disease patients and 74 patients with viral or alcoholic hepatitis. A total of 121 glycans were quantified per individual. Associations between glycosylation traits and AIH were investigated as compared to healthy controls and other liver diseases. RESULTS: Glycan traits bisection (OR: 3.78 [1.88-9.35], p-value: 5.88 × 10- 3), tetraantennary sialylation per galactose (A4GS) (OR: 2.88 [1.75-5.16], p-value: 1.63 × 10- 3), IgG1 galactosylation (OR: 0.35 [0.2-0.58], p-value: 3.47 × 10- 5) and hybrid type glycans (OR: 2.73 [1.67-4.89], p-value: 2.31 × 10- 3) were found as discriminators between AIH and healthy controls. High A4GS differentiated AIH from other liver diseases, while bisection associated with cirrhosis severity. CONCLUSIONS: Compared to other liver diseases, AIH shows distinctively high A4GS levels in plasma, with potential implications on glycoprotein function and clearance. Plasma-derived glycosylation has potential to be used as a diagnostic marker for AIH in the future. This may alleviate the need for a liver biopsy at diagnosis. Glycosidic changes should be investigated further in longitudinal studies and may be used for diagnostic and monitoring purposes in the future.


Assuntos
Hepatite Autoimune , Polissacarídeos , Humanos , Hepatite Autoimune/sangue , Feminino , Masculino , Polissacarídeos/sangue , Polissacarídeos/metabolismo , Pessoa de Meia-Idade , Glicosilação , Estudos de Casos e Controles , Imunoglobulina G/sangue , Hepatopatias/sangue , Adulto , Estudos Transversais , Idoso
15.
Nat Commun ; 15(1): 3847, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719792

RESUMO

The development of reliable single-cell dispensers and substantial sensitivity improvement in mass spectrometry made proteomic profiling of individual cells achievable. Yet, there are no established methods for single-cell glycome analysis due to the inability to amplify glycans and sample losses associated with sample processing and glycan labeling. In this work, we present an integrated platform coupling online in-capillary sample processing with high-sensitivity label-free capillary electrophoresis-mass spectrometry for N-glycan profiling of single mammalian cells. Direct and unbiased quantitative characterization of single-cell surface N-glycomes are demonstrated for HeLa and U87 cells, with the detection of up to 100 N-glycans per single cell. Interestingly, N-glycome alterations are unequivocally detected at the single-cell level in HeLa and U87 cells stimulated with lipopolysaccharide. The developed workflow is also applied to the profiling of ng-level amounts (5-500 ng) of blood-derived protein, extracellular vesicle, and total plasma isolates, resulting in over 170, 220, and 370 quantitated N-glycans, respectively.


Assuntos
Eletroforese Capilar , Glicômica , Espectrometria de Massas , Polissacarídeos , Análise de Célula Única , Humanos , Eletroforese Capilar/métodos , Polissacarídeos/metabolismo , Polissacarídeos/sangue , Análise de Célula Única/métodos , Células HeLa , Espectrometria de Massas/métodos , Glicômica/métodos , Proteômica/métodos , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(21): e2402554121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748580

RESUMO

Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or ß-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to ß-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.


Assuntos
Glicosiltransferases , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosilação , Citrobacter/metabolismo , Citrobacter/genética , Antígenos O/metabolismo , Antígenos O/química , Polissacarídeos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Polissacarídeos Bacterianos/metabolismo
17.
Nano Lett ; 24(15): 4423-4432, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568019

RESUMO

The HIV-1 envelope is a heavily glycosylated class 1 trimeric fusion protein responsible for viral entry into CD4+ immune cells. Developing neutralizing antibodies against the specific envelope glycans is an alternative method for antiviral therapies. This work presents the first-ever development and characterization of artificial neutralizing antibodies using molecular imprinting technology to recognize and bind to the envelope protein of HIV-1. The prepared envelope glycan-imprinted nanoparticles (GINPs) can successfully prevent HIV-1 from infecting target cells by shielding the glycans on the envelope protein. In vitro experiments showed that GINPs have strong affinity toward HIV-1 (Kd = 36.7 ± 2.2 nM) and possess high anti-interference and specificity. GINPs demonstrate broad inhibition activity against both tier 1 and tier 2 HIV-1 strains with a pM-level IC50 and exhibit a significant inhibitory effect on long-term viral replication by more than 95%. The strategy provides a promising method for the inhibition and therapy of HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Anticorpos Neutralizantes , Anticorpos Anti-HIV/metabolismo , Glicosilação , Infecções por HIV/tratamento farmacológico , Polissacarídeos/metabolismo
18.
Sci Rep ; 14(1): 8179, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589471

RESUMO

Breast cancer has been reported to correlate with the infiltration of tumor-associated macrophages (TAMs) or M2-like macrophages in tumor microenvironment (TME) that could promote breast cancer progression. In contrast, M1-like macrophages displayed anti-tumor activity toward cancer. This study was focused on Auricularia polytricha (AP), a cloud ear mushroom, which has been reported for anti-tumor activity and immunomodulation. AP extracts were screened on differentiated THP-1 macrophages (M0). Results demonstrated that water extract (APW) and crude polysaccharides (APW-CP) could upregulate M1-related genes and cytokines production (IL-6, IL-1 ß and TNF-α) significantly. Moreover, APW and APW-CP showed a high expression of CD86 (M1 marker) compared to M0. The NF-κB signaling pathway is crucial for pro-inflammatory gene regulation. The APW and APW-CP treatment showed the induction of the NF-κB pathway in a dose-dependent manner, which related to the ß-glucan content in the extracts. Furthermore, APW-CP polarized macrophages were investigated for anti-tumor activity on human breast cancer cells (MCF-7 and MDA-MB-231). Results showed that APW-CP could inhibit the invasion of breast cancer cells and induce apoptosis. Therefore, M1 macrophages polarized by APW-CP showed anti-tumor activity against the breast cancer cells and ß-glucan may be the potential M1-phenotype inducer.


Assuntos
Auricularia , Neoplasias da Mama , beta-Glucanas , Humanos , Feminino , Neoplasias da Mama/patologia , NF-kappa B/metabolismo , Macrófagos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , beta-Glucanas/farmacologia , beta-Glucanas/metabolismo , Microambiente Tumoral
19.
Sci Rep ; 14(1): 7938, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575779

RESUMO

Natural killer (NK) cells destroy tissue that have been opsonized with antibodies. Strategies to generate or identify cells with increased potency are expected to enhance NK cell-based immunotherapies. We previously generated NK cells with increased antibody-dependent cell mediated cytotoxicity (ADCC) following treatment with kifunensine, an inhibitor targeting mannosidases early in the N-glycan processing pathway. Kifunensine treatment also increased the antibody-binding affinity of Fc γ receptor IIIa/CD16a. Here we demonstrate that inhibiting NK cell N-glycan processing increased ADCC. We reduced N-glycan processing with the CRIPSR-CAS9 knockdown of MGAT1, another early-stage N-glycan processing enzyme, and showed that these cells likewise increased antibody binding affinity and ADCC. These experiments led to the observation that NK cells with diminished N-glycan processing capability also revealed a clear phenotype in flow cytometry experiments using the B73.1 and 3G8 antibodies binding two distinct CD16a epitopes. We evaluated this "affinity profiling" approach using primary NK cells and identified a distinct shift and differentiated populations by flow cytometry that correlated with increased ADCC.


Assuntos
Células Matadoras Naturais , Receptores de IgG , Humanos , Receptores de IgG/metabolismo , Citometria de Fluxo , Citotoxicidade Celular Dependente de Anticorpos , Polissacarídeos/metabolismo
20.
Sci Adv ; 10(14): eadk6911, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579000

RESUMO

Despite the importance of protein glycosylation to brain health, current knowledge of glycosylated proteoforms or glycoforms in human brain and their alterations in Alzheimer's disease (AD) is limited. Here, we report a proteome-wide glycoform profiling study of human AD and control brains using intact glycopeptide-based quantitative glycoproteomics coupled with systems biology. Our study identified more than 10,000 human brain N-glycoforms from nearly 1200 glycoproteins and uncovered disease signatures of altered glycoforms and glycan modifications, including reduced sialylation and N-glycan branching and elongation as well as elevated mannosylation and N-glycan truncation in AD. Network analyses revealed a higher-order organization of brain glycoproteome into networks of coregulated glycoforms and glycans and discovered glycoform and glycan modules associated with AD clinical phenotype, amyloid-ß accumulation, and tau pathology. Our findings provide valuable insights into disease pathogenesis and a rich resource of glycoform and glycan changes in AD and pave the way forward for developing glycosylation-based therapies and biomarkers for AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Polissacarídeos/metabolismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA