Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.868
Filtrar
1.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710921

RESUMO

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Assuntos
Administração Intranasal , Encéfalo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Glicerídeos , Mucosa Nasal , Tamanho da Partícula , Verapamil , Administração Intranasal/métodos , Animais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Verapamil/administração & dosagem , Verapamil/farmacocinética , Distribuição Tecidual , Glicerídeos/química , Mucosa Nasal/metabolismo , Disponibilidade Biológica , Ratos , Bloqueadores dos Canais de Cálcio/farmacocinética , Bloqueadores dos Canais de Cálcio/administração & dosagem , Poloxâmero/química , Masculino , Química Farmacêutica/métodos , Ratos Wistar , Nanopartículas/química
2.
PLoS One ; 19(5): e0295849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696491

RESUMO

INTRODUCTION: Microfluidic resistive pulse sensing (MRPS) can determine the concentration and size distribution of extracellular vesicles (EVs) by measuring the electrical resistance of single EVs passing through a pore. To ensure that the sample flows through the pore, the sample needs to contain a wetting agent, such as bovine serum albumin (BSA). BSA leaves EVs intact but occasionally results in unstable MRPS measurements. Here, we aim to find a new wetting agent by evaluating Poloxamer-188 and Tween-20. METHODS: An EV test sample was prepared using an outdated erythrocyte blood bank concentrate. The EV test sample was diluted in Dulbecco's phosphate-buffered saline (DPBS) or DPBS containing 0.10% BSA (w/v), 0.050% Poloxamer-188 (v/v) or 1.00% Tween-20 (v/v). The effect of the wetting agents on the concentration and size distribution of EVs was determined by flow cytometry. To evaluate the precision of sample volume determination with MRPS, the interquartile range (IQR) of the particles transit time through the pore was examined. To validate that DPBS containing Poloxamer-188 yields reliable MRPS measurements, the repeatability of MRPS in measuring blood plasma samples was examined. RESULTS: Flow cytometry results show that the size distribution of EVs in Tween 20, in contrast to Poloxamer-188, differs from the control measurements (DPBS and DPBS containing BSA). MRPS results show that Poloxamer-188 improves the precision of sample volume determination compared to BSA and Tween-20, because the IQR of the transit time of EVs in the test sample is 11 µs, which is lower than 56 µs for BSA and 16 µs for Tween-20. Furthermore, the IQR of the transit time of particles in blood samples with Poloxamer-188 are 14, 16, and 14 µs, which confirms the reliability of MRPS measurements. CONCLUSION: The solution of 0.050% Poloxamer-188 in DPBS does not lyse EVs and results in repeatable and unimpeded MRPS measurements.


Assuntos
Vesículas Extracelulares , Poloxâmero , Poloxâmero/química , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Polissorbatos/química , Soroalbumina Bovina/química , Microfluídica/métodos , Molhabilidade , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Animais
3.
J Biomed Mater Res B Appl Biomater ; 112(5): e35405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701384

RESUMO

The structure and handling properties of a P407 hydrogel-based bone substitute material (BSM) might be affected by different poloxamer P407 and silicon dioxide (SiO2) concentrations. The study aimed to compare the mechanical properties and biological parameters (bone remodeling, BSM degradation) of a hydroxyapatite: silica (HA)-based BSM with various P407 hydrogels in vitro and in an in vivo rat model. Rheological analyses for mechanical properties were performed on one BSM with an SiO2-enriched hydrogel (SPH25) as well on two BSMs with unaltered hydrogels in different gel concentrations (PH25 and PH30). Furthermore, the solubility of all BSMs were tested. In addition, 30 male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. Defects were filled randomly with PH30 (n = 15) or SPH25 (n = 15). Animals were sacrificed after 12 (n = 5 each), 21 (n = 5 each), and 63 days (n = 5 each). Histological evaluation and histomorphometrical quantification of new bone formation (NB;%), residual BSM (rBSM;%), and soft tissue (ST;%) was conducted. Rheological tests showed an increased viscosity and lower solubility of SPH when compared with the other hydrogels. Histomorphometric analyses in cancellous bone showed a decrease of ST in PH30 (p = .003) and an increase of NB (PH30: p = .001; SPH: p = .014) over time. A comparison of both BSMs revealed no significant differences. The addition of SiO2 to a P407 hydrogel-based hydroxyapatite BSM improves its mechanical stability (viscosity, solubility) while showing similar in vivo healing properties compared to PH30. Additionally, the SiO2-enrichment allows a reduction of poloxamer ratio in the hydrogel without impairing the material properties.


Assuntos
Substitutos Ósseos , Durapatita , Hidrogéis , Poloxâmero , Ratos Wistar , Dióxido de Silício , Animais , Masculino , Poloxâmero/química , Poloxâmero/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Durapatita/química , Durapatita/farmacologia , Dióxido de Silício/química , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Ratos , Teste de Materiais , Reologia , Tíbia/metabolismo
4.
Carbohydr Polym ; 337: 122143, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710552

RESUMO

Cyclodextrins (CDs) are essential in the pharmaceutical industry and have long been used as food and pharmaceutical additives. CD-based interlocked molecules, such as rotaxanes, polyrotaxanes, catenanes, and polycatenanes, have been synthesized and have attracted considerable attention in supramolecular chemistry. Among them, CD polyrotaxanes have been employed as slide-ring materials and biomaterials. CD polycatenanes are new materials; therefore, to date, no examples of applied research on CD polycatenanes have been reported. Consequently, we expect that applied research on CD polycatenanes will accelerate in the future. This review article summarizes the syntheses and structural analyses of CD polyrotaxanes and polycatenanes to facilitate their applications in the pharmaceutical industry. We believe that this review will promote further research on CD-based interlocked molecules.


Assuntos
Ciclodextrinas , Poloxâmero , Rotaxanos , Rotaxanos/química , Rotaxanos/síntese química , Ciclodextrinas/química , Ciclodextrinas/síntese química , Catenanos/química , Catenanos/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química
5.
Bull Exp Biol Med ; 176(5): 626-630, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38730109

RESUMO

We studied the antitumor activity of the combined use of local proton irradiation in two modes (10 and 31 Gy) with preliminary intra-tumoral injection of two types of bismuth nanoparticles differing in surface coating: coated with the amphiphilic molecule Pluronic-F127 or Silane-PEG (5 kDa)-COOH polymer. Nanoparticles were used in doses of 0.75 and 1.5 mg/mouse. In two independent series on experimental tumor model (solid Ehrlich carcinoma), bismuth nanoparticles of both modifications injected directly into the tumor enhanced the antitumor effects of proton therapy. Moreover, the radiosensitizing effect of bismuth nanoparticles administered via this route increased with the increasing the doses of nanoparticles and the doses of radiation exposure. In our opinion, these promising data obtained for the first time extend the possibilities of treating malignant neoplasms.


Assuntos
Bismuto , Carcinoma de Ehrlich , Poloxâmero , Terapia com Prótons , Carcinoma de Ehrlich/radioterapia , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia , Animais , Bismuto/uso terapêutico , Bismuto/química , Camundongos , Terapia com Prótons/métodos , Poloxâmero/química , Radiossensibilizantes/uso terapêutico , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Polietilenoglicóis/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas/química , Feminino
6.
ACS Appl Bio Mater ; 7(5): 2836-2850, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38717017

RESUMO

High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1ß, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.


Assuntos
Homeostase , Poloxâmero , Polietilenoglicóis , Canais de Cátion TRPV , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Poloxâmero/química , Poloxâmero/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Homeostase/efeitos dos fármacos , Oxirredução , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos , Teste de Materiais , Lesão por Frio/metabolismo , Lesão por Frio/tratamento farmacológico , Tamanho da Partícula , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Lipossomos/química , Humanos , Administração Tópica , Congelamento das Extremidades/metabolismo , Congelamento das Extremidades/tratamento farmacológico
7.
Biofabrication ; 16(3)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574552

RESUMO

The advent of 3D bioprinting technologies in tissue engineering has unlocked the potential to fabricatein vitrotissue models, overcoming the constraints associated with the shape limitations of preformed scaffolds. However, achieving an accurate mimicry of complex tissue microenvironments, encompassing cellular and biochemical components, and orchestrating their supramolecular assembly to form hierarchical structures while maintaining control over tissue formation, is crucial for gaining deeper insights into tissue repair and regeneration. Building upon our expertise in developing competent three-dimensional tissue equivalents (e.g. skin, gut, cervix), we established a two-step bottom-up approach involving the dynamic assembly of microtissue precursors (µTPs) to generate macroscopic functional tissue composed of cell-secreted extracellular matrix (ECM). To enhance precision and scalability, we integrated extrusion-based bioprinting technology into our established paradigm to automate, control and guide the coherent assembly ofµTPs into predefined shapes. Compared to cell-aggregated bioink, ourµTPs represent a functional unit where cells are embedded in their specific ECM.µTPs were derived from human dermal fibroblasts dynamically seeded onto gelatin-based microbeads. After 9 days,µTPs were suspended (50% v/v) in Pluronic-F127 (30% w/v) (µTP:P30), and the obtained formulation was loaded as bioink into the syringe of the Dr.INVIVO-4D6 extrusion based bioprinter.µTP:P30 bioink showed shear-thinning behavior and temperature-dependent viscosity (gel atT> 30 °C), ensuringµTPs homogenous dispersion within the gel and optimal printability. The bioprinting involved extruding several geometries (line, circle, and square) into Pluronic-F127 (40% w/v) (P40) support bath, leveraging its shear-recovery property. P40 effectively held the bioink throughout and after the bioprinting procedure, untilµTPs fused into a continuous connective tissue.µTPs fusion dynamics was studied over 8 days of culture, while the resulting endogenous construct underwent 28 days culture. Histological, immunofluorescence analysis, and second harmonic generation reconstruction revealed an increase in endogenous collagen and fibronectin production within the bioprinted construct, closely resembling the composition of the native connective tissues.


Assuntos
Bioimpressão , Polietilenos , Polipropilenos , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Bioimpressão/métodos , Poloxâmero , Uridina Trifosfato , Engenharia Tecidual/métodos , Impressão Tridimensional
8.
ACS Appl Bio Mater ; 7(5): 3306-3315, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38634490

RESUMO

Photodynamic therapy (PDT) and ferroptosis show significant potential in tumor treatment. However, their therapeutic efficacy is often hindered by the oxygen-deficient tumor microenvironment and the challenges associated with efficient intracellular drug delivery into tumor cells. Toward this end, this work synthesized perfluorocarbon (PFC)-modified Pluronic F127 (PFC-F127), and then exploits it as a carrier for codelivery of photosensitizer Chlorin e6 (Ce6) and the ferroptosis promoter sorafenib (Sor), yielding an oxygen self-supplying nanoplatform denoted as Ce6-Sor@PFC-F127. The PFCs on the surface of the micelle play a crucial role in efficiently solubilizing and delivering oxygen as well as increasing the hydrophobicity of the micelle surface, giving rise to enhanced endocytosis by cancer cells. The incorporation of an oxygen-carrying moiety into the micelles enhances the therapeutic impact of PDT and ferroptosis, leading to amplified endocytosis and cytotoxicity of tumor cells. Hypotonic saline technology was developed to enhance the cargo encapsulation efficiency. Notably, in a murine tumor model, Ce6-Sor@PFC-F127 effectively inhibited tumor growth through the combined use of oxygen-enhanced PDT and ferroptosis. Taken together, this work underscores the promising potential of Ce6-Sor@PFC-F127 as a multifunctional therapeutic nanoplatform for the codelivery of multiple cargos such as oxygen, photosensitizers, and ferroptosis inducers.


Assuntos
Antineoplásicos , Clorofilídeos , Ensaios de Seleção de Medicamentos Antitumorais , Ferroptose , Fluorocarbonos , Micelas , Oxigênio , Fotoquimioterapia , Fármacos Fotossensibilizantes , Ferroptose/efeitos dos fármacos , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Animais , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Humanos , Oxigênio/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Teste de Materiais , Tamanho da Partícula , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Porfirinas/química , Porfirinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Sorafenibe/química , Sorafenibe/farmacologia , Sorafenibe/administração & dosagem , Poloxâmero/química , Linhagem Celular Tumoral , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Estrutura Molecular
9.
BMC Biotechnol ; 24(1): 22, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664752

RESUMO

BACKGROUND: The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engineered serotypes are progressing toward clinical translation due to their enhanced tissue tropism and immune evasive properties. However, novel AAV vectors require formulation and stability testing to determine optimal storage conditions prior to their use in a clinical setting. RESULTS: Here, we evaluated the thermal stability of AAV6.2FF, a rationally engineered capsid with strong tropism for lung and muscle, in two different buffer formulations; phosphate buffered saline (PBS), or PBS supplemented with 0.001% non-ionic surfactant Pluronic F68 (PF-68). Aliquots of AAV6.2FF vector encoding the firefly luciferase reporter gene (AAV6.2FF-ffLuc) were incubated at temperatures ranging from -20°C to 55°C for varying periods of time and the impact on infectivity and particle integrity evaluated. Additionally, the impact of several rounds of freeze-thaw treatments on the infectivity of AAV6.2FF was investigated. Vector infectivity was measured by quantifying firefly luciferase expression in HEK 293 cells and AAV particle integrity was measured by qPCR quantification of encapsidated viral DNA. CONCLUSIONS: Our data demonstrate that formulating AAV6.2FF in PBS containing 0.001% PF-68 leads to increased stability and particle integrity at temperatures between -20℃ to 21℃ and protection against the destructive effects of freeze-thaw. Finally, AAV6.2FF-GFP formulated in PBS supplemented with 0.001% PF-68 displayed higher transduction efficiency in vivo in murine lung epithelial cells following intranasal administration than vector buffered in PBS alone further demonstrating the beneficial properties of PF-68.


Assuntos
Dependovirus , Vetores Genéticos , Poloxâmero , Animais , Humanos , Células HEK293 , Poloxâmero/farmacologia , Poloxâmero/química , Camundongos , Dependovirus/genética , Vetores Genéticos/genética , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Temperatura , Genes Reporter
10.
Anal Chem ; 96(17): 6746-6755, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632675

RESUMO

Nonionic surfactant excipients (NISEs) are commonly added to biologics formulations to mitigate the effects of stress incurred by the active biotherapeutic during manufacturing, transport, and storage. During manufacturing, NISEs are added by dilution of a stock solution directly into a protein formulation, and their accurate addition is critical in maintaining the quality and integrity of the drug product and thus ensuring patient safety. This is especially true for the common NISEs, polysorbates 20 and 80 (PS20 and PS80, respectively) and poloxamer 188 (P188). With the increasing diversity of biologic modalities within modern pharmaceutical pipelines, there is thus a critical need to develop and deploy convenient and user-accessible analytical techniques that can rapidly and reliably quantify these NISEs under biopharmaceutically relevant conditions. We thus pursued 60 MHz benchtop quantitative NMR (qNMR) as a nondestructive and user-friendly analytical technique for the quantification of PS20, PS80, and P188 under such conditions. We demonstrated the ability of benchtop qNMR (1) to quantify simulated PS20, PS80, and P188 stock solutions representative of those used during the drug substance (DS) formulation step in biomanufacturing and (2) to quantify these NISEs at and below their target concentrations (≤0.025% w/v) directly in biologics formulations containing histidine, sucrose, and one of three biotherapeutic modalities (monoclonal antibody, antibody-drug conjugate, and Fc-fusion protein). Our results demonstrate that benchtop qNMR offers a fit-for-purpose, reliable, user-friendly, and green analytical route by which NISE of interest to the biopharmaceutical industry may be readily and reliably quantified. We conclude that benchtop qNMR has the potential to be applied to other excipient formulation components in the presence of various biological modalities as well as the potential for routine integration within analytical and QC laboratories across pharmaceutical development and manufacturing sites.


Assuntos
Excipientes , Espectroscopia de Ressonância Magnética , Tensoativos , Tensoativos/química , Excipientes/química , Excipientes/análise , Espectroscopia de Ressonância Magnética/métodos , Polissorbatos/química , Poloxâmero/química , Produtos Biológicos/química , Produtos Biológicos/análise
11.
J Mater Chem B ; 12(19): 4708-4716, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38654609

RESUMO

Atherosclerosis (AS) is a significant contributor to cardiovascular events. Advanced AS is particularly concerning, as it leads to the formation of high-risk vulnerable plaques. Current treatments for AS focus on antithrombotic and lipid-lowering interventions, which are effective in treating early-stage AS. Recent studies have shown that macrophage polarization plays a crucial role in the development of AS. This study presents a new biomedical application of natural tannic acid as an anti-inflammatory nanoplatform for advanced AS. Tannic acid-poloxamer nanoparticles (TPNP) are fabricated through self-assembly of tannic acid (TA) and poloxamer. TPNP has the potential to provide effective treatment for advanced AS. According to in vitro studies, TPNP has been found to suppress the inflammatory response in lipopolysaccharide-stimulated macrophages by scavenging reactive oxygen species (ROS), downregulating the expression levels of inflammatory cytokines (such as interleukin-10 and tumor necrosis factor-α) and regulating polarization of macrophages. In vivo studies further reveal that TPNP can retard the development of advanced atherosclerotic plaques by reducing ROS production and promoting M2 macrophage polarization in the aorta of ApoE-/- mice. Overall, these findings suggest that TPNP could be used to develop natural multifunctional nanoplatforms for molecular therapy of AS and other inflammation-related diseases.


Assuntos
Aterosclerose , Macrófagos , Nanopartículas , Poloxâmero , Taninos , Taninos/química , Taninos/farmacologia , Animais , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Nanopartículas/química , Poloxâmero/química , Poloxâmero/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Tamanho da Partícula , Propriedades de Superfície , Masculino
12.
Int J Biol Macromol ; 267(Pt 2): 131667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636761

RESUMO

A thiolated RGD was incorporated into the threaded allyl-ß-cyclodextrins (Allyl-ß-CDs) of the polyrotaxane (PR) through a thiol-ene click reaction, resulting in the formation of dynamic RGD ligands on the PR surface (dRGD-PR). When maintaining consistent RGD density and other physical properties, endothelial cells (ECs) cultured on dRGD-PR exhibited significantly increased cell proliferation and a larger cell spreading area compared to those on the non-dynamic RGD (nRGD-PCL). Furthermore, ECs on dRGD-PR demonstrated elevated expression levels of FAK, p-FAK, and p-AKT, along with a larger population of cells in the G2/M stage during cell cycle analysis, in contrast to cells on nRGD-PCL. These findings suggest that the movement of the RGD ligands may exert additional beneficial effects in promoting EC spreading and proliferation, beyond their essential adhesion and proliferation-promoting capabilities, possibly mediated by the RGD-integrin-FAK-AKT pathway. Moreover, in vitro vasculogenesis tests were conducted using two methods, revealing that ECs cultured on dRGD-PR exhibited much better vasculogenesis than nRGD-PCL in vitro. In vivo testing further demonstrated an increased presence of CD31-positive tissues on dRGD-PR. In conclusion, the enhanced EC spreading and proliferation resulting from the dynamic RGD ligands may contribute to improved in vitro vasculogenesis and in vivo vascularization.


Assuntos
Proliferação de Células , Ciclodextrinas , Oligopeptídeos , Humanos , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Ligantes , Neovascularização Fisiológica/efeitos dos fármacos , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Poloxâmero/química , Poloxâmero/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rotaxanos
13.
ACS Appl Bio Mater ; 7(3): 1976-1989, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38447202

RESUMO

The development of nanocarriers to prolong the residence time and enhance the permeability of chemotherapeutic drugs on bladder mucosa is important in the postsurgery treatment of superficial bladder cancers (BCs). Here, the mucoadhesive HA-SH/PF127 nanogels composed of a temperature-sensitive Pluronic F127 (PF127) core and thiolated hyaluronic acid (HA-SH) shell were prepared by the emulsification/solvent evaporation method. The nanogels were constructed through the thiol-maleimide click reaction in the HA-SH aqueous side of the oil-water interface and self-oxidized cross-linking thiols between HA-SH. The HA-SH/PF127 nanogels prepared at different thiol-to-maleimide group molar ratios, water-to-oil volume ratios, and cross-linking reaction times were characterized regarding hydrodynamic diameter (Dh) and zeta potential (ζ), and the optimal formulation was obtained. The excellent mucoadhesive properties of the HA-SH/PF127 nanogels were evaluated by using the mucin particle method. Doxorubicin (DOX) was encapsulated in the PF127 core of DOX@HA-SH/PF127 nanogels with a high loading efficiency (87.5%) and sustained release from the nanogels in artificial urine. Ex vivo studies on porcine bladder mucosa showed that the DOX@HA-SH/PF127 nanogels enhanced the penetration of the DOX into the bladder mucosa without disrupting the mucus structure or the bladder tissue. A significant dose-dependent cytotoxic effect of DOX@HA-SH/PF127 nanogels on both T24 and MB49 cells was observed. The present study demonstrates that the mucoadhesive HA-SH/PF127 nanogels are a promising intravesical drug delivery system for superficial BC therapy.


Assuntos
Ácido Hialurônico , Maleimidas , Poloxâmero , Polietilenoglicóis , Polietilenoimina , Compostos de Sulfidrila , Animais , Suínos , Poloxâmero/química , Nanogéis , Ácido Hialurônico/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Doxorrubicina/química , Água
14.
Colloids Surf B Biointerfaces ; 237: 113837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508086

RESUMO

Ultra Violet radiations induced skin damage and associated skin disorders are a widespread concern. The consequences of sun exposure include a plethora of dermal conditions like aging, solar urticaria, albinism and cancer. Sunscreens provide effective protection to skin from these damages. Besides FDA approved physical and chemical UV filters, phytoconstituents with their multi functionalities are emerging as frontrunners in Therapy of skin disorders. Objective of this study was to develop novel phyto-dermal gel (PDG) with dual action of sun protection and antioxidant potential using polymeric mixed micelles (PMMs) are nanocarriers. PMMs of Pluronic F127 and Pluronic F68 loaded with curcumin and quercetin were optimized by 32 factorial designs. Responses studied were vesicle size, SPF, entrapment efficiency of curcumin and quercetin and antioxidant activity. Droplet size ranged from 300 to 500 nm with PDI in between 0.248 and 0.584. Combination of curcumin and quercetin showed enhanced sun protection and antioxidant activity. Pluronics played a significant positive role in various parameters. In present studies vesicle size of factorial batches was found to be between 387 and 527 nm, and SPF was found to be between 18.86 and 28.32. Transmission electron microscopy revealed spherical morphology of micelles. Optimized micelles were incorporated into Carbopol 940. Optimized PDG was evaluated for pH, drug content, spreadability, rheology, syneresis, ex vivo permeation, and skin retention. Hysteresis loop in the rheogram suggested thixotropy of PDG. Syneresis for gels from day 0-30 days was found to be between 0% and 12.46% w/w. SPF of optimized PDG was 27±0.5. Optimized PDG showed no signs of erythema and edema on Wistar rats. PMMs thus effectively enhanced antioxidant and skin protective effect of curcumin and quercetin.


Assuntos
Cosmecêuticos , Curcumina , Ratos , Animais , Micelas , Curcumina/farmacologia , Curcumina/química , Antioxidantes/farmacologia , Quercetina/farmacologia , Ratos Wistar , Poloxâmero/química , Polímeros/química , Géis , Portadores de Fármacos/química , Tamanho da Partícula
15.
Int J Pharm ; 655: 124054, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38548071

RESUMO

Direct, reliable, controlled, and sustained drug delivery to female reproductive tract (FRT) remains elusive, with conventional dosage forms falling way short of the mark, leading to premature leakage, erratic drug delivery, and loss of compliance. Historically, the intravaginal route remains underserved by the pharmaceutical sector. To comprehensively address this, we turned our focus to phase-transforming sol-gels, using poloxamers, a thermosensitive polymer and, doxycycline (as hyclate salt, DOXH) as our model agent given its potential use in sexually transmitted infections (STIs). We further enhanced mucoadhesiveness through screening of differing viscosity grade hydroxypropyl methyl celluloses (HPMCs). The optimised sol-gels remained gelled at body temperature (<37 °C) and were prepared in buffer aligned to vaginal cavity pH and osmolality. Lead formulations were progressed based on their ability to retain key rheological properties, and acidic pH in the presence of simulated vaginal fluid (SVF). From a shelf-life perspective, DOXH stability, gelation temperature (Tsol-gel), and pH to three months (2-8 °C) was attained. In summary, the meticulously engineered, phase-transforming sol-gels provided sustained mucoretention despite dilution by vaginal fluid, paving the way for localised antimicrobial drug delivery at concentrations that potentially far exceed the minimum inhibitory concentration (MIC) for target STI-causing bacteria of the FRT.


Assuntos
Anti-Infecciosos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Temperatura , Poloxâmero/química , Géis/química , Viscosidade , Administração Intravaginal
16.
Int J Pharm ; 655: 124070, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554740

RESUMO

The importance of ink rheology to the outcome of 3D printing is well recognized. However, rheological properties of printing inks containing drug nanocrystals have not been widely investigated. Therefore, the objective of this study was to establish a correlation between the composition of nanocrystal printing ink, the ink rheology, and the entire printing process. Indomethacin was used as a model poorly soluble drug to produce nanosuspensions with improved solubility properties through particle size reduction. The nanosuspensions were further developed into semisolid extrusion 3D printing inks with varying nanocrystal and poloxamer 407 concentrations. Nanocrystals were found to affect the rheological properties of the printing inks both by being less self-supporting and having higher yielding resistances. During printing, nozzle blockages occurred. Nevertheless, all inks were found to be printable. Finally, the rheological properties of the inks were successfully correlated with various printing and product properties. Overall, these experiments shed new light on the rheological properties of printing inks containing nanocrystals.


Assuntos
Nanopartículas , Poloxâmero , Géis , Excipientes/química , Impressão Tridimensional , Reologia , Tinta
17.
Biomater Adv ; 159: 213837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522310

RESUMO

Poloxamer-based hydrogels show promise to stabilise and sustain the delivery of growth factors in tissue engineering applications, such as following spinal cord injury. Typically, growth factors such as neurotrophin-3 (NT-3) degrade rapidly in solution. Similarly, poloxamer hydrogels also degrade readily and are, therefore, only capable of sustaining the release of a payload over a small number of days. In this study, we focused on optimising a hydrogel formulation, incorporating both poloxamer 188 and 407, for the sustained delivery of bioactive NT-3. Hyaluronic acid blended into the hydrogels significantly reduced the degradation of the gel. We identified an optimal hydrogel composition consisting of 20 % w/w poloxamer 407, 5 % w/w poloxamer 188, 0.6 % w/w NaCl, and 1.5 % w/w hyaluronic acid. Heparin was chemically bound to the poloxamer chains to enhance interactions between the hydrogel and the growth factor. The unmodified and heparin-modified hydrogels exhibited sustained release of NT-3 for 28 days while preserving the bioactivity of NT-3. Moreover, these hydrogels demonstrated excellent cytocompatibility and had properties suitable for injection into the intrathecal space, underscoring their suitability as a growth factor delivery system. The findings presented here contribute valuable insights to the development of effective delivery strategies for therapeutic growth factors for tissue engineering approaches, including the treatment of spinal cord injury.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Humanos , Hidrogéis/uso terapêutico , Poloxâmero/química , Poloxâmero/uso terapêutico , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/uso terapêutico , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Heparina/farmacologia , Heparina/química , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico
18.
Int J Biol Macromol ; 264(Pt 2): 130783, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471603

RESUMO

Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers.


Assuntos
Glioblastoma , Nanopartículas , Humanos , RNA Interferente Pequeno/química , Poloxâmero/química , Micelas , Glioblastoma/metabolismo , Inativação Gênica , Linhagem Celular Tumoral , Nanopartículas/química , Microambiente Tumoral
19.
Biofouling ; 40(2): 165-176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38425095

RESUMO

Dual-species biofilms formed by Candida albicans and Staphylococcus aureus have high virulence and drug resistance. In this context, biosurfactants produced by Pseudomonas aeruginosa have been widely studied, of which a new derivative (RLmix_Arg) stands out for possible application in formulations. The objective of this study was to evaluate the antibiofilm activity of RLmix_Arg, both alone and incorporated in a gel prepared with Pluronic F-127, against dual-species biofilms of fluconazole-resistant C. albicans (FRCA) and methicillin-resistant S. aureus (MRSA) in impregnated catheters. Broth microdilution tests, MTT reduction assays of mature biofilms, impregnation of RLmix_Arg and its gel in peripheral venous catheters, durability tests and scanning electron microscopy (SEM) were performed. RLmix_Arg showed antimicrobial activity against Candida spp. and S. aureus, by reducing the cell viability of mixed biofilms of FRCA and MRSA, and preventing their formation in a peripheral venous catheter. The incorporation of this biosurfactant in the Pluronic F-127 gel considerably enhanced its antibiofilm activity. Thus, RLmix_Arg has potential application in gels for impregnation in peripheral venous catheters, helping to prevent development of dual-species biofilms of FRCA and MRSA.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Fluconazol/farmacologia , Candida albicans , Staphylococcus aureus , Resistência a Meticilina , Biofilmes , Poloxâmero/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Catéteres , Antibacterianos/farmacologia
20.
J Chromatogr A ; 1720: 464777, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38432108

RESUMO

The majority of commercially available monoclonal antibody (mAb) formulations are stabilized with one of three non-ionic surfactants: polysorbate 20 (PS20), polysorbate 80 (PS80), or poloxamer 188 (P188). All three surfactants are susceptible to degradation, which can result in functionality loss and subsequent protein aggregation or free fatty acid particle formation. Consequently, quantitative, and qualitative analysis of surfactants is an integral part of formulation development, stability, and batch release testing. Due to the heterogeneous nature of both polysorbates and poloxamer, online isolation of all the compounds from the protein and other excipients that may disturb the subsequent liquid chromatography with charged aerosol detection (LC-CAD) analysis poses a challenge. Herein, we present an analytical method employing LC-CAD, utilizing a combination of anion and cation exchange columns to completely remove proteins online before infusing the isolated surfactant onto a reversed-phase column. The method allows high throughput analysis of polysorbates within 8 minutes and poloxamer 188 within 12 minutes, providing a separation of the surfactant species of polysorbates (unesterified species, lower esters, and higher esters) and poloxamer 188 (early eluters and main species). Accuracy and precision assessed according to the International Council for harmonisation (ICH) guideline were 96 - 109 % and ≤1 % relative standard deviation respectively for all three surfactants in samples containing up to 110 mg/mL mAb. Subsequently, the method was effectively applied to quantify polysorbate 20 and polysorbate 80 in nine commercial drug products with mAb concentration of up to 180 mg/mL.


Assuntos
Poloxâmero , Polissorbatos , Polissorbatos/química , Poloxâmero/análise , Anticorpos Monoclonais/química , Tensoativos/química , Cromatografia Líquida , Aerossóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA