Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.872
Filtrar
1.
Sci Rep ; 14(1): 10566, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719873

RESUMO

Conventional wastewater treatment processes are often unable to remove antibiotics with resistant compounds and low biological degradation. The need for advanced and sustainable technologies to remove antibiotics from water sources seems essential. In this regard, the effectiveness of a spinning disc photocatalytic reactor (SDPR) equipped with a visible light-activated Fe3O4@SiO2-NH2@CuO/ZnO core-shell (FSNCZ CS) thin film photocatalyst was investigated for the decomposition of amoxicillin (AMX), a representative antibiotic. Various characterization techniques, such as TEM, FESEM, EDX, AFM, XRD, and UV-Vis-DRS, were employed to study the surface morphology, optoelectronic properties, and nanostructure of the FSNCZ CS. Key operating parameters such as irradiation time, pH, initial AMX concentration, rotational speed, and solution flow rate were fine-tuned for optimization. The results indicated that the highest AMX decomposition (98.7%) was attained under optimal conditions of 60 min of irradiation time, a rotational speed of 350 rpm, a solution flow rate of 0.9 L/min, pH of 5, and an initial AMX concentration of 20 mg/L. Moreover, during the 60 min irradiation time, more than 69.95% of chemical oxygen demand and 61.2% of total organic carbon were removed. After the photocatalytic decomposition of AMX, there is a substantial increase in the average oxidation state and carbon oxidation state in SDPR from 1.33 to 1.94 and 3.2, respectively. Active species tests confirmed that ·OH and ·O2- played a dominant role in AMX decomposition. The developed SDPR, which incorporates a reusable and robust FSNCZ CS photocatalyst, demonstrates promising potential for the decomposition of organic compounds.


Assuntos
Amoxicilina , Antibacterianos , Luz , Nanoestruturas , Catálise , Antibacterianos/química , Nanoestruturas/química , Amoxicilina/química , Poluentes Químicos da Água/química , Cobre/química , Óxido de Zinco/química , Dióxido de Silício/química , Purificação da Água/métodos
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731865

RESUMO

This study explored the feasibility of fluoride removal from simulated semiconductor industry wastewater and its recovery as calcium fluoride using fluidized bed crystallization. The continuous reactor showed the best performance (>90% fluoride removal and >95% crystallization efficiency) at a calcium-to-fluoride ratio of 0.6 within the first 40 days of continuous operation. The resulting particle size increased by more than double during this time, along with a 36% increase in the seed bed height, indicating the deposition of CaF2 onto the silica seed. The SEM-EDX analysis showed the size and shape of the crystals formed, along with the presence of a high amount of Ca-F ions. The purity of the CaF2 crystals was determined to be 91.1% though ICP-OES analysis. Following the continuous experiment, different process improvement strategies were explored. The addition of an excess amount of calcium resulted in the removal of an additional 6% of the fluoride; however, compared to this single-stage process, a two-stage approach was found to be a better strategy to achieve a low effluent concentration of fluoride. The fluoride removal reached 94% with this two-stage approach under the optimum conditions of 4 + 1 h HRT combinations and a [Ca2+]/[F-] ratio of 0.55 and 0.7 for the two reactors, respectively. CFD simulation showed the impact of the inlet diameter, bottom-angle shape, and width-to-height ratio of the reactor on the mixing inside the reactor and the possibility of further improvement in the reactor performance by optimizing the FBR configuration.


Assuntos
Fluoreto de Cálcio , Fluoretos , Águas Residuárias , Fluoreto de Cálcio/química , Fluoretos/química , Fluoretos/isolamento & purificação , Águas Residuárias/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cristalização
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731960

RESUMO

Due to a large number of harmful chemicals flowing into the water source in production and life, the water quality deteriorates, and the use value of water is reduced or lost. Biochar has a strong physical adsorption effect, but it can only separate pollutants from water and cannot eliminate pollutants fundamentally. Photocatalytic degradation technology using photocatalysts uses chemical methods to degrade or mineralize organic pollutants, but it is difficult to recover and reuse. Woody biomass has the advantages of huge reserves, convenient access and a low price. Processing woody biomass into biochar and then combining it with photocatalysts has played a complementary role. In this paper, the shortcomings of a photocatalyst and biochar in water treatment are introduced, respectively, and the advantages of a woody biochar-based photocatalyst made by combining them are summarized. The preparation and assembly methods of the woody biochar-based photocatalyst starting from the preparation of biochar are listed, and the water treatment efficiency of the woody biochar-based photocatalyst using different photocatalysts is listed. Finally, the future development of the woody biochar-based photocatalyst is summarized and prospected.


Assuntos
Carbono , Carvão Vegetal , Purificação da Água , Madeira , Purificação da Água/métodos , Carvão Vegetal/química , Catálise , Madeira/química , Carbono/química , Poluentes Químicos da Água/química , Processos Fotoquímicos , Adsorção
4.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731990

RESUMO

This work aimed to describe the adsorption behavior of Congo red (CR) onto activated biochar material prepared from Haematoxylum campechianum waste (ABHC). The carbon precursor was soaked with phosphoric acid, followed by pyrolysis to convert the precursor into activated biochar. The surface morphology of the adsorbent (before and after dye adsorption) was characterized by scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) and, lastly, pHpzc was also determined. Batch studies were carried out in the following intervals of pH = 4-10, temperature = 300.15-330.15 K, the dose of adsorbent = 1-10 g/L, and isotherms evaluated the adsorption process to determine the maximum adsorption capacity (Qmax, mg/g). Kinetic studies were performed starting from two different initial concentrations (25 and 50 mg/L) and at a maximum contact time of 48 h. The reusability potential of activated biochar was evaluated by adsorption-desorption cycles. The maximum adsorption capacity obtained with the Langmuir adsorption isotherm model was 114.8 mg/g at 300.15 K, pH = 5.4, and a dose of activated biochar of 1.0 g/L. This study also highlights the application of advanced machine learning techniques to optimize a chemical removal process. Leveraging a comprehensive dataset, a Gradient Boosting regression model was developed and fine-tuned using Bayesian optimization within a Python programming environment. The optimization algorithm efficiently navigated the input space to maximize the removal percentage, resulting in a predicted efficiency of approximately 90.47% under optimal conditions. These findings offer promising insights for enhancing efficiency in similar removal processes, showcasing the potential of machine learning in process optimization and environmental remediation.


Assuntos
Teorema de Bayes , Carvão Vegetal , Vermelho Congo , Aprendizado de Máquina , Carvão Vegetal/química , Adsorção , Vermelho Congo/química , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Hazard Mater ; 471: 134451, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691935

RESUMO

Anaerobic biotechnology for wastewaters treatment can nowadays be considered as state of the art methods. Nonetheless, this technology exhibits certain inherent limitations when employed for industrial wastewater treatment, encompassing elevated substrate consumption, diminished electron transfer efficiency, and compromised system stability. To address the above issues, increasing interest is being given to the potential of using conductive non-biological materials, e,g., iron sulfide (FeS), as a readily accessible electron donor and electron shuttle in the biological decontamination process. In this study, Mackinawite nanoparticles (FeS NPs) were studied for their ability to serve as electron donors for p-chloronitrobenzene (p-CNB) anaerobic reduction within a coupled system. This coupled system achieved an impressive p-CNB removal efficiency of 78.3 ± 2.9% at a FeS NPs dosage of 1 mg/L, surpassing the efficiencies of 62.1 ± 1.5% of abiotic and 30.6 ± 1.6% of biotic control systems, respectively. Notably, the coupled system exhibited exclusive formation of aniline (AN), indicating the partial dechlorination of p-CNB. The improvements observed in the coupled system were attributed to the increased activity in the electron transport system (ETS), which enhanced the sludge conductivity and nitroaromatic reductases activity. The analysis of equivalent electron donors confirmed that the S2- ions dominated the anaerobic reduction of p-CNB in the coupled system. However, the anaerobic reduction of p-CNB would be adversely inhibited when the FeS NPs dosage exceeded 5 g/L. In a continuous operation, the p-CNB concentration and HRT were optimized as 125 mg/L and 40 h, respectively, resulting in an outstanding p-CNB removal efficiency exceeding 94.0% after 160 days. During the anaerobic reduction process, as contributed by the predominant bacterium of Thiobacillus with a 6.6% relative abundance, a mass of p-chloroaniline (p-CAN) and AN were generated. Additionally, Desulfomonile was emerged with abundances ranging from 0.3 to 0.7%, which was also beneficial for the reduction of p-CNB to AN. The long-term stable performance of the coupled system highlighted that anaerobic technology mediated by FeS NPs has a promising potential for the treatment of wastewater containing chlorinated nitroaromatic compounds, especially without the aid of organic co-substrates.


Assuntos
Compostos Ferrosos , Nitrobenzenos , Anaerobiose , Nitrobenzenos/metabolismo , Nitrobenzenos/química , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Nanopartículas/química , Oxirredução , Eliminação de Resíduos Líquidos/métodos , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Águas Residuárias/química , Reatores Biológicos
6.
Environ Monit Assess ; 196(5): 491, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691183

RESUMO

This study explores the dual applications of a greenly synthesized ZnO@CTAB nanocomposite for the efficient remediation of Rhodamine B (RhB) and lead (Pb). The synthesis method involves a sustainable approach, emphasizing environmentally friendly practices. FT-IR, XRD, FESEM, zeta potential, and particle size analyzer (PSA), BET, and UV-VIS were used to physically characterize the zinc oxide and CTAB nanocomposite (ZnO@CTAB). The size and crystalline index of ZnO@CTAB are 77.941 nm and 63.56% respectively. The Zeta potential of ZnO@CTAB is about - 22.4 mV. The pore diameter of the ZnO@CTAB was 3.216 nm, and its total surface area was 97.42 m2/g. The mechanism of adsorption was investigated through pHZPC measurements. The nanocomposite's adsorption performance was systematically investigated through batch adsorption experiments. At pH 2, adsorbent dose of 0.025 g, and temperature 50 °C, ZnO@CTAB removed the most RhB, while at pH 6, adsorbent dose of 0.11 g, and temperature 60 °C, ZnO@CTAB removed the most Pb. With an adsorption efficiency of 214.59 mg/g and 128.86 mg/g for RhB and Pb, the Langmuir isotherm model outperforms the Freundlich isotherm model in terms of adsorption. The pseudo-2nd-order model with an R2 of 0.99 for both RhB and Pb offers a more convincing explanation of adsorption than the pseudo-1st-order model. The results demonstrated rapid adsorption kinetics and high adsorption capacities for RhB and Pb. Furthermore, there was minimal deterioration and a high reusability of ZnO@CTAB till 4 cycles were observed.


Assuntos
Chumbo , Nanocompostos , Rodaminas , Poluentes Químicos da Água , Óxido de Zinco , Chumbo/química , Óxido de Zinco/química , Rodaminas/química , Nanocompostos/química , Poluentes Químicos da Água/química , Adsorção , Cetrimônio/química , Recuperação e Remediação Ambiental/métodos , Química Verde , Nanoestruturas/química
7.
Environ Monit Assess ; 196(5): 492, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691228

RESUMO

Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.


Assuntos
Compostos Benzidrílicos , Carvão Vegetal , Fenóis , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/química , Compostos Benzidrílicos/química , Compostos Benzidrílicos/análise , Fenóis/análise , Fenóis/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos
8.
Water Sci Technol ; 89(9): 2290-2310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747950

RESUMO

In the face of growing global freshwater scarcity, the imperative to recycle and reuse water becomes increasingly apparent across industrial, agricultural, and domestic sectors. Eliminating a range of organic pollutants in wastewater, from pesticides to industrial byproducts, presents a formidable challenge. Among the potential solutions, membrane technologies emerge as promising contenders for treating diverse organic contaminants from industrial, agricultural, and household origins. This paper explores cutting-edge membrane-based approaches, including reverse osmosis, nanofiltration, ultrafiltration, microfiltration, gas separation membranes, and pervaporation. Each technology's efficacy in removing distinct organic pollutants while producing purified water is scrutinized. This review delves into membrane fouling, discussing its influencing factors and preventative strategies. It sheds light on the merits, limitations, and prospects of these various membrane techniques, contributing to the advancement of wastewater treatment. It advocates for future research in membrane technology with a focus on fouling control and the development of energy-efficient devices. Interdisciplinary collaboration among researchers, engineers, policymakers, and industry players is vital for shaping water purification innovation. Ongoing research and collaboration position us to fulfill the promise of accessible, clean water for all.


Assuntos
Membranas Artificiais , Poluentes Químicos da Água , Purificação da Água , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Filtração/métodos , Filtração/instrumentação , Ultrafiltração/métodos , Compostos Orgânicos/isolamento & purificação
9.
Water Sci Technol ; 89(9): 2468-2482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747961

RESUMO

17α-methyltestosterone (MT) hormone is a synthetic androgenic steroid hormone utilized to induce Nile tilapia transitioning for enhanced production yield. This study specifically focuses on the removal of MT through the utilization of photocatalytic membrane reactor (PMR), which employs an in-house polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with 1% nanomaterials (either TiO2 or α-Fe2O3). The molecular weight cut-off (MWCO) of the in-house membrane falls within the ultrafiltration range. Under UV95W radiation, the PMR with PVDF/TiO2 and PVDF/α-Fe2O3 membranes achieved 100% MT removal at 140 and 160 min, respectively. The MT removal by the commercial NF03 membrane was only at 50%. In contrast, without light irradiation, the MT removal by all the membranes remained unchanged after 180 min, exhibiting lower performance. The incorporation of TiO2 and α-Fe2O3 enhanced water flux and MT removal of the membrane. Notably, the catalytic activity was limited by the distribution and concentration of the catalyst at the membrane surface. The water contact angle did not correlate with the water flux for the composited membrane. The degradation of MT aligned well with Pseudo-first-order kinetic models. Thus, the in-house ultrafiltration PMR demonstrated superior removal efficiency and lower operational costs than the commercial nanofiltration membrane, attributable to its photocatalytic activities.


Assuntos
Membranas Artificiais , Metiltestosterona , Ultrafiltração , Poluentes Químicos da Água , Ultrafiltração/métodos , Poluentes Químicos da Água/química , Metiltestosterona/química , Catálise , Purificação da Água/métodos , Titânio/química
10.
Water Sci Technol ; 89(9): 2538-2557, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747966

RESUMO

Electroplating wastewater contains heavy metal ions and organic matter. These contaminants not only endanger the environment but also pose risks to human health. Despite the development of various treatment processes such as chemical precipitation MBR, electrocoagulation (EC) ceramic membrane (CM), coagulation ultrafiltration (UF) reverse osmosis (RO), and CM RO. These methods are only effective for low concentrations of heavy metals and struggle with high concentrations. To address the challenge of treating electroplating wastewater with high heavy metal content, this study focuses on the wastewater from Dongfang Aviation Machinery Processing Plant. It introduces an EC and integrated membrane (IM) treatment process for electroplating wastewater. The IM comprises microfiltration (MF) membrane, nanofiltration (NF) membrane, and RO membrane. Results indicated that under specific conditions, such as a pH of 8, current density of 5 A/dm2, electrode plate spacing of 2 cm, 35 min of electrolysis time, and influent pH of 10 for the IM, removal rates of Zn2+, Cu2+, Ni2+, and TCr in the wastewater exceeded 99%. The removal rates of chemical oxygen demand (COD), suspended solids (SS), total phosphorus (TP), total nitrogen (TN), and petroleum in wastewater exceed 97%. Following a continuous cleaning process, the membrane flux can consistently recover to over 94.3%.


Assuntos
Membranas Artificiais , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Galvanoplastia , Purificação da Água/métodos , Metais Pesados , Eletrocoagulação/métodos
11.
Water Sci Technol ; 89(9): 2558-2576, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747967

RESUMO

In this study, membranes blended with polysulfone (PSU) and polyetherimide (PEI) polymers in different ratios were fabricated. Their potential to remove pollutants from rivers, which are a potential drinking water source, was investigated. Scanning electron microscopy analysis revealed that the PSU membranes had a dense and homogeneous layer, whereas the addition of PEI formed a spongy substrate. The water content of the fabricated membranes varied between 5.37 and 22.42%, porosities 28.73-89.36%, contact angles 69.18-85.81%, and average pure water fluxes 257.25-375.32 L/m2 h. The blended membranes removed turbidity, chloride, alkalinity, conductivity, sulfate, iron, manganese, and total organic carbon up to 98.32, 92.28, 96.87, 90.67, 99.58, 94.63, 97.48, and 79.11%, respectively. These results show that when PEI was added to the PSU polymer, the filtration efficiency increased owing to an increase in the hydrophilicity of the membranes. Blending these two polymers enabled the optimization of membrane properties such as permeability, selectivity, and mechanical strength. In addition, membrane fabrication processes are simple and incur low costs.


Assuntos
Filtração , Membranas Artificiais , Polímeros , Sulfonas , Polímeros/química , Sulfonas/química , Filtração/métodos , Purificação da Água/métodos , Poluentes Químicos da Água/química , Microscopia Eletrônica de Varredura
12.
Sci Rep ; 14(1): 11058, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745050

RESUMO

The present study assessed the effective use of biochar for the adsorption of two potent HAB toxins namely, Microcystin-LR (MCLR) and Saxitoxin (STX) through a combination of dosage, kinetic, equilibrium, initial pH, and competitive adsorption experiments. The adsorption results suggest that biochar has excellent capabilities for removing MCLR and STX, with STX reporting higher adsorption capacities (622.53-3507.46 µg/g). STX removal required a minimal dosage of 0.02 g/L, while MCLR removal needed 0.4 g/L for > 90%. Similarly, a shorter contact time was required for STX removal compared to MCLR for > 90% of toxin removed from water. Initial pH study revealed that for MCLR acidic conditions favored higher uptake while STX favored basic conditions. Kinetic studies revealed that the Elovich model to be most suitable for both toxins, while STX also showed suitable fittings for Pseudo-First Order and Pseudo-Second Order in individual toxin systems. Similarly, for the Elovich model the most suited kinetic model for both toxins in presence of each other. Isotherm studies confirmed the Langmuir-Freundlich model as the best fit for both toxins. These results suggest adsorption mechanisms including pore filling, hydrogen bonding, π-π interactions, hydrophobic interactions, electrostatic attraction, and dispersive interactions.


Assuntos
Carvão Vegetal , Toxinas Marinhas , Microcistinas , Saxitoxina , Purificação da Água , Microcistinas/química , Microcistinas/isolamento & purificação , Carvão Vegetal/química , Saxitoxina/química , Toxinas Marinhas/química , Adsorção , Cinética , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
13.
Water Environ Res ; 96(5): e11033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720414

RESUMO

The escalating issue of microplastic (MP) pollution poses a significant threat to the marine environment due to increasing plastic production and improper waste management. The current investigation was aimed at quantifying the MP concentration on 25 beaches on the Maharashtra coast, India. Beach sediments (1 kg) were collected from each site, with five replicates to evaluate the extent of MPs. The samples were homogenized, and three 20 g replicas were prepared for subsequent analysis. Later, the samples were sieved, and MPs were extracted using previously published protocols. The abundance of MPs found as 1.56 ± 0.79 MPs/g, ranges from 0.43 ± 0.07 to 3 ± 0.37 MPs/g. Fibers were found as the most abundant shape of MPs. Size-wise classification revealed dominance of <1 mm and 1-2 mm-sized MPs. Blue- and black-colored MPs were recorded dominantly. Polymer identification of MPs revealed polyurethane, polypropylene, polyvinyl chloride, acrylic or polymethyl methacrylate, and rubber. The findings revealed that MPs were found to be higher at highly impacted sites, followed by moderately impacted sites and low-impacted sites, possibly due to a different degree of anthropogenic pressure. The study recommended the urgent need for effective policy to prevent plastics accumulation in the coastal environment of Maharashtra State, India. PRACTITIONER POINTS: The study investigated the abundance and distribution of microplastics in the marine environment, specifically in sediments. The most common type of microplastic found was fibers, followed by fragments and films. Microplastics were found to pose a potential risk to the marine ecosystem, although further research is needed to fully understand their ecological impact. Future research should focus on expanding the sample size, assessing long-term effects, exploring sources and pathways, and considering size and shape of microplastics. The findings recommended urgent action to mitigate plastic pollution in Maharashtra coast.


Assuntos
Praias , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Índia , Microplásticos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Plásticos/química , Plásticos/análise
14.
Luminescence ; 39(5): e4758, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712530

RESUMO

The ability of heterogeneous photocatalysis to effectively remove organic pollutants from wastewater has shown great promise as a tool for environmental remediation. Pure zinc ferrites (ZnFe2O4) and magnesium-doped zinc ferrites (Mg@ZnFe2O4) with variable percentages of Mg (0.5, 1, 3, 5, 7, and 9 mol%) were synthesized via hydrothermal route and their photocatalytic activity was checked against methylene blue (MB) taken as a model dye. FTIR, XPS, BET, PL, XRD, TEM, and UV-Vis spectroscopy were used for the identification and morphological characterization of the prepared nanoparticles (NPs) and nanocomposites (NCs). The 7% Mg@ZnFe2O4 NPs demonstrated excellent degradation against MB under sunlight. The 7% Mg@ZnFe2O4 NPs were integrated with diverse contents (10, 50, 30, and 70 wt.%) of S@g-C3N4 to develop NCs with better activity. When the NCs were tested to degrade MB dye, it was revealed that the 7%Mg@ZnFe2O4/S@g-C3N4 NCs were more effective at utilizing solar energy than the other NPs and NCs. The synergistic effect of the interface formed between Mg@ZnFe2O4 and S@g-C3N4 was primarily responsible for the boosted photocatalytic capability of the NCs. The fabricated NCs may function as an effective new photocatalyst to remove organic dyes from wastewater.


Assuntos
Compostos Férricos , Azul de Metileno , Compostos de Nitrogênio , Energia Solar , Poluentes Químicos da Água , Zinco , Catálise , Poluentes Químicos da Água/química , Compostos Férricos/química , Azul de Metileno/química , Zinco/química , Magnésio/química , Fotólise , Processos Fotoquímicos , Corantes/química , Nanocompostos/química , Grafite/química , Águas Residuárias/química , Nitrilas/química
15.
Water Environ Res ; 96(5): e11018, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712584

RESUMO

Applicable and low-cost ultrafiltration membranes based on waste polystyrene (WPS) blend and poly vinylidene fluoride (PVDF) were effectively cast on nonwoven support using phase inversion method. Analysis was done into how the WPS ratio affected the morphology and antifouling performance of the fabricated membranes. Cross flow filtration of pure water and various types of polluted aqueous solutions as the feed was used to assess the performance of the membranes. The morphology analysis shows that the WPS/PVDF membrane layer has completely changed from a spongy structure to a finger-like structure. In addition, the modified membrane with 50% WPS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection of the membrane with a reduction in permeate flux due to the addition of PVDF. With a water permeability of 50 LMH and 44 LMH, respectively, the optimized WPS-PVDF membrane with 50% WPS could reject 81% and 74% of Congo red dye (CR) and methylene blue dye (MB), respectively. The flux recovery ratio (FRR) reached to 88.2% by increasing PVDF concentration with 50% wt. Also, this membrane has the lowest irreversible fouling (Rir) value of 11.7% and lowest reversible fouling (Rr) value of 27.9%. The percent of cleaning efficiency reach to 71%, 90%, and 85% after eight cycles of humic acid (HA), CR, and MB filtration, respectively, for the modified PS-PVDF (50%-50%). However, higher PVDF values cause the membrane's pores to become clogged, increase the irreversible fouling, and decrease the cleaning efficiency. In addition to providing promising filtration results, the modified membrane is inexpensive because it was made from waste polystyrene, and as a result, it could be scaled up to treat colored wastewater produced by textile industries. PRACTITIONER POINTS: Recycling of plastic waste as an UF membrane for water/wastewater treatment was successfully prepared and investigated. Mechanical properties showed reasonable response with adding PVDF. The modified membrane with 50% PS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection.


Assuntos
Corantes , Polímeros de Fluorcarboneto , Membranas Artificiais , Ultrafiltração , Poluentes Químicos da Água , Purificação da Água , Ultrafiltração/métodos , Corantes/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Plásticos/química , Eliminação de Resíduos Líquidos/métodos , Polivinil/química , Permeabilidade
16.
Environ Geochem Health ; 46(6): 185, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695908

RESUMO

Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.


Assuntos
Ciprofloxacina , Poliestirenos , Shewanella , Ciprofloxacina/química , Ciprofloxacina/toxicidade , Poliestirenos/toxicidade , Poliestirenos/química , Adsorção , Shewanella/efeitos dos fármacos , Microplásticos/toxicidade , Microplásticos/química , Antibacterianos/química , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
17.
Environ Geochem Health ; 46(6): 190, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695943

RESUMO

A magnetic nanocomposite of hydroxyapatite and biomass (HAp-CM) was synthesized through a combined ultrasonic and hydrothermal method, aiming for efficient adsorption of arsenic (As) and fluoride (F-) from drinking water in natural environments. The characterization of HAp-CM was carried out using TG, FTIR, XRD, SEM, SEM-EDS, and TEM techniques, along with the determination of pHpzc charge. FTIR analysis suggested that coordinating links are the main interactions that allow the formation of the nanocomposite. XRD data indicated that the crystalline structure of the constituent materials remained unaffected during the formation of HAp-CM. SEM-EDS analysis revelated a Ca/P molar ratio of 1.78. Adsorption assays conducted in batches demonstrated that As and F- followed a PSO kinetic model. Furthermore, As adsorption fitting well to the Langmuir model, while F- adsorption could be explained by both Langmuir and Freundlich models. The maximum adsorption capacity of HAp-CM was found to be 5.0 mg g-1 for As and 10.2 mg g-1 for F-. The influence of sorbent dosage, pH, and the presence of coexisting species on adsorption capacity was explored. The pH significantly affected the nanocomposite's efficiency in removing both pollutants. The presence of various coexisting species had different effects on F- removal efficiency, while As adsorption efficiency was generally enhanced, except in the case of PO43-. The competitive adsorption between F- and As on HAp-CM was also examined. The achieved results demonstrate that HAp-CM has great potential for use in a natural environment, particularly in groundwater remediation as a preliminary treatment for water consumption.


Assuntos
Arsênio , Durapatita , Fluoretos , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Fluoretos/química , Adsorção , Nanocompostos/química , Durapatita/química , Poluentes Químicos da Água/química , Arsênio/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Biomassa , Cinética , Água Potável/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
18.
Environ Geochem Health ; 46(6): 182, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695980

RESUMO

Due to the development of industries such as mining, smelting, industrial electroplating, tanning, and mechanical manufacturing, heavy metals were discharged into water bodies seriously affecting water quality. Bamboo charcoal, as an environmentally friendly new adsorbent material, in this paper, the virgin bamboo charcoal (denoted as WBC) was modified with different concentrations of KMnO4 and NaOH to obtain KMnO4-modified bamboo charcoal (KBC) and NaOH-modified bamboo charcoal (NBC) which was used to disposed of water bodies containing Cu2+ and Zn2+. The main conclusions were as following: The adsorption of Cu2+ by WBC, KBC and NBC was significantly affected by pH value, and the optimum pH was 5.0. Differently, the acidity and alkalinity of the solution doesn't effect the adsorption of Zn2+ seriousely. Meanwhile, surface diffusion and pore diffusion jointly determine the adsorption rate of Cu2+ and Zn2+. The test result of EDS showed that Mn-O groups formed on the surface of K6 (WBC treated by 0.06 mol/L KMnO4) can promote the adsorption of Cu2+ and Zn2+ at a great degree. The O content on N6(WBC treated by 6 mol/L NaOH) surface increased by 30.95% compared with WBC. It is speculated that the increase of carbonyl group on the surface of NBC is one of the reasons for the improvement of Cu2+ and Zn2+ adsorption capacity. Finally, the residual concentrations of Cu2+ and Zn2+ in wastewater are much lower than 0.5 mg/L and 1.0 mg/L, respectively. Thus it can be seen, KBC and NBC could be a promising adsorbent for heavy metals.


Assuntos
Carvão Vegetal , Cobre , Poluentes Químicos da Água , Zinco , Adsorção , Zinco/química , Cobre/química , Carvão Vegetal/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Permanganato de Potássio/química , Purificação da Água/métodos , Sasa/química , Hidróxido de Sódio/química
19.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690765

RESUMO

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Assuntos
Coloides , Recuperação e Remediação Ambiental , Água Subterrânea , Água Subterrânea/química , Coloides/química , Recuperação e Remediação Ambiental/métodos , Polímeros/química , Carvão Vegetal/química , Areia/química , Poluentes Químicos da Água/química , Carbono/química
20.
Environ Sci Technol ; 58(19): 8576-8586, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696240

RESUMO

Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.


Assuntos
Substâncias Húmicas , Manganês , Oxirredução , Fenóis , Manganês/química , Fenóis/química , Ânions , Compostos de Manganês/química , Óxidos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA