Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 12577, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974750

RESUMO

Inorganic elements are important components of medicinal herbs, and provide valuable experimental evidence for the quality evaluation and control of traditional Chinese medicine (TCM). In this study, to investigate the relationship between the inorganic elemental fingerprint and geographical origin identification of cultivated Polygala tenuifolia, 41 elemental fingerprints of P. tenuifolia from four major polygala-producing regions (Shanxi, Hebei, Henan, and Shaanxi) were evaluated to determine the importance of inorganic elements to cultivated P. tenuifolia. A total of 15 elemental (B, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, N, Mo, S, Sr, P, and Zn) concentrations of cultivated P. tenuifolia were measured using inductively coupled plasma mass spectroscopy (ICP-MS). The element composition samples were classified by radar plot, elemental fingerprint, and multivariate data analyses, such as hierarchical cluster analysis (HCA), principle component analysis (PCA), and discriminant analysis (DA). This study shows that radar plots and multivariate data analysis can satisfactorily distinguish the geographical origin of cultivated P. tenuifolia. Furthermore, PCA results revealed that N, Cu, K, Mo, Sr, Ca, and Zn are the characteristic elements of cultivated P. tenuifolia. Therefore, multi-element fingerprinting coupled with multivariate statistical techniques can be considered an effective tool to discriminate geographical origin of cultivated P. tenuifolia.


Assuntos
Plantas Medicinais/química , Polygala/química , Oligoelementos/química , Análise Discriminante , Geografia , Espectrometria de Massas , Plantas Medicinais/classificação , Polygala/classificação , Análise de Componente Principal , Análise Espectral , Oligoelementos/isolamento & purificação
2.
Zhong Yao Cai ; 38(9): 1819-24, 2015 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-26930975

RESUMO

OBJECTIVE: The chemical differences of Polygala tenuifolia varieties-JinYuan 1 (JY1), FenYuan 2 (FY2) and traditional FenYang (FY) were studied, in order to provide reference for the breeding of Polygala tenuifolia. METHODS: The samples of JY1, FY2 and FY were subjected to ultra-high performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (Q-TOF MS) analysis. The obtained data were analyzed using Principal Component Analysis (PCA) and other statistical analysis methods, and differential metabolites were further figured out. RESULTS: Compared with FY,sucrose esters (such as sibiricoses A5 and tenuifoliside B) and oligosaccharides (such as tenuifoliose K) in JY1 and FY2 contributed more to the separation of Polygala tenuifolia varieties in the PCA score plot. Compared with JYl, The sugar esters (such as tenuifoliside B and tenuifoliside A) and oligosaccharides( such as tenuifoliose A) in the FY2 also contributed more to the separation of Polygala tenuifolia varieties in the PCA score plot. In addition, the relative contents of sibiricaxanthone A,3,6'-disinapoly sucrose and senegin III showed significant differences among FY, JY1 and FY2. CONCLUSION: As new Polygala tenuifolia varieties, JY1 and FY2 had certain differences and respective advantages on the chemical composition compared with FY,which could provide data support for the directional breeding of Polygala tenuifolia based on the contents of some active compounds.


Assuntos
Metabolômica , Plantas Medicinais/química , Polygala/química , Cromatografia Líquida de Alta Pressão , Ésteres/química , Espectrometria de Massas , Oligossacarídeos/química , Plantas Medicinais/classificação , Polygala/classificação , Análise de Componente Principal
3.
Zhongguo Zhong Yao Za Zhi ; 39(20): 3991-4000, 2014 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-25751952

RESUMO

OBJECTIVE: To establish an HPLC fingerprint to evaluate the quality of Polygalae Radix, root xylem, and those collected in different growth ages or harvest time. METHOD: Separation was performed at 30 °C on a Kromasil C18 column (4.6 mm x 250 mm, 5 µm); the mobile phases was acetonitrile and 0.05% H3PO4 water in the gradient elution; the flow rate was set at 1.0 mL · min(-1) and the detection wavelength at 314 nm; the quality discriminant analyses were accomplished by means of similarity analysis, cluster analysis, principal component analysis and neural network model. RESULT: In 26 batches of Polygalae Radix, 24 batches fingerprint similarities were above 0.8. In 5 different growth or harvest time batches, 4 batches were above 0.8; in 8 batches root xylem samples, the similarities were all above 0.875. The similarity analysis was in accord with the quality discriminant analysis of cluster analysis, principal component analysis and neural network model. CONCLUSION: Fingerprint combined with chemical pattern recognition technique can effectively evaluate the quality of Polygalae Radix. The active substance species are all similar in cultivated, wild, different growth or harvest time Polygalae Radix and polygala root xylem, but the chromatography peak areas are different. The effective material contents are similar between wild and cultivated Polygalae Radix, but each chromatographic peak area of the root xylem is much smaller than that of Polygalae Radix. The chemical substance accumulation mainly depends on harvest month, but little growth time in Polygalae Radix.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Raízes de Plantas/química , Polygala/química , Raízes de Plantas/classificação , Polygala/classificação , Controle de Qualidade
4.
J Plant Res ; 117(5): 355-61, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15338425

RESUMO

Genetic variation at 10 allozyme loci was analyzed in 14 populations of Polygala reinii (Polygalaceae), a perennial herb endemic to central Honshu, Japan, with a fragmented geographical distribution. The levels of genetic variation within species ( P=80.0, A=3.10, H(E)=0.303) and within populations ( P=42.1, A=1.61, H(E)=0.163) were considerably higher than the mean for other endemic plants or short-lived perennial herbs. Genetic differentiation among populations was also high ( G(ST)=0.404). The genetic distance phenogram tended to show a clustering of the populations reflecting the fragmentation of the species range. A principal component analysis revealed the same tendency, as well as three groupings of populations in the Tokai district, on the Kii Peninsula and in the northern Kinki district. A negative correlation was obtained between the levels of gene flow and geographical distance among the populations ( r=-0.745, P<0.0001). These results indicated limited gene flow among populations in P. reinii, presumably due to the geographical isolation accompanying the fragmented distribution. On the other hand, the geographical differentiation between the Japan Sea and Pacific Ocean sides was found in P. reinii, suggesting the influence of postglacial migration on the establishment of the genetic structure of this species.


Assuntos
Variação Genética , Polygala/genética , Ecossistema , Geografia , Japão , Filogenia , Polygala/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA