Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
2.
Cell Commun Signal ; 22(1): 328, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872145

RESUMO

BACKGROUND: Kawasaki disease (KD) is an immune vasculitis of unknown origin, characterized by transient inflammation. The activation of the cGAS-STING pathway, triggered by mitochondrial DNA (mtDNA) release, has been implicated in the onset of KD. However, its specific role in the progression of inflammation during KD's acute phase remains unclear. METHODS: We measured mtDNA and 2'3'-cGAMP expression in KD patient serum using RT-qPCR and ELISA. A murine model of KD was induced by injecting Lactobacillus casei cell wall extract (LCWE), after which cGAS-STING pathway activation and inflammatory markers were assessed via immunohistochemistry, western blot, and RT-qPCR. Human umbilical vein endothelial cells (HUVECs) were treated with KD serum and modulators of the cGAS-STING pathway for comparative analysis. Mitochondrial function was evaluated using Mitosox staining, mPTP opening was quantified by fluorescence microscopy, and mitochondrial membrane potential (MMP) was determined with JC-1 staining. RESULTS: KD patient serum exhibited increased mtDNA and 2'3'-cGAMP expression, with elevated levels of pathway-related proteins and inflammatory markers observed in both in vivo and in vitro models. TEM confirmed mitochondrial damage, and further studies demonstrated that inhibition of mPTP opening reduced mtDNA release, abrogated cGAS-STING pathway activation, and mitigated inflammation. CONCLUSION: These findings indicate that mtDNA released through the mPTP is a critical activator of the cGAS-STING pathway, contributing significantly to KD-associated inflammation. Targeting mtDNA release or the cGAS-STING pathway may offer novel therapeutic approaches for KD management.


Assuntos
DNA Mitocondrial , Inflamação , Proteínas de Membrana , Poro de Transição de Permeabilidade Mitocondrial , Síndrome de Linfonodos Mucocutâneos , Nucleotidiltransferases , Transdução de Sinais , Síndrome de Linfonodos Mucocutâneos/metabolismo , Síndrome de Linfonodos Mucocutâneos/patologia , Síndrome de Linfonodos Mucocutâneos/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Inflamação/patologia , Inflamação/metabolismo , Inflamação/genética , Animais , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Masculino , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Feminino , Doença Aguda , Camundongos Endogâmicos C57BL , Pré-Escolar
3.
Life Sci ; 351: 122802, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38857656

RESUMO

Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.


Assuntos
Translocador 2 do Nucleotídeo Adenina , Humanos , Animais , Translocador 2 do Nucleotídeo Adenina/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Apoptose , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismo
4.
J Agric Food Chem ; 72(26): 14975-14983, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38898562

RESUMO

Enniatins (ENNs) A1 and B1, previously considered ionophores, are emerging mycotoxins with effects on Ca2+ homeostasis. However, their exact mechanism of action remains unclear. This study investigated how these toxins affect Ca2+ flux in SH-SY5Y cells. ENN A1 induced Ca2+ influx through store-operated channels (SOC). The mitochondrial uncoupler FCCP reduced this influx, suggesting that the mitochondrial status influences the toxin effect. Conversely, ENN B1 did not affect SOC but acted on another Ca2+ channel, as shown when nickel, which directly blocks the Ca2+ channel pore, is added. Mitochondrial function also influenced the effects of ENN B1, as treatment with FCCP reduced toxin-induced Ca2+ depletion and uptake. In addition, both ENNs altered mitochondrial function by producing the opening of the mitochondrial permeability transition pore. This study describes for the first time that ENN A1 and B1 are not Ca2+ ionophores and suggests a different mechanism of action for each toxin.


Assuntos
Cálcio , Depsipeptídeos , Mitocôndrias , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Cálcio/metabolismo , Humanos , Depsipeptídeos/farmacologia , Micotoxinas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892381

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. Some patients with MAFLD develop metabolic dysfunction-associated steatohepatitis (MASH), which can lead to severe liver fibrosis. However, the molecular mechanisms underlying this progression remain unknown, and no effective treatment for MASH has been developed so far. In this study, we performed a longitudinal detailed analysis of mitochondria in the livers of choline-deficient, methionine-defined, high-fat-diet (CDAHFD)-fed mice, which exhibited a MASH-like pathology. We found that FoF1-ATPase activity began to decrease in the mitochondria of CDAHFD-fed mice prior to alterations in the activity of mitochondrial respiratory chain complex, almost at the time of onset of liver fibrosis. In addition, the decrease in FoF1-ATPase activity coincided with the accelerated opening of the mitochondrial permeability transition pore (PTP), for which FoF1-ATPase might be a major component or regulator. As fibrosis progressed, mitochondrial permeability transition (PT) induced in CDAHFD-fed mice became less sensitive to cyclosporine A, a specific PT inhibitor. These results suggest that episodes of fibrosis might be related to the disruption of mitochondrial function via PTP opening, which is triggered by functional changes in FoF1-ATPase. These novel findings could help elucidate the pathogenesis of MASH and lead to the development of new therapeutic strategies.


Assuntos
Deficiência de Colina , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Deficiência de Colina/metabolismo , Deficiência de Colina/complicações , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitocôndrias Hepáticas/metabolismo , Colina/metabolismo , Camundongos Endogâmicos C57BL , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Aminoácidos/metabolismo , Mitocôndrias/metabolismo , Metionina/deficiência , Metionina/metabolismo
6.
Mol Med ; 30(1): 77, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840035

RESUMO

BACKGROUND: Ischemic stroke presents a significant threat to human health due to its high disability rate and mortality. Currently, the clinical treatment drug, rt-PA, has a narrow therapeutic window and carries a high risk of bleeding. There is an urgent need to find new effective therapeutic drugs for ischemic stroke. Icariin (ICA), a key ingredient in the traditional Chinese medicine Epimedium, undergoes metabolism in vivo to produce Icaritin (ICT). While ICA has been reported to inhibit neuronal apoptosis after cerebral ischemia-reperfusion (I/R), yet its underlying mechanism remains unclear. METHODS: PC-12 cells were treated with 200 µM H2O2 for 8 h to establish a vitro model of oxidative damage. After administration of ICT, cell viability was detected by Thiazolyl blue tetrazolium Bromide (MTT) assay, reactive oxygen species (ROS) and apoptosis level, mPTP status and mitochondrial membrane potential (MMP) were detected by flow cytometry and immunofluorescence. Apoptosis and mitochondrial permeability transition pore (mPTP) related proteins were assessed by Western blotting. Middle cerebral artery occlusion (MCAO) model was used to establish I/R injury in vivo. After the treatment of ICA, the neurological function was scored by ZeaLonga socres; the infarct volume was observed by 2,3,5-Triphenyltetrazolium chloride (TTC) staining; HE and Nissl staining were used to detect the pathological state of the ischemic cortex; the expression changes of mPTP and apoptosis related proteins were detected by Western blotting. RESULTS: In vitro: ICT effectively improved H2O2-induced oxidative injury through decreasing the ROS level, inhibiting mPTP opening and apoptosis. In addition, the protective effects of ICT were not enhanced when it was co-treated with mPTP inhibitor Cyclosporin A (CsA), but reversed when combined with mPTP activator Lonidamine (LND). In vivo: Rats after MCAO shown cortical infarct volume of 32-40%, severe neurological impairment, while mPTP opening and apoptosis were obviously increased. Those damage caused was improved by the administration of ICA and CsA. CONCLUSIONS: ICA improves cerebral ischemia-reperfusion injury by inhibiting mPTP opening, making it a potential candidate drug for the treatment of ischemic stroke.


Assuntos
Apoptose , Flavonoides , AVC Isquêmico , Potencial da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Estresse Oxidativo/efeitos dos fármacos , Ratos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Apoptose/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/etiologia , Células PC12 , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley
7.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731874

RESUMO

The mitochondrial protein IF1 is upregulated in many tumors and acts as a pro-oncogenic protein through its interaction with the ATP synthase and the inhibition of apoptosis. We have recently characterized the molecular nature of the IF1-Oligomycin Sensitivity Conferring Protein (OSCP) subunit interaction; however, it remains to be determined whether this interaction could be targeted for novel anti-cancer therapeutic intervention. We generated mitochondria-targeting peptides to displace IF1 from the OSCP interaction. The use of one selective peptide led to displacement of the inhibitor IF1 from ATP synthase, as shown by immunoprecipitation. NMR spectroscopy analysis, aimed at clarifying whether these peptides were able to directly bind to the OSCP protein, identified a second peptide which showed affinity for the N-terminal region of this subunit overlapping the IF1 binding region. In situ treatment with the membrane-permeable derivatives of these peptides in HeLa cells, that are silenced for the IF1 inhibitor protein, showed significant inhibition in mitochondrial permeability transition and no effects on mitochondrial respiration. These peptides mimic the effects of the IF1 inhibitor protein in cancer HeLa cells and confirm that the IF1-OSCP interaction inhibits apoptosis. A third peptide was identified which counteracts the anti-apoptotic role of IF1, showing that OSCP is a promising target for anti-cancer therapies.


Assuntos
Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , Peptídeos , Humanos , Apoptose/efeitos dos fármacos , Proteína Inibidora de ATPase/efeitos dos fármacos , Proteína Inibidora de ATPase/metabolismo , Células HeLa , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
8.
Physiol Rep ; 12(10): e16056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38777811

RESUMO

Permeability transition pore (PTP) opening dissipates ion and electron gradients across the internal mitochondrial membrane (IMM), including excess Ca2+ in the mitochondrial matrix. After opening, immediate PTP closure must follow to prevent outer membrane disruption, loss of cytochrome c, and eventual apoptosis. Flickering, defined as the rapid alternative opening/closing of PTP, has been reported in heart, which undergoes frequent, large variations in Ca2+. In contrast, in tissues that undergo depolarization events less often, such as the liver, PTP would not need to be as dynamic and thus these tissues would not be as resistant to stress. To evaluate this idea, it was decided to follow the reversibility of the permeability transition (PT) in isolated murine mitochondria from two different tissues: the very dynamic heart, and the liver, which suffers depolarizations less frequently. It was observed that in heart mitochondria PT remained reversible for longer periods and at higher Ca2+ loads than in liver mitochondria. In all cases, Ca2+ uptake was inhibited by ruthenium red and PT was delayed by Cyclosporine A. Characterization of this phenomenon included measuring the rate of oxygen consumption, organelle swelling and Ca2+ uptake and retention. Results strongly suggest that there are tissue-specific differences in PTP physiology, as it resists many more Ca2+ additions before opening in a highly active organ such as the heart than in an organ that seldom suffers Ca2+ loading, such as the liver.


Assuntos
Cálcio , Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Ratos Wistar , Animais , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Masculino , Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ratos , Consumo de Oxigênio , Fígado/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos , Ciclosporina/farmacologia
9.
Cells ; 13(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38727324

RESUMO

Norbormide (NRB) is a Rattus-selective toxicant, which was serendipitously discovered in 1964 and formerly marketed as an eco-friendly rodenticide that was deemed harmless to non-Rattus species. However, due to inconsistent efficacy and the emergence of second-generation anticoagulants, its usage declined, with registration lapsing in 2003. NRBs' lethal action in rats entails irreversible vasoconstriction of peripheral arteries, likely inducing cardiac damage: however, the precise chain of events leading to fatality and the target organs involved remain elusive. This unique contractile effect is exclusive to rat arteries and is induced solely by the endo isomers of NRB, hinting at a specific receptor involvement. Understanding NRB's mechanism of action is crucial for developing species-selective toxicants as alternatives to the broad-spectrum ones currently in use. Recent research efforts have focused on elucidating its cellular mechanisms and sites of action using novel NRB derivatives. The key findings are as follows: NRB selectively opens the rat mitochondrial permeability transition pore, which may be a factor that contributes to its lethal effect; it inhibits rat vascular KATP channels, which potentially controls its Rattus-selective vasoconstricting activity; and it possesses intracellular binding sites in both sensitive and insensitive cells, as revealed by fluorescent derivatives. These studies have led to the development of a prodrug with enhanced pharmacokinetic and toxicological profiles, which is currently undergoing registration as a novel efficacious eco-sustainable Rattus-selective toxicant. The NRB-fluorescent derivatives also show promise as non-toxic probes for intracellular organelle labelling. This review documents in more detail these developments and their implications.


Assuntos
Rodenticidas , Animais , Ratos , Rodenticidas/toxicidade , Humanos , Vasoconstrição/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo
10.
Free Radic Biol Med ; 220: 222-235, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735540

RESUMO

Studies have highlighted oxidative damage in the inner ear as a critical pathological basis for sensorineural hearing loss, especially the presbycusis. Poly(ADP-ribose) polymerase-1 (PARP1) activation responds to oxidative stress-induced DNA damage with pro-repair and pro-death effects resembling two sides of the same coin. PARP1-related cell death, known as parthanatos, whose underlying mechanisms are attractive research hotspots but remain to be clarified. In this study, we observed that aged rats showed stria vascularis degeneration and oxidative damage, and PARP1-dependent cell death was prominent in age-related cochlear disorganization and dysfunction. Based on oxidative stress model of primary cultured stria marginal cells (MCs), we revealed that upregulated PARP1 and PAR (Poly(ADP-ribose)) polymers are responsible for MCs oxidative death with high mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane potential (MMP) collapse, while inhibition of PARP1 ameliorated the adverse outcomes. Importantly, the PARylation of apoptosis-inducing factor (AIF) is essential for its conformational change and translocation, which subsequently causes DNA break and cell death. Concretely, the interaction of PAR and truncated AIF (tAIF) is the mainstream in the parthanatos pathway. We also found that the effects of AIF cleavage and release were achieved through calpain activity and mPTP opening, both of which could be regulated by PARP1 via mediation of mitochondria Ca2+ concentration. In conclusion, the PAR-Ca2+-tAIF signaling pathway in parthanatos contributes to the oxidative stress damage observed in MCs. Targeting PAR-Ca2+-tAIF might be a potential therapeutic strategy for the early intervention of presbycusis and other oxidative stress-associated sensorineural deafness.


Assuntos
Fator de Indução de Apoptose , Cálcio , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1 , Presbiacusia , Animais , Fator de Indução de Apoptose/metabolismo , Fator de Indução de Apoptose/genética , Ratos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Cálcio/metabolismo , Presbiacusia/metabolismo , Presbiacusia/patologia , Presbiacusia/genética , Parthanatos/genética , Potencial da Membrana Mitocondrial , Estria Vascular/metabolismo , Estria Vascular/patologia , Apoptose , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Ratos Sprague-Dawley , Dano ao DNA , Envelhecimento/metabolismo , Envelhecimento/patologia , Cóclea/metabolismo , Cóclea/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Masculino , Humanos , Células Cultivadas
11.
Cell Mol Life Sci ; 81(1): 236, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795203

RESUMO

Chemoresistance is the main obstacle in the clinical treatment of osteosarcoma (OS). In this study, we investigated the role of EF-hand domain-containing protein 1 (EFHD1) in OS chemotherapy resistance. We found that the expression of EFHD1 was highly correlated with the clinical outcome after chemotherapy. We overexpressed EFHD1 in 143B cells and found that it increased their resistance to cell death after drug treatment. Conversely, knockdown of EFHD1 in 143BR cells (a cisplatin-less-sensitive OS cell line derived from 143B cells) increased their sensitivity to treatment. Mechanistically, EFHD1 bound to adenine nucleotide translocase-3 (ANT3) and inhibited its conformational change, thereby inhibiting the opening of the mitochondrial membrane permeability transition pore (mPTP). This effect could maintain mitochondrial function, thereby favoring OS cell survival. The ANT3 conformational inhibitor carboxyatractyloside (CATR), which can promote mPTP opening, enhanced the chemosensitivity of EFHD1-overexpressing cells when combined with cisplatin. The ANT3 conformational inhibitor bongkrekic acid (BKA), which can inhibit mPTP opening, restored the resistance of EFHD1 knockdown cells. In conclusion, our results suggest that EFHD1-ANT3-mPTP might be a promising target for OS therapy in the future.


Assuntos
Proliferação de Células , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Osteossarcoma , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Translocador 3 do Nucleotídeo Adenina/metabolismo , Translocador 3 do Nucleotídeo Adenina/genética , Antineoplásicos/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Camundongos , Ligação Proteica
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167169, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631408

RESUMO

Mitochondrial dysregulation is pivotal in Alzheimer's disease (AD) pathogenesis. Calcium governs vital mitochondrial processes impacting energy conversion, oxidative stress, and cell death signaling. Disruptions in mitochondrial calcium (mCa2+) handling induce calcium overload and trigger the opening of mitochondrial permeability transition pore, ensuing energy deprivation and resulting in AD-related neuronal cell death. However, the role of mCa2+ in non-neuronal cells (microglia, astrocytes, oligodendrocytes, endothelial cells, and pericytes) remains elusive. This review provides a comprehensive exploration of mitochondrial heterogeneity and calcium signaling, offering insights into specific differences among various brain cell types in AD.


Assuntos
Doença de Alzheimer , Sinalização do Cálcio , Cálcio , Mitocôndrias , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Sinalização do Cálcio/fisiologia , Animais , Cálcio/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Pericitos/metabolismo , Pericitos/patologia , Microglia/metabolismo , Microglia/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Estresse Oxidativo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Neurônios/metabolismo , Neurônios/patologia
13.
Circ Res ; 134(10): 1292-1305, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38618716

RESUMO

BACKGROUND: During myocardial ischemia/reperfusion (I/R) injury, high levels of matrix Ca2+ and reactive oxygen species (ROS) induce the opening of the mitochondrial permeability transition pore (mPTP), which causes mitochondrial dysfunction and ultimately necrotic death. However, the mechanisms of how these triggers individually or cooperatively open the pore have yet to be determined. METHODS: Here, we use a combination of isolated mitochondrial assays and in vivo I/R surgery in mice. We challenged isolated liver and heart mitochondria with Ca2+, ROS, and Fe2+ to induce mitochondrial swelling. Using inhibitors of the mPTP (cyclosporine A or ADP) lipid peroxidation (ferrostatin-1, MitoQ), we determined how the triggers elicit mitochondrial damage. Additionally, we used the combination of inhibitors during I/R injury in mice to determine if dual inhibition of these pathways is additivity protective. RESULTS: In the absence of Ca2+, we determined that ROS fails to trigger mPTP opening. Instead, high levels of ROS induce mitochondrial dysfunction and rupture independently of the mPTP through lipid peroxidation. As expected, Ca2+ in the absence of ROS induces mPTP-dependent mitochondrial swelling. Subtoxic levels of ROS and Ca2+ synergize to induce mPTP opening. Furthermore, this synergistic form of Ca2+- and ROS-induced mPTP opening persists in the absence of CypD (cyclophilin D), suggesting the existence of a CypD-independent mechanism for ROS sensitization of the mPTP. These ex vivo findings suggest that mitochondrial dysfunction may be achieved by multiple means during I/R injury. We determined that dual inhibition of the mPTP and lipid peroxidation is significantly more protective against I/R injury than individually targeting either pathway alone. CONCLUSIONS: In the present study, we have investigated the relationship between Ca2+ and ROS, and how they individually or synergistically induce mitochondrial swelling. Our findings suggest that Ca2+ mediates mitochondrial damage through the opening of the mPTP, although ROS mediates its damaging effects through lipid peroxidation. However, subtoxic levels both Ca2+ and ROS can induce mPTP-mediated mitochondrial damage. Targeting both of these triggers to preserve mitochondria viability unveils a highly effective therapeutic approach for mitigating I/R injury.


Assuntos
Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica , Espécies Reativas de Oxigênio , Animais , Peroxidação de Lipídeos/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Cálcio/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos
14.
Plant Sci ; 345: 112107, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38685455

RESUMO

Programmed cell death (PCD) is an important factor to reduces the viability of plant germplasm after cryopreservation. However, the pathways by which PCD occurs is not fully understood. To investigate whether there is a mitochondrial pathway for pollen PCD after cryopreservation, the pollen of Paeonia lactiflora two cultivars with different PCD levels after cryopreservation was used as test material and the changes of mitochondrial calcium ions (Ca2+), structure, function and their relationship with PCD were compared. The results showed that compared with fresh pollen, the PCD of 'Feng Huang Nie Pan' was significantly reduced after cryopreservation. Their mitochondrial Ca2+ content decreased by 74.27%, mitochondrial permeability transition pore (MPTP) opening reduced by 25.41%, mitochondrial membrane potential slightly decreased by 5.02%, cardiolipin oxidation decreased by 65.31%, and oxygen consumption remained stable, with a slightly ATP production increase. On the contrary, compared with fresh pollen, 'Zi Feng Chao Yang' showed severe PCD after cryopreservation. The decline in mitochondrial Ca2+-ATPase activity led to an accumulation of excessive Ca2+ within mitochondria, triggering widespread opening of MPTP, significantly affecting mitochondrial respiration and energy synthesis. These results suggest the mitochondrial pathway of PCD exists in pollen cryopreservation.


Assuntos
Apoptose , Cálcio , Criopreservação , Mitocôndrias , Paeonia , Pólen , Mitocôndrias/metabolismo , Paeonia/fisiologia , Paeonia/metabolismo , Pólen/fisiologia , Pólen/metabolismo , Criopreservação/métodos , Cálcio/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo
15.
J Pharmacol Sci ; 155(2): 35-43, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677784

RESUMO

Imeglimin is a novel oral antidiabetic drug for treating type 2 diabetes. However, the effect of imeglimin on NLRP3 inflammasome activation has not been investigated yet. Here, we aimed to investigate whether imeglimin reduces LPS-induced NLRP3 inflammasome activation in THP-1 macrophages and examine the associated underlying mechanisms. We analyzed the mRNA and protein expression levels of NLRP3 inflammasome components and IL-1ß secretion. Additionally, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and mitochondrial permeability transition pore (mPTP) opening were measured by flow cytometry. Imeglimin inhibited NLRP3 inflammasome-mediated IL-1ß production in LPS-stimulated THP-1-derived macrophages. In addition, imeglimin reduced LPS-induced mitochondrial ROS production and mitogen-activated protein kinase phosphorylation. Furthermore, imeglimin restored the mitochondrial function by modulating mitochondrial membrane depolarization and mPTP opening. We demonstrated for the first time that imeglimin reduces LPS-induced NLRP3 inflammasome activation by inhibiting mPTP opening in THP-1 macrophages. These results suggest that imeglimin could be a promising new anti-inflammatory agent for treating diabetic complications.


Assuntos
Inflamassomos , Macrófagos , Mitocôndrias , Triazinas , Humanos , Anti-Inflamatórios/farmacologia , Hipoglicemiantes/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Triazinas/farmacologia
16.
Nanotoxicology ; 18(2): 122-133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436290

RESUMO

Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are found in diverse products for human use. E171 is used as whitening agent in food and cosmetics, and ZnO NPs in food packaging. Their potential multi-organ toxicity has raised concerns on their safety. Since mitochondrial dysfunction is a key aspect of cardio-pathologies, here, we evaluate the effect of chronic exposure to E171 and ZnO NPs in rats on cardiac mitochondria. Changes in cardiac electrophysiology and body weight were measured. E171 reduced body weight more than 10% after 5 weeks. Both E171 and ZnO NPs increased systolic blood pressure (SBP) from 110-120 to 120-140 mmHg after 45 days of treatment. Both NPs altered the mitochondrial permeability transition pore (mPTP), reducing calcium requirement for permeability by 60% and 93% in E171- and ZnO NPs-exposed rats, respectively. Treatments also affected conformational state of adenine nucleotide translocase (ANT). E171 reduced the binding of EMA to Cys 159 in 30% and ZnO NPs in 57%. Mitochondrial aconitase activity was reduced by roughly 50% with both NPs, indicating oxidative stress. Transmission electron microscopy (TEM) revealed changes in mitochondrial morphology including sarcomere discontinuity, edema, and hypertrophy in rats exposed to both NPs. In conclusion, chronic oral exposure to NPs induces functional and morphological damage in cardiac mitochondria, with ZnO NPs being more toxic than E171, possibly due to their dissociation in free Zn2+ ion form. Therefore, chronic intake of these food additives could increase risk of cardiovascular disease.


Assuntos
Mitocôndrias Cardíacas , Titânio , Óxido de Zinco , Animais , Titânio/toxicidade , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Masculino , Ratos , Administração Oral , Permeabilidade/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Nanopartículas/química , Ratos Sprague-Dawley , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos
17.
Chem Biodivers ; 21(5): e202301916, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511277

RESUMO

BACKGROUND: Emodin has been shown to exert anti-inflammatory and cytoprotective effects. Our study aimed to identify a novel anti-inflammatory mechanism of emodin. METHODS: An LPS-induced model of microvascular endothelial cell (HMEC-1) injury was constructed. Cell proliferation was examined using a CCK-8 assay. The effects of emodin on reactive oxygen species (ROS), cell migration, the mitochondrial membrane potential (MMP), and the opening of the mitochondrial permeability transition pore (mPTP) were evaluated. Actin-Tracker Green was used to examine the relationship between cell microfilament reconstruction and ATP5A1 expression. The effects of emodin on the expression of ATP5A1, NALP3, and TNF-α were determined. After treatment with emodin, ATP5A1 and inflammatory factors (TNF-α, IL-1, IL-6, IL-13 and IL-18) were examined by Western blotting. RESULTS: Emodin significantly increased HMEC-1 cell proliferation and migration, inhibited the production of ROS, increased the mitochondrial membrane potential, and blocked the opening of the mPTP. Moreover, emodin could increase ATP5A1 expression, ameliorate cell microfilament remodeling, and decrease the expression of inflammatory factors. In addition, when ATP5A1 was overexpressed, the regulatory effect of emodin on inflammatory factors was not significant. CONCLUSION: Our findings suggest that emodin can protect HMEC-1 cells against inflammatory injury. This process is modulated by the expression of ATP5A1.


Assuntos
Proliferação de Células , Emodina , Lipopolissacarídeos , Regulação para Cima , Emodina/farmacologia , Emodina/química , Lipopolissacarídeos/farmacologia , Humanos , Proliferação de Células/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Linhagem Celular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
18.
Eur J Cell Biol ; 103(2): 151398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38368729

RESUMO

Naringenin (NRG) was characterized for its ability to counteract mitochondrial dysfunction which is linked to cardiovascular diseases. The F1FO-ATPase can act as a molecular target of NRG. The interaction of NRG with this enzyme can avoid the energy transmission mechanism of ATP hydrolysis, especially in the presence of Ca2+ cation used as cofactor. Indeed, NRG was a selective inhibitor of the hydrophilic F1 domain displaying a binding site overlapped with quercetin in the inside surface of an annulus made by the three α and the three ß subunits arranged alternatively in a hexamer. The kinetic constant of inhibition suggested that NRG preferred the enzyme activated by Ca2+ rather than the F1FO-ATPase activated by the natural cofactor Mg2+. From the inhibition type mechanism of NRG stemmed the possibility to speculate that NRG can prevent the activation of F1FO-ATPase by Ca2+. The event correlated to the protective role in the mitochondrial permeability transition pore opening by NRG as well as to the reduction of ROS production probably linked to the NRG chemical structure with antioxidant action. Moreover, in primary cerebral endothelial cells (ECs) obtained from stroke prone spontaneously hypertensive rats NRG had a protective effect on salt-induced injury by restoring cell viability and endothelial cell tube formation while also rescuing complex I activity.


Assuntos
Células Endoteliais , Flavanonas , Poro de Transição de Permeabilidade Mitocondrial , Flavanonas/farmacologia , Animais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ratos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Ratos Endogâmicos SHR , Cloreto de Sódio/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Cálcio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
19.
J Hazard Mater ; 465: 133090, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039814

RESUMO

Kashin-Beck disease is an endemic joint disease characterized by deep chondrocyte necrosis, and T-2 toxin exposure has been confirmed its etiology. This study investigated mechanism of T-2 toxin inducing mitochondrial dysfunction of chondrocytes through p53-cyclophilin D (CypD) pathway. The p53 signaling pathway was significantly enriched in T-2 toxin response genes from GeneCards. We demonstrated the upregulation of the p53 protein and p53-CypD complex in rat articular cartilage and ATDC5 cells induced by T-2 toxin. Transmission electron microscopy showed the damaged mitochondrial structure of ATDC5 cells induced by T-2 toxin. Furthermore, it can lead to overopening of the mitochondrial permeability transition pore (mPTP), decreased mitochondrial membrane potential, and increased reactive oxygen species generation in ATDC5 cells. Pifithrin-α, the p53 inhibitor, alleviated the increased p53-CypD complex and mitochondrial dysfunction of chondrocytes induced by T-2 toxin, suggesting that p53 played an important role in T-2 toxin-induced mitochondrial dysfunction. Mechanistically, T-2 toxin can activate the p53 protein, which can be transferred to the mitochondrial membrane and form a complex with CypD. The increased binding of p53 and CypD mediated the excessive opening of mPTP, changed mitochondrial membrane permeability, and ultimately induced mitochondrial dysfunction and apoptosis of chondrocytes.


Assuntos
Doenças Mitocondriais , Toxina T-2 , Ratos , Animais , Condrócitos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Ciclofilinas/metabolismo
20.
J Stud Alcohol Drugs ; 85(3): 361-370, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38147083

RESUMO

OBJECTIVE: Prenatal alcohol exposure causes fetal developmental abnormalities via mitochondrial dysfunction, reactive oxygen species (ROS) formation, and oxidative stress. Therefore, we aimed to investigate the potential of hesperidin as a mitochondrial protective and antioxidative agent in newborn male rats as a model for fetal alcohol syndrome (FAS). METHOD: Newborn male rats were divided randomly into five groups: a sham group (receiving 27.8 ml/ kg milk solution, orally), an ethanol group (5.25 g/kg in milk solution, orally, 2-10 days after birth), an ethanol + hesperidin group (25 mg/kg/ day orally), an ethanol + hesperidin group (50 mg/kg/day orally), and an ethanol + hesperidin group (100 mg/kg/day orally). Thirty-six days after birth, newborn male rats were sacrificed and brain mitochondria were isolated using differential centrifugation. Mitochondrial toxicity biomarkers of succinate dehydrogenase (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP), and ROS were measured. RESULTS: Offspring neonatally exposed to ethanol showed a significant reduction in SDH activity, mitochondrial swelling, MMP collapse, induction of ROS formation, and lipid peroxidation in isolated mitochondria. Oral administration of hesperidin restored SDH activity, improved MMP collapse and mitochondrial swelling, and reduced ROS formation. CONCLUSIONS: This study demonstrates that hesperidin exerts a potent protective effect against alcohol-induced mitochondrial toxicity in the FAS model. Moreover, these findings indicate that hesperidin might be a useful compound for prevention of alcohol-induced fetal developmental abnormalities during pregnancy.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Hesperidina , Estresse Oxidativo , Animais , Feminino , Masculino , Gravidez , Ratos , Animais Recém-Nascidos , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Modelos Animais de Doenças , Etanol/administração & dosagem , Etanol/efeitos adversos , Transtornos do Espectro Alcoólico Fetal/prevenção & controle , Transtornos do Espectro Alcoólico Fetal/metabolismo , Hesperidina/administração & dosagem , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA