Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.762
Filtrar
1.
J Agric Food Chem ; 72(19): 11205-11220, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708789

RESUMO

Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.


Assuntos
Ansiedade , Autofagia , Comportamento Animal , Depressão , Camundongos Endogâmicos ICR , Estresse Oxidativo , Praguicidas , Animais , Feminino , Masculino , Camundongos , Autofagia/efeitos dos fármacos , Ansiedade/induzido quimicamente , Ansiedade/fisiopatologia , Ansiedade/metabolismo , Depressão/metabolismo , Depressão/genética , Depressão/induzido quimicamente , Depressão/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Praguicidas/toxicidade , Praguicidas/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Humanos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Clorpirifos/toxicidade , Clorpirifos/efeitos adversos
2.
BMC Res Notes ; 17(1): 134, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741143

RESUMO

OBJECTIVE: In agricultural activities, pesticide use is critical, but poisoning issues are one of the most important occupational hazards for farmers. Training can help protect farmers' health from pesticide hazards. This study aimed to investigate the effect of education on farmers' behavior in the safe use of pesticides using the health belief model. METHODS: A quasi-experimental (pretest-post-test) study conducted on 84 farmers who were selected using the convenience sampling method. The data collection tool was a two-part questionnaire including demographic information and a questionnaire designed based on the constructs of the health belief model in using personal protective equipment while working with the pesticides. The instrument was completed before and two weeks after an educational intervention. Data analysis was performed using SPSS software version 26. RESULTS: The mean age of the participants was 48.94 ± 9.14 years and 69% were male. The study showed that with increasing age, the mean score of health belief model constructs in the safe use of pesticides decreased. Female and higher-educated farmers had higher scores. After the intervention, the mean scores of health belief model constructs in the safe use of pesticides increased significantly, except perceived barriers construct which decreased significantly. Also, the frequency of protective equipment uses while working with pesticides increased significantly after the intervention and safe behaviors increased, while unsafe behaviors decreased. CONCLUSION: The education as an effective intervention, improves farmers' safety attitudes and behaviors in pesticide use and it is recommended that educational programs be designed according to the characteristics of the audience.


Assuntos
Fazendeiros , Modelo de Crenças de Saúde , Conhecimentos, Atitudes e Prática em Saúde , Exposição Ocupacional , Praguicidas , Humanos , Praguicidas/efeitos adversos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Fazendeiros/educação , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/efeitos adversos , Inquéritos e Questionários , Educação em Saúde/métodos , Saúde Ocupacional , Equipamento de Proteção Individual , Agricultura/educação , Agricultura/métodos
3.
Front Neuroendocrinol ; 73: 101132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561126

RESUMO

In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.


Assuntos
Disruptores Endócrinos , Transtornos do Neurodesenvolvimento , Praguicidas , Disruptores Endócrinos/efeitos adversos , Disruptores Endócrinos/toxicidade , Humanos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/epidemiologia , Praguicidas/toxicidade , Praguicidas/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/efeitos adversos , Fenóis/efeitos adversos , Fenóis/toxicidade , Feminino , Compostos Benzidrílicos/efeitos adversos , Compostos Benzidrílicos/toxicidade , Animais , Éteres Difenil Halogenados/toxicidade , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/efeitos adversos , Gravidez
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673753

RESUMO

In the department of Boyacá, Colombia, agriculture stands as one of the primary economic activities. However, the escalating utilization of pesticides within this sector has sparked concern regarding its potential correlation with elevated risks of genotoxicity, chromosomal alterations, and carcinogenesis. Furthermore, pesticides have been associated with a broad spectrum of genetic polymorphisms that impact pivotal genes involved in pesticide metabolism and DNA repair, among other processes. Nonetheless, our understanding of the genotoxic effects of pesticides on the chromosomes (as biomarkers of effect) in exposed farmers and the impact of genetic polymorphisms (as susceptibility biomarkers) on the increased risk of chromosomal damage is still limited. The aim of our study was to evaluate chromosomal alterations, chromosomal instability, and clonal heterogeneity, as well as the presence of polymorphic variants in the GSTP1 and XRCC1 genes, in peripheral blood samples of farmers occupationally exposed to pesticides in Aquitania, Colombia, and in an unexposed control group. Our results showed statistically significant differences in the frequency of numerical chromosomal alterations, chromosomal instability, and clonal heterogeneity levels between the exposed and unexposed groups. In addition, we also found a higher frequency of chromosomal instability and clonal heterogeneity in exposed individuals carrying the heterozygous GSTP1 AG and XRCC1 (exon 10) GA genotypes. The evaluation of chromosomal alterations and chromosomal instability resulting from pesticide exposure, combined with the identification of polymorphic variants in the GSTP1 and XRCC1 genes, and further research involving a larger group of individuals exposed to pesticides could enable the identification of effect and susceptibility biomarkers. Such markers could prove valuable for monitoring individuals occupationally exposed to pesticides.


Assuntos
Instabilidade Cromossômica , Fazendeiros , Glutationa S-Transferase pi , Exposição Ocupacional , Praguicidas , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Humanos , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Glutationa S-Transferase pi/genética , Praguicidas/toxicidade , Praguicidas/efeitos adversos , Exposição Ocupacional/efeitos adversos , Masculino , Instabilidade Cromossômica/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Feminino , Biomarcadores , Aberrações Cromossômicas/induzido quimicamente , Colômbia , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
5.
Environ Health ; 23(1): 41, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627687

RESUMO

BACKGROUND: Organophosphorus pesticides (OP) have been associated with various human health conditions. Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associations between ambient chronic exposure to OP and gut microbial changes in humans. METHODS: We recruited 190 participants from a community-based epidemiologic study of Parkinson's disease living in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson's disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide application records combined with residential addresses in a geographic information system. We examined gut microbiome differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray-Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regression models and adjusting for potential confounders. RESULTS: OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respiration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthesis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6. CONCLUSION: In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.


Assuntos
Microbioma Gastrointestinal , Microbiota , Doença de Parkinson , Praguicidas , Idoso , Humanos , Bactérias , Compostos Organofosforados , Praguicidas/efeitos adversos , RNA Ribossômico 16S/genética
6.
J Parkinsons Dis ; 14(3): 437-449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517806

RESUMO

Long-term exposure to pesticides used in agriculture is increasingly being identified as a risk factor for developing Parkinson's disease. How chronic pesticide exposure might contribute to the growth of Parkinson's disease in the mainly agricultural communities of Sub-Saharan Africa has thus far received limited attention. There are specific concerns in this area of the world: aging of the population, in combination with chronic exposure to widely used pesticides, including those that have been restricted elsewhere in the world because of neurotoxicity and other health risks. Of interest, the prevalence of Parkinson's disease among specific (semi)nomadic populations in Tanzania seems very low, possibly due to their lack of exposure to agricultural chemicals. But at the same time, pesticides have also brought important benefits to this part of the world. Specifically, in Sub-Saharan Africa, pesticides have been directly helpful in preventing and controlling famine and in containing major human infectious diseases. This creates a complex risk-benefit ratio to the use of pesticides within a global perspective, and urgently calls for the development and implementation of affordable alternatives for areas such as Sub-Saharan Africa, including non-neurotoxic compounds and non-chemical alternatives for the use of pesticides.


Assuntos
Doença de Parkinson , Praguicidas , Humanos , África Subsaariana/epidemiologia , Praguicidas/efeitos adversos , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Exposição Ambiental/efeitos adversos , Fatores de Risco
7.
Environ Health ; 23(1): 27, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486233

RESUMO

BACKGROUND: A growing body of literature investigated childhood exposure to environmental chemicals in association with attention-deficit/hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay (DD), and typical development (TD). METHODS: A total of 549 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study were administered the Aberrant Behavior Checklist (ABC). This study focused on the ADHD/noncompliance subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in > 70% samples were used to investigate their associations with ADHD symptoms. Negative binomial regression was used for single-chemical analysis, and weighted quantile sum regression with repeated holdout validation was applied for mixture analysis for each chemical class and all chemicals. The mixture analyses were further stratified by diagnostic group. RESULTS: A phthalate metabolite mixture was associated with higher ADHD/noncompliance scores (median count ratio [CR] = 1.10; 2.5th, 97.5th percentile: 1.00, 1.21), especially hyperactivity/impulsivity (median CR = 1.09; 2.5th, 97.5th percentile: 1.00, 1.25). The possible contributors to these mixture effects were di-2-ethylhexyl phthalate (DEHP) metabolites and mono-2-heptyl phthalate (MHPP). These associations were likely driven by children with ASD as these were observed among children with ASD, but not among TD or those with DD. Additionally, among children with ASD, a mixture of all chemicals was associated with ADHD/noncompliance and hyperactivity/impulsivity, and possible contributors were 3,4-dihydroxy benzoic acid, DEHP metabolites, MHPP, mono-n-butyl phthalate, and cadmium. CONCLUSIONS: Early childhood exposure to a phthalate mixture was associated with ADHD symptoms, particularly among children with ASD. While the diverse diagnostic profiles limited generalizability, our findings suggest a potential link between phthalate exposure and the comorbidity of ASD and ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Dietilexilftalato , Poluentes Ambientais , Praguicidas , Ácidos Ftálicos , Oligoelementos , Criança , Humanos , Pré-Escolar , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/epidemiologia , Parabenos/análise , Fenóis/urina , Estudos de Casos e Controles , Ácidos Ftálicos/urina , Organofosfatos/efeitos adversos , Praguicidas/efeitos adversos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Ambientais/urina
8.
Mikrochim Acta ; 191(4): 185, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451330

RESUMO

A dual-mode sensor was developed for detecting acetylcholinesterase (AChE) and organophosphorus pesticides (OPs) via bifunctional BSA-CeO2 nanoclusters (NCs) with oxidase-mimetic activity and fluorescence property. The dual-mode sensor has the characteristics of self-calibration and self-verification, meeting the needs of different detection conditions and provide more accurate results. The colorimetric sensor and fluorescence sensor have been successfully used for detecting AChE with limit of detection (LOD) of 0.081 mU/mL and 0.056 mU/mL, respectively, while the LOD for OPs were 0.9 ng/mL and 0.78 ng/mL, respectively. The recovery of AChE was 93.9-107.2% and of OPs was 95.8-105.0% in actual samples. A novel strategy was developed to monitor pesticide residues and detect AChE level, which will motivate future work to explore the potential applications of multifunctional nanozymes.


Assuntos
Acetilcolinesterase , Técnicas de Química Analítica , Praguicidas , Smartphone , Acetilcolinesterase/análise , Hidrogéis , Compostos Organofosforados , Praguicidas/efeitos adversos , Técnicas de Química Analítica/métodos
9.
Trop Med Int Health ; 29(5): 390-404, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38481371

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) caused by Opisthorchis viverrini is a well-known and significant public health issue in northeastern Thailand; however, a link between pesticide exposure (PE) and CCA risk has not yet been established. Therefore, our research objective was to investigate the relationship between PE and CCA risk. METHODS: A hospital-based matched case-control study was carried out. All cases (in-patients) and controls (out-patients) were volunteers at a tertiary hospital in northeast Thailand. Between 2015 and 2019, 178 incident cases of pathologically-confirmed CCA and 356 controls were selected from the check-up clinic from the Srinagarind Hospital outpatient database (two controls per case). The recruited controls were individually-matched to the CCA cases based on sex, age (±5 years) and admission date (±3 months). During face-to-face interviews, a standardised pre-tested questionnaire was used to collect data. Multivariable conditional logistic regression was used to analyse the data. RESULTS: The respective frequency of PE between the 178 CCA cases and 356 controls was 77.0% versus 87.6% for never used, 14.6% versus 5.3% for have used but stopped and 8.4% versus 7.0% for currently using. After adjusting for the highest educational attainment, smoking behaviour, alcohol use and family history of cancer, PE was not significantly associated with CCA (p-value = 0.086). Using volunteers who have never used PE as the reference group, the respective odds of developing CCA for those who have ever used but have since stopped and are currently using was 2.04 (adjusted OR = 2.04; 95% CI: 1.03-4.04) versus 0.83 (adjusted OR = 0.83; 95% CI: 0.39-1.76) times more likely to develop CCA than those who had never used PE. CONCLUSION: There is no association between PE and the risk of CCA. Notwithstanding the finding, future research should focus on enhancing PE assessment methods that consider complex chemical mixtures, chemicals of interest, historical exposure and exposure pathways. Moreover, there is need for more extensive and longer population-based cohort studies that include younger, non-occupationally exposed individuals during periods of developmental susceptibility.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Praguicidas , Humanos , Colangiocarcinoma/epidemiologia , Colangiocarcinoma/induzido quimicamente , Estudos de Casos e Controles , Masculino , Feminino , Pessoa de Meia-Idade , Praguicidas/efeitos adversos , Neoplasias dos Ductos Biliares/epidemiologia , Neoplasias dos Ductos Biliares/induzido quimicamente , Tailândia/epidemiologia , Fatores de Risco , Adulto , Idoso , Exposição Ambiental/efeitos adversos
10.
Environ Int ; 184: 108485, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38350259

RESUMO

BACKGROUND: Pesticides cause a wide range of deleterious health effects, including metabolic disorders. Little is known about the effects of dietary pesticide exposure on body weight (BW) change in the general population. We aimed to investigate the role of dietary pesticide exposure in BW change among NutriNet-Santé participants, focusing on potential sexual dimorphism. METHODS: Participants completed a Food Frequency Questionnaire (2014), assessing conventional and organic food consumption. Dietary exposure from plant foods of 25 commonly used pesticides was estimated using a residue database, accounting for agricultural practices (conventional and organic). Exposure profiles based on dietary patterns were computed using Non-negative Matrix Factorization (NMF). Mixed models were used to estimate the associations between BW change and exposure to pesticide mixtures, overall and after stratification by sex and menopausal status. RESULTS: The final sample included 32,062 participants (8,211 men, 10,637 premenopausal, and 13,214 postmenopausal women). The median (IQR) follow-up was 7.0 (4.4; 8.0) years. Four pesticides profiles were inferred. Overall, men and postmenopausal women lost BW during follow-up, whereas premenopausal women gained BW. Higher exposure to NMF3, reflecting a lower exposure to synthetic pesticides, was associated with a lower BW gain, especially in premenopausal women (ß(95 %CI) = -0.04 (-0.07; 0) kg/year, p = 0.04). Higher exposure to NMF2, highly positively correlated with a mixture of synthetic pesticides (azoxystrobin, boscalid, chlorpropham, cyprodinil, difenoconazole, fenhexamid, iprodione, tebuconazole, and lamda-cyhalothrin), was associated with a higher BW loss in men (ß(95 %CI) = -0.05 (-0.08; -0.03) kg/year, p < 0.0001). No associations were observed for NMF1 and 4. CONCLUSIONS: This study suggests a role of pesticide exposure, inferred from dietary patterns, on BW change, with sexually dimorphic actions, including a potential role of a lower exposure to synthetic pesticides on BW change in women. In men, exposure to a specific pesticide mixture was associated with higher BW loss. The underlying mechanisms need further elucidation.


Assuntos
Praguicidas , Masculino , Adulto , Humanos , Feminino , Praguicidas/efeitos adversos , Exposição Dietética , Alimentos Orgânicos , Padrões Dietéticos , Peso Corporal , Dieta
11.
J Prev Med Public Health ; 57(1): 73-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38327014

RESUMO

OBJECTIVES: The unsafe use of pesticides in agriculture represents a major hazard to human health. This study was conducted to investigate the association between pesticide exposure and health symptoms among chili farmers in northeast Thailand. METHODS: This cross-sectional analytic study included 141 chili farmers in Sakon Nakhon Province, in northeast Thailand. Data regarding health symptoms were gathered using a self-report questionnaire. A medical technician tested blood cholinesterase activity using an erythrocyte method, and an occupational medicine specialist at Ramathibodi Hospital in Bangkok, Thailand reviewed the results. Associations between personal characteristics, pesticide exposure factors, and health symptoms were analyzed using multiple logistic regression. RESULTS: Of the 141 chili farmers studied, 66.7% experienced pesticide poisoning, as indicated by below-normal cholinesterase levels. Fatigue was the most frequently reported symptom associated with pesticide exposure, affecting 37.6% of participants. This was followed by nausea and vomiting (31.9%), dizziness (14.9%), and dry throat (14.9%). Multivariate logistic regression analysis revealed that several factors were significantly associated with adverse symptoms: amount of work experience, volume of pesticides used, use of chemical pesticides, use of leaking containers during spraying, direct pesticide exposure while working, contact with pesticide-soaked clothing, consumption of food and drinks in the fields, and blood cholinesterase level indicating risk. CONCLUSIONS: This study suggests potential health risks for chili farmers stemming from exposure to and contamination by pesticides used in agricultural practices. To mitigate these risks, it is essential to supply personal protective equipment and to implement educational programs aimed at improving protective behaviors among farmers.


Assuntos
Exposição Ocupacional , Praguicidas , Humanos , Praguicidas/efeitos adversos , Fazendeiros , Tailândia/epidemiologia , Estudos Transversais , Exposição Ocupacional/efeitos adversos , Agricultura , Colinesterases , Conhecimentos, Atitudes e Prática em Saúde
12.
J Parkinsons Dis ; 14(3): 451-465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217613

RESUMO

Parkinson's disease is the world's fastest growing brain disorder, and exposure to environmental toxicants is the principal reason. In this paper, we consider alternative, but unsatisfactory, explanations for its rise, including improved diagnostic skills, aging populations, and genetic causes. We then detail three environmental toxicants that are likely among the main causes of Parkinson's disease- certain pesticides, the solvent trichloroethylene, and air pollution. All three environmental toxicants are ubiquitous, many affect mitochondrial functioning, and all can access humans via various routes, including inhalation and ingestion. We reach the hopeful conclusion that most of Parkinson's disease is thus preventable and that we can help to create a world where Parkinson's disease is increasingly rare.


Assuntos
Doença de Parkinson , Praguicidas , Tricloroetileno , Humanos , Praguicidas/efeitos adversos , Praguicidas/toxicidade , Exposição Ambiental/efeitos adversos
13.
Occup Environ Med ; 81(2): 75-83, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38199811

RESUMO

BACKGROUND: Ovarian cancer is rare with a poor prognosis and few established risk factors. Hormones and reproductive factors significantly impact its development, suggesting a potential link with endocrine disrupters. METHODS: In the AGRICAN cohort, 59 391 female farmers completed data on lifelong agricultural exposures and reproductive life. Cox models with attained age as timescale (HR and 95% CI) were used. The role of hormonal factors as potential confounders was considered along with specific time windows for exposure (childhood, puberty and menopause). Female farmers were the reference group (for the principal analyses). RESULTS: Between enrolment (2005-2007) and the end of follow-up (31 December 2017), 262 incident ovarian cancers were identified. An increased risk was observed for females involved in pigs (HR=2.12 (95% CI 1.27 to 3.52)) including during puberty (HR=1.83 (95% CI 1.13 to 2.94)), fruit-growing (HR=2.17 (95% CI 1.09 to 4.30)) and potato seed treatment (HR=2.81 (95% CI 1.29 to 6.09)). Conversely, females born on farms growing grain cereals (HR=0.64 (95% CI 0.46 to 0.90)) or pig-breeding (HR=0.78 (95% CI 0.55 to 1.12)) presented a reduced risk of ovarian cancer. Triazine herbicide exposure was not associated with ovarian cancer. The effect of agricultural exposures remained unchanged in multivariate models considering contraception, parity, puberty age, menopause age and body mass index. CONCLUSION: This study is the first to assess the association between specific agricultural exposures and ovarian cancer comprehensively. Some of the positive associations observed suggest that some pesticide exposure (especially during puberty) could play a role in the development of ovarian cancer. On the other hand, agricultural exposure during early life could have a protective effect, as observed for lung cancer among farmers. Finally, we did not confirm the previous putative effect of exposure to triazine herbicides.


Assuntos
Neoplasias Pulmonares , Exposição Ocupacional , Neoplasias Ovarianas , Praguicidas , Humanos , Feminino , Animais , Suínos , Criança , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Agricultura , Praguicidas/efeitos adversos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Ovarianas/induzido quimicamente , Neoplasias Ovarianas/epidemiologia , Grão Comestível , Triazinas
14.
Molecules ; 28(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067617

RESUMO

Amylase is an indispensable hydrolase in insect growth and development. Its varied enzymatic parameters cause insects to have strong stress resistance. Amylase gene replication is a very common phenomenon in insects, and different copies of amylase genes enable changes in its location and function. In addition, the classification, structure, and interaction between insect amylase inhibitors and amylases have also invoked the attention of researchers. Some plant-derived amylase inhibitors have inhibitory activities against insect amylases and even mammalian amylases. In recent years, an increasing number of studies have clarified the effects of pesticides on the amylase activity of target and non-target pests, which provides a theoretical basis for exploring safe and efficient pesticides, while the exact lethal mechanisms and safety in field applications remain unclear. Here, we summarize the most recent advances in insect amylase studies, including its sequence and characteristics and the regulation of amylase inhibitors (α-AIs). Importantly, the application of amylases as the nanocide trigger, RNAi, or other kinds of pesticide targets will be discussed. A comprehensive foundation will be provided for applying insect amylases to the development of new-generation insect management tools and improving the specificity, stability, and safety of pesticides.


Assuntos
Praguicidas , alfa-Amilases , Animais , Amilases , Inibidores Enzimáticos , Insetos , Controle de Pragas , Praguicidas/efeitos adversos , Praguicidas/farmacologia
15.
Front Immunol ; 14: 1281056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942322

RESUMO

Pesticides are compounds known to cause immunetoxicity in exposed individuals, which have a potential to substantially modify the prognosis of pathologies dependent on an efficient immune response, such as breast cancer. In this context, we examined the circulating cytokine profile of Th1/Th2/Th17 patterns in women occupationally exposed to pesticides and their correlation with worse prognostic outcomes. Peripheral blood samples were collected from 187 rural working women with breast cancer, occupationally exposed or not to pesticides, to quantify the levels of cytokines IL-1ß, IL-12, IL-4, IL-17-A, and TNF -α. Data on the disease profile and clinical outcomes were collected through medical follow-up. IL-12 was reduced in exposed women with tumors larger than 2 cm and in those with lymph node metastases. Significantly reduced levels of IL-17A were observed in exposed patients with Luminal B subtype tumors, with high ki67 proliferation rates, high histological grade, and positive for the progesterone receptor. Reduced IL-4 was also seen in exposed women with lymph node invasion. Our data show that occupational exposure to pesticides induces significant changes in the levels of cytokines necessary for tumor control and correlates with poor prognosis clinical outcomes in breast cancer.


Assuntos
Neoplasias da Mama , Exposição Ocupacional , Praguicidas , Humanos , Feminino , Citocinas , Neoplasias da Mama/patologia , Praguicidas/efeitos adversos , Interleucina-4 , Fator de Necrose Tumoral alfa , Interleucina-12 , Exposição Ocupacional/efeitos adversos
17.
Environ Health ; 22(1): 76, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907942

RESUMO

BACKGROUND: Research on the effect of pesticide exposure on health has been largely focused on occupational settings. Few reviews have synthesized the associations between dietary pesticide exposure and health outcomes in non-occupationally exposed adults. OBJECTIVE: We aim to summarize the evidence regarding dietary pesticide exposure and non-communicable diseases (NCD) in adults, using a systematic review of prospective studies. METHODS: Electronic and manual searches were performed until July 2023. The inclusion criteria were the following: 1) adults aged ≥ 18years, 2) (non)-randomized trials, prospective cohort studies, 3) dietary exposure to pesticides. A bias analysis was carried out using the Nutrition Evidence Systematic Review guidelines based on the Cochrane ROBINS-I. RESULTS: A total of 52 studies were retrieved and 6 studies that met the above criteria were included. Studies were conducted either in France or in the United States. The studies investigated the risk of cancer (n = 3), diabetes (n = 1), cardiovascular diseases (n = 1), and mortality (n = 1). The quality of the studies varied with overall grades derived from the bias analysis ranging from low to moderate bias. The level of evidence was estimated as low for the risk of cancer while the grading was not assignable for other outcomes, as only one study per outcome was available. CONCLUSIONS: Although further research is warranted to examine more in depth the relationships between low-dose chronic exposure to pesticides through diet and NCD outcomes in non-occupationally-exposed adults, studies suggest a possible role of exposure to dietary pesticide on health. Standardized methodological guidelines should also be proposed to allow for comparison across studies.


Assuntos
Neoplasias , Doenças não Transmissíveis , Praguicidas , Humanos , Adulto , Estudos Prospectivos , Doenças não Transmissíveis/epidemiologia , Praguicidas/efeitos adversos , Exposição Dietética , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia
18.
Asian Pac J Cancer Prev ; 24(11): 3795-3804, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019237

RESUMO

BACKGROUND: Oxidative stress combined with nullity of xenobiotic metabolizing GSTT1/GSTM1/CYP2E1 genes may increase the susceptibility of agricultural workers to adverse health effects including cancer. The present study was conducted to determine; the prevalence of polymorphisms in GSTM1, GSTT1 and CYP2E1 genes, serum 8-hydroxy-2'-deoxygunosine levels, and the role of these markers in risk of cancer among agricultural workers occupationally exposed to pesticides. METHODS: A total of 360 participants, of which 180 belonging to farming group diagnosed with leukemia (n=60), lymphoma (n=60) and breast cancers (n=60), 90 in non-farming group diagnosed with similar cancers and the other 90 as healthy controls with neither history of occupational exposure nor diagnosed with any type of cancers were recruited. Following the questionnaire survey, serum 8-OHdG and genetic polymorphisms in the three genes were determined using ELISA and PCR methods respectively. RESULTS: The results of the study revealed that farm workers carrying GSTT1 null genotype had increased risk for lymphoma (OR = 5.34; 95% CI = 1.80-15.82) and breast cancer (OR=4.04; 95% CI = 1.24-13.07). For farm workers carrying GSTM1 null genotype, the risk was six-fold for breast cancer (OR = 6.88; 95% CI =1.88-25.99). Further, there found a significant difference between 8-OHdG and nullity of CYP2E1 among the farm workers diagnosed with leukemia. CONCLUSION: The findings of the present study suggest that the polymorphisms in detoxifying genes among farm workers occupationally exposed to pesticides and the oxidative stress may likely be responsible for triggering the mechanism of malignancy.


Assuntos
Neoplasias da Mama , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Leucemia , Linfoma , Praguicidas , Humanos , Feminino , Fazendeiros , Praguicidas/efeitos adversos , Citocromo P-450 CYP2E1/genética , Xenobióticos , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Polimorfismo Genético/genética , 8-Hidroxi-2'-Desoxiguanosina
19.
Salud Colect ; 19: e4442, 2023 07 14.
Artigo em Espanhol | MEDLINE | ID: mdl-37988571

RESUMO

This article presents the results of anthropological research on cancer among rural teachers occupationally exposed to agrochemicals. The study was carried out in the southeastern region of the province of Cordoba (Argentina), an area characterized by the large-scale production of transgenic crops intensively treated with agricultural pesticides. Regarding the methodology, fieldwork was conducted between 2019 and 2020 and included in-depth interviews with ten teachers, as well as observations of everyday situations in the towns where they live and work. Among the main findings, it was possible to identify a hegemonic narrative that naturalizes the existence of cancer and renders it invisible; despite this, it was possible to document the social suffering it caused among rural teachers. The article concludes that there is a need to bring visibility to these conditions in order to protect the health and wellbeing of this sector of Argentine teaching professionals.


En este artículo se presentan resultados de una investigación antropológica sobre el cáncer entre docentes rurales expuestas ocupacionalmente a agroquímicos. El estudio se desarrolló en la zona sudeste de la provincia de Córdoba (Argentina), caracterizada por la producción a gran escala de cultivos transgénicos tratados de manera intensiva con plaguicidas agrícolas. A nivel metodológico, el trabajo de campo realizado entre 2019 y 2020 incluyó entrevistas en profundidad a diez docentes y observación de situaciones de la vida cotidiana en los poblados donde vivían y trabajaban estas docentes. Se propone como hallazgo principal que existe una narrativa hegemónica que naturaliza e invisibiliza la existencia del cáncer pero que, a pesar de ella, es posible documentar los padecimientos individuales y sociales que esta enfermedad provoca entre las docentes rurales. Se concluye que es necesario visibilizar esos padecimientos para resguardar la salud y la vida de este sector de la docencia argentina.


Assuntos
Neoplasias , Praguicidas , Humanos , Agroquímicos/efeitos adversos , Argentina , Praguicidas/efeitos adversos , Praguicidas/análise , Antropologia
20.
Neurotoxicology ; 99: 226-243, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926220

RESUMO

Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.


Assuntos
Rotas de Resultados Adversos , Doença de Parkinson , Transtornos Parkinsonianos , Praguicidas , Humanos , Doença de Parkinson/metabolismo , Cálcio/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Neurônios Dopaminérgicos , Praguicidas/efeitos adversos , Substância Negra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA