Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.745
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931522

RESUMO

Beach variants of popular sports like soccer and handball have grown in participation over the last decade. However, the characterization of the workload demands in beach sports remains limited compared to their indoor equivalents. This systematic review aimed to: (1) characterize internal and external loads during beach invasion sports match-play; (2) identify technologies and metrics used for monitoring; (3) compare the demands of indoor sports; and (4) explore differences by competition level, age, sex, and beach sport. Fifteen studies ultimately met the inclusion criteria. The locomotive volumes averaged 929 ± 269 m (average) and 16.5 ± 3.3 km/h (peak) alongside 368 ± 103 accelerations and 8 ± 4 jumps per session. The impacts approached 700 per session. The heart rates reached 166-192 beats per minute (maximal) eliciting 60-95% intensity. The player load was 12.5 ± 2.9 to 125 ± 30 units. Males showed 10-15% higher external but equivalent internal loads versus females. Earlier studies relied solely on a time-motion analysis, while recent works integrate electronic performance and tracking systems, enabling a more holistic quantification. However, substantial metric intensity zone variability persists. Beach sports entail intermittent high-intensity activity with a lower-intensity recovery. Unstable surface likely explains the heightened internal strain despite moderately lower running volumes than indoor sports. The continued integration of technology together with the standardization of workload intensity zones is needed to inform a beach-specific training prescription.


Assuntos
Esportes , Humanos , Masculino , Feminino , Esportes/fisiologia , Frequência Cardíaca/fisiologia , Desempenho Atlético/fisiologia , Praias
2.
J Water Health ; 22(6): 1044-1052, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935455

RESUMO

Current methods for testing water for faecal contamination rely on the culture of faecal indicator bacteria (FIB; Escherichia coli and Enterococci) that take 24-48 h, which leads to delays in taking proactive measures and poses a risk to public health. More rapid methods are therefore required. Here, we have tested a rapid, portable assay (Bacterisk) that detects the bacterial biomarker endotoxin in 30 min to quantify the bacterial biomass present, to evaluate 159 coastal water samples and to compare the results with the traditional culture of FIB. There was a significant correlation between the Bacterisk data given in endotoxin risk (ER) units and FIB culture that could accurately distinguish between poor and sufficient or good quality bathing water using the EU bathing directive values. Receiver operating characteristic analysis was used to determine the optimal ER threshold for coastal water samples, and the area under the curve was 0.9176 with a p-value of <0.0001. The optimal threshold was 7,300 ER units with a sensitivity of 95.45% and a specificity of 83.48%. In conclusion, we have shown that the Bacterisk assay provides a rapid and easy-to-use in situ method to assess bathing water quality.


Assuntos
Endotoxinas , Monitoramento Ambiental , Fezes , Água do Mar , Fezes/microbiologia , Endotoxinas/análise , Monitoramento Ambiental/métodos , Água do Mar/microbiologia , Medição de Risco , Biomarcadores/análise , Microbiologia da Água , Praias/normas , Escherichia coli/isolamento & purificação , Qualidade da Água
4.
Mar Pollut Bull ; 204: 116517, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850754

RESUMO

Beached macrolitter (>2,5 cm) abundance and composition in the Russian (Eastern) part of the Barents Sea and the adjacent part of the Kara Sea was assessed for 2021-2023. Average densities of beach litter on the coasts are 675 items/100 m and 37 kg/100 m (0.27 items/m2 and 0.015 kg/m2). Annual litter budgets for Cape Zhelaniya beaches are 0.49 items/m2 per year and 0.023 kg/m2 per year. The northernmost tip of Novaya Zemlya is shown to be a beach litter accumulation hot-spot on Novaya Zemlya archipelago, where litter is brought by surface currents and trapped by sea ice margins. Up to 80 % of beached marine macrolitter is made of plastics, originating from vessels. A certain accumulation strip of a beach was identified (14 m - 27.5 m distance from the waterline), and significance of the beach backshore was shown in litter accumulation. Beach litter accounting methodologies on the Arctic beaches are discussed.


Assuntos
Praias , Monitoramento Ambiental , Regiões Árticas , Federação Russa , Plásticos/análise
5.
BMJ Open ; 14(6): e085406, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866574

RESUMO

INTRODUCTION: Cyanobacterial blooms are increasingly common in freshwater sources used for swimming and other recreational water contact activities in Canada. Many species of cyanobacteria can produce toxins that affect human and animal health, but there are limited data on the risk of illness associated with water contact at impacted beaches. METHODS AND ANALYSIS: This study will investigate the incidence of recreational water illness due to exposure to cyanobacterial blooms and their toxins in four targeted and popular freshwater beaches in Ontario, Manitoba and Nova Scotia, Canada. A prospective cohort design and One Health approach will be used. On-site recruitment of recreational water users will be conducted at two beaches per year during the summers of 2024 and 2025. The population of interest includes recreational water users of any age and their pet dogs. After enrolment, an in-person survey will determine beach exposures and confounding factors, and a 3-day follow-up survey will ascertain any acute illness outcomes experienced by participants or their dogs. The target sample size is 2500 recreational water users. Water samples will be taken each recruitment day and analysed for cyanobacterial indicators (pigments), cell counts and toxin levels. Bayesian regression analysis will be conducted to estimate the association with water contact, cyanobacterial levels and risks of different acute illness outcomes. ETHICS AND DISSEMINATION: This study has been approved by the Toronto Metropolitan University Research Ethics Board (REB 2023-461). Study results will be published in a peer-reviewed journal and as infographics on a project website.


Assuntos
Praias , Cianobactérias , Água Doce , Estudos Prospectivos , Humanos , Animais , Cães , Toxinas de Cianobactérias , Ontário/epidemiologia , Recreação , Microbiologia da Água , Toxinas Bacterianas , Teorema de Bayes , Nova Escócia/epidemiologia , Proliferação Nociva de Algas , Manitoba/epidemiologia , Exposição Ambiental/efeitos adversos , Toxinas Marinhas/análise , Toxinas Marinhas/toxicidade , Projetos de Pesquisa , Canadá/epidemiologia
6.
Environ Sci Pollut Res Int ; 31(28): 41046-41058, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842783

RESUMO

Organic UV filters are emerging contaminants in personal care products such as sunscreens. The toxicity of numerous of these UV filter compounds has been demonstrated in several marine taxa. However, whilst the biological impact has already been largely demonstrated, the anthropogenic drivers leading to UV filter contamination still need to be identified. In this work, a survey was conducted on a site of the French Atlantic Coast (i) to describe beachgoers' behaviours (sunscreen use and beach frequentation), (ii) provide an estimation of the UV filters released at sea and (iii) highlight the effect of air temperature on these behaviours and on the release of UV filters. In parallel with these estimations of the UV filters released at sea, in situ chemical measurements were performed. By comparing the results of both approaches, this interdisciplinary work provides an insight of how the observations of beachgoers' behaviour modulations and attendance level fluctuations could be used to prevent UV filter contaminations and ultimately manage the ecotoxicological risk.


Assuntos
Praias , Protetores Solares , Temperatura , França , Recreação , Monitoramento Ambiental , Humanos , Raios Ultravioleta
7.
Sci Total Environ ; 943: 173692, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38825193

RESUMO

Despite its popularity for water activities, such as swimming, surfing, fishing, and rafting, inland and coastal bathing areas occasionally experience outbreaks of highly pathogenic avian influenza virus (HPAI), including A(H5N1) clade 2.3.4.4b. Asymptomatic infections and symptomatic outbreaks often impact many aquatic birds, which increase chances of spill-over events to mammals and pose concerns for public health. This review examined the existing literature to assess avian influenza virus (AIV) transmission risks to beachgoers and the general population. A comprehensive understanding of factors governing such crossing of the AIV host range is currently lacking. There is limited knowledge on key factors affecting risk, such as species-specific interactions with host cells (including binding, entry, and replication via viral proteins hemagglutinin, neuraminidase, nucleoprotein, and polymerase basic protein 2), overcoming host restrictions, and innate immune response. AIV efficiently transmits between birds and to some extent between marine scavenger mammals in aquatic environments via consumption of infected birds. However, the current literature lacks evidence of zoonotic AIV transmission via contact with the aquatic environment or consumption of contaminated water. The zoonotic transmission risk of the circulating A(H5N1) clade 2.3.4.4b virus to the general population and beachgoers is currently low. Nevertheless, it is recommended to avoid direct contact with sick or dead birds and to refrain from bathing in locations where mass bird mortalities are reported. Increasing reports of AIVs spilling over to non-human mammals have raised valid concerns about possible virus mutations that lead to crossing the species barrier and subsequent risk of human infections and outbreaks.


Assuntos
Aves , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Humanos , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Animais , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Monitoramento Ambiental , Praias , Saúde Única
8.
Sci Rep ; 14(1): 12577, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822067

RESUMO

Tourism pressure on the Red Sea ecosystem have posed significant threats to numerous endemic species, including the Ghost Crab Ocypode saratan, which is exclusively found along a small stretch of beach in the Eilat/Aqaba Red Sea Gulf. Due to the limited understanding of their ecology, we investigated how tourism impacts the behavior of this species. Employing a natural setup, we compared burrow dimensions, pyramid structures, and density across three distinct beach sections subjected to varying levels of human interference. Access to a secluded beach, referred to as "No Man's Land," provided a crucial control for our study. This facilitated a comparative analysis of ghost crab activity among beaches experiencing differing levels of human disturbances: (1) a tourist beach characterized by continual high disturbance, (2) a naval beach subject to moderate and sporadic disturbances, and (3) the isolated "no man's land" beach devoid of human presence. Our observations revealed notable differences in ghost crab density among the three beaches. Furthermore, we observed that on the secluded beach, larger individuals tended to establish burrows farther from the waterline and construct taller sand pyramids. Given the significance of sexual selection processes, their conservation becomes imperative for the survival and potential expansion of the ghost crab population across the Gulf of Eilat/Aqaba. We propose a straight-forward and cost-effective strategy: the designation of short, secluded beach enclaves along this gulf. We believe that this approach will mitigate adverse impacts of tourisms while simultaneously benefiting various sandy beach species.


Assuntos
Braquiúros , Ecossistema , Animais , Braquiúros/fisiologia , Oceano Índico , Humanos , Turismo , Praias
9.
Sci Total Environ ; 941: 173318, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38777057

RESUMO

Free-living amoebae (FLA) such as Acanthamoeba, Balamuthia mandrillaris, Naegleria fowleri and Sappinia pedata are naturally widespread in freshwater, causing rare but fatal and debilitating infections in humans. Although recent studies have shown an increase in infection rates, there is a paucity of epidemiological studies regarding the presence of these emerging pathogens in water. Herein, we studied the diversity and relative abundance of thermophilic FLA in different recreational baths in a tropical climate for 5 years. From 2018 to 2022, a total of 96 water samples were collected from 7 recreational baths (natural, tiled, regularly cleaned or not, and with temperatures ranging from 27 to 40 °C). DNA was extracted from FLA cultivated at 37 °C to detect thermophilic culturable FLA. Metabarcoding studies were conducted through FLA 18S rRNA gene amplicons sequencing; amplicon sequence variants (ASV) were extracted from each sample and taxonomy assigned against PR2 database using dada2 and phyloseq tools. We also searched for Naegleria sp. and N. fowleri using PCR targeting ITS and NFITS genes (respectively) and we quantified them using an optimized most probable number (MPN) method for FLA. Our results showed that differences in FLA diversity and abundance were observed amongst the 7 baths, but without a clear seasonal distribution. Naegleria, Vermamoeba and Stenamoeba were the most represented genera, while the genera Acanthamoeba and Vahlkampfia were mainly found in 2 baths. The MPN values for Naegleria sp. (NT/l) increased between 2018 and 2022, but the MPN values for N. fowleri (NF/l) seemed to decrease. Globally, our results showed that since we cannot establish a seasonal distribution of FLA, the regular presence of FLA (namely Naegleria and Acanthamoeba) in recreational waters can pose a potential threat in terms of neuroinfections as well as Acanthamoeba keratitis. It is thus imperious to perform the regular control of these baths as a preventive health measure.


Assuntos
Amoeba , Guadalupe/epidemiologia , Monitoramento Ambiental , Água Doce , Praias
10.
An Acad Bras Cienc ; 96(2): e20220703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747832

RESUMO

It is commonly assumed that beach seining (BS) is more sustainable than bottom trawling because it involves non-motorized operations and limited fishing power. However, no scientific evidence supports this assumption. To address this gap, we evaluated the impact of beach seining, taking a small-scale shrimp fishery in northeast Brazil. Data collected monthly from December 2016 to November 2017 and in literature, were assessed (BS 31,001 individuals, 119 species, 37 families, and 19 orders; BT 6,031 individuals, 58 species, 20 families, and 14 orders). Beach seining demonstrated a lower proportion of bycatch (BS 1:2.3; BT 1:3.2), higher total shrimp catch (BS 87.2 t; BT 65 t), and greater species diversity than bottom trawling catches (BS 119; BT 58). Other aspects were closer associated with bottom trawling, such as the composition of dominant families (Sciaenidae and Pristigasteridae), the proportion of rare species (BS 30%; BT 24%) juveniles (BS 11g; BT 13g), the risk of species extinction, and the composition of ecological guilds. Despite their social significance, both fishing gears showed similar ecological indicators and adverse effects. The findings establish that the ecological concerns related to the impact of bottom trawling are also applicable to beach seine.


Assuntos
Pesqueiros , Animais , Brasil , Conservação dos Recursos Naturais , Biodiversidade , Praias
11.
Mar Pollut Bull ; 203: 116467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744047

RESUMO

The issue of plastic pollution has dramatically intensified in the recent years. Our study investigates extensive plastic contamination of a sandy beach on a small Adriatic island. The beach was sampled on three occasions, in 2013, 2020 and 2022, using 1 m2 quadrats placed along the lower and upper strandlines, resulting in average litter concentrations of 385 ± 106, 1095 ± 522 and 129 ± 37 item m-2, respectively. The lower size limit of collected litter was 1 mm, thus including large microplastics. Plastic fragments (49-74 %) and plastic pellets (15 %-37 %) were predominant litter categories. The proportion of fragments is significantly higher during the tourist season with a more intensive cleaning regime (April-October), as opposed to the off-season (November-March). Fisheries and aquaculture litter was identified as a relevant source of pollution. More research is needed in the future into the microplastics smaller than 1 mm.


Assuntos
Praias , Monitoramento Ambiental , Microplásticos , Plásticos , Poluentes Químicos da Água , Plásticos/análise , Praias/estatística & dados numéricos , Microplásticos/análise , Poluentes Químicos da Água/análise , Ilhas
12.
Sci Total Environ ; 934: 173220, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761521

RESUMO

The number of gray seals (Halichoerus grypus) observed along the United States Northwest Atlantic region has been increasing for decades. These colonial animals often haul-out on beaches seasonally in numbers ranging from a few individuals to several thousands. While these larger aggregations are an important part of gray seal behavior, there is public concern that haul-outs could lead to large amounts of fecal waste in recreational areas, potentially resulting in beach closures. Yet, data to confirm whether these animals contribute to beach closures is lacking and minimal information is available on the occurrence of key water quality monitoring genetic markers in gray seal scat. This study evaluates the concentration of E. coli (EC23S857), enterococci (Entero1a), and fecal Bacteroidetes (GenBac3) as well as six fecal source identification genetic markers (HF183/BacR287, HumM2, CPQ_056, Rum2Bac, DG3, and GFD) measured by qPCR in 48 wild gray seal scat samples collected from two haul-out areas in Cape Cod (Massachusetts, U.S.A.). Findings indicate that FIB genetic markers are shed in gray seal scat at significantly different concentrations with the Entero1a genetic marker exhibiting the lowest average concentration (-0.73 log10 estimated mean copies per nanogram of DNA). In addition, systematic testing of scat samples demonstrated that qPCR assays targeting host-associated genetic markers indicative of human, ruminant, and canine fecal pollution sources remain highly specific in waters frequented by gray seals (>97 % specificity).


Assuntos
Monitoramento Ambiental , Fezes , Focas Verdadeiras , Qualidade da Água , Fezes/microbiologia , Animais , Marcadores Genéticos , Monitoramento Ambiental/métodos , Focas Verdadeiras/genética , Focas Verdadeiras/microbiologia , Microbiologia da Água , Bactérias/genética , Bactérias/isolamento & purificação , Escherichia coli/genética , Praias , Recreação
13.
Water Environ Res ; 96(5): e11037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726833

RESUMO

Microbial pollution of recreational waters leads to millions of skin, respiratory, and gastrointestinal illnesses globally. Fecal indicator bacteria (FIB) are monitored to assess recreational waters but may not reflect the presence of Staphylococcus aureus, a global leader in bacterial fatalities. Since many community-acquired S. aureus skin infections are associated with high recreational water usage, this study measured and modeled S. aureus, methicillin-resistant S. aureus (MRSA), and FIB (Enterococcus spp., Clostridium perfringens) concentrations in seawater and sand at six beaches in Hilo, Hawai'i, USA, over 37 sample dates from July 2016 to February 2019 using culturing techniques. Generalized linear models predicted bacterial concentrations with physicochemical and environmental data. Beach visitors were also surveyed on their preferred activities. S. aureus and FIB concentrations were roughly 6-78 times higher at beaches with freshwater discharge than at those without. Seawater concentrations of Enterococcus spp. were positively associated with MRSA but not S. aureus. Elevated S. aureus was associated with lower tidal heights, higher freshwater discharge, onsite sewage disposal system density, and turbidity. Regular monitoring of beaches with freshwater input, utilizing real-time water quality measurements with robust modeling techniques, and raising awareness among recreational water users may mitigate exposure to S. aureus, MRSA, and FIB. PRACTITIONER POINTS: Staphylococcus aureus and fecal bacteria concentrations were higher in seawater and sand at beaches with freshwater discharge. In seawater, Enterococcus spp. positively correlated with MRSA, but not S. aureus. Freshwater discharge, OSDS density, water turbidity, and tides significantly predicted bacterial concentrations in seawater and sand. Predictive bacterial models based upon physicochemical and environmental data developed in this study are readily available for user-friendly application.


Assuntos
Fezes , Água do Mar , Staphylococcus aureus , Água do Mar/microbiologia , Staphylococcus aureus/isolamento & purificação , Havaí , Fezes/microbiologia , Praias , Monitoramento Ambiental , Areia/microbiologia , Microbiologia da Água , Enterococcus/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação
14.
Water Environ Res ; 96(5): e11033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720414

RESUMO

The escalating issue of microplastic (MP) pollution poses a significant threat to the marine environment due to increasing plastic production and improper waste management. The current investigation was aimed at quantifying the MP concentration on 25 beaches on the Maharashtra coast, India. Beach sediments (1 kg) were collected from each site, with five replicates to evaluate the extent of MPs. The samples were homogenized, and three 20 g replicas were prepared for subsequent analysis. Later, the samples were sieved, and MPs were extracted using previously published protocols. The abundance of MPs found as 1.56 ± 0.79 MPs/g, ranges from 0.43 ± 0.07 to 3 ± 0.37 MPs/g. Fibers were found as the most abundant shape of MPs. Size-wise classification revealed dominance of <1 mm and 1-2 mm-sized MPs. Blue- and black-colored MPs were recorded dominantly. Polymer identification of MPs revealed polyurethane, polypropylene, polyvinyl chloride, acrylic or polymethyl methacrylate, and rubber. The findings revealed that MPs were found to be higher at highly impacted sites, followed by moderately impacted sites and low-impacted sites, possibly due to a different degree of anthropogenic pressure. The study recommended the urgent need for effective policy to prevent plastics accumulation in the coastal environment of Maharashtra State, India. PRACTITIONER POINTS: The study investigated the abundance and distribution of microplastics in the marine environment, specifically in sediments. The most common type of microplastic found was fibers, followed by fragments and films. Microplastics were found to pose a potential risk to the marine ecosystem, although further research is needed to fully understand their ecological impact. Future research should focus on expanding the sample size, assessing long-term effects, exploring sources and pathways, and considering size and shape of microplastics. The findings recommended urgent action to mitigate plastic pollution in Maharashtra coast.


Assuntos
Praias , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Índia , Microplásticos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Plásticos/química , Plásticos/análise
15.
PLoS One ; 19(5): e0304061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787843

RESUMO

Erosion poses a significant threat to oceanic beaches worldwide. To combat this threat, management agencies often utilize renourishment, which supplements eroded beaches with offsite sand. This process can alter the physical characteristics of the beach and can influence the presence and abundance of microbial communities. In this study, we examined how an oceanic beach renourishment project may have impacted the presence and abundance of Escherichia coli (E. coli), a common bacteria species, and sand grain size, a sediment characteristic that can influence bacterial persistence. Using an observational field approach, we quantified the presence and abundance of E. coli in sand (from sub-tidal, intertidal, and dune zones on the beach) and water samples at study sites in both renourished and non-renourished sections of Folly Beach, South Carolina, USA in 2014 and 2015. In addition, we also measured how renourishment may have impacted sand grain size by quantifying the relative frequency of grain sizes (from sub-tidal, intertidal, and dune zones on the beach) at both renourished and non-renourished sites. Using this approach, we found that E. coli was present in sand samples in all zones of the beach and at each of our study sites in both years of sampling but never in water samples. Additionally, we found that in comparison to non-renourished sections, renourished sites had significantly higher abundances of E. coli and coarser sand grains in the intertidal zone, which is where renourished sand is typically placed. However, these differences were only present in 2014 and were not detected when we resampled the study sites in 2015. Collectively, our findings show that E. coli can be commonly found in this sandy beach microbial community. In addition, our results suggest that renourishment has the potential to alter both the physical structure of the beach and the microbial community but that these impacts may be short-lived.


Assuntos
Praias , Escherichia coli , Escherichia coli/isolamento & purificação , Microbiologia da Água , Areia/microbiologia , Sedimentos Geológicos/microbiologia , South Carolina , Água do Mar/microbiologia
16.
Ecotoxicol Environ Saf ; 278: 116445, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733804

RESUMO

Low-density polyethylene (LDPE) conduces massive environmental accumulation due to its high production and recalcitrance to environment. In this study, We successfully enriched and isolated two strains, Nitratireductor sp. Z-1 and Gordonia sp. Z-2, from coastal plastic debris capable of degrading LDPE film. After a 30-day incubation at 30 ℃, strains Z-1 and Z-2 decreased the weight of branched-LDPE (BLDPE) film by 2.59 % and 10.27 % respectively. Furthermore, high temperature gel permeation chromatography (HT-GPC) analysis revealed molecular weight reductions of 7.69 % (Z-1) and 23.22 % (Z-2) in the BLDPE film. Scanning electron microscope (SEM) image showed the presence of microbial colonization and perforations on the film's surface. Fourier transform infrared spectroscopy (FTIR) analysis indicated novel functional groups, such as carbonyl and carbon-carbon double bonds in LDPE films. During LDPE degradation, both strains produced extracellular reactive oxygen species (ROS). GC-MS analysis revealed the degradation products included short-chain alkanes, alkanols, fatty acids, and esters. Genomic analysis identified numerous extracellular enzymes potentially involved in LDPE chain scission. A model was proposed suggesting a coordinated role between ROS and extracellular enzymes in the biodegradation of LDPE. This indicates strains Z-1 and Z-2 can degrade LDPE, providing a basis for deeper exploration of biodegradation mechanisms.


Assuntos
Biodegradação Ambiental , Plásticos , Polietileno , Praias , Espectroscopia de Infravermelho com Transformada de Fourier , Espécies Reativas de Oxigênio/metabolismo , Microscopia Eletrônica de Varredura
17.
Mar Environ Res ; 198: 106516, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678751

RESUMO

The accumulation of heavy metals from sewage and garbage dumping can seriously impact beach tourism and thus the local economy, but it is difficult to quickly and accurately determine the pollution location and source of heavy metals and clarify their diffusion range. This study investigates a new in situ magnetic testing method to address this issue. (1) The in situ method can be used to effectively and quickly evaluate heavy metal sources and diffusion ranges based on the distribution of κ values. (2) According to chemical experiments, the specific elements polluting a beach can be determined, such as the Cr, Ni, Zn, and Fe pollution of Beach No. 3. (3) Although κ values for assessing heavy metal pollution on different beaches vary, metal pollution occurs when the higher κ value is more than 50 times the lower κ value on the same beach. (4) The κ values vary in different seasons due to the influence of natural factors and urban seasonal sewage policies.


Assuntos
Praias , Monitoramento Ambiental , Metais Pesados , Estações do Ano , Poluentes Químicos da Água , China , Metais Pesados/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Esgotos/química , Esgotos/análise
18.
Sci Total Environ ; 930: 172785, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38677414

RESUMO

Island coastal zones are often mistakenly perceived as "ecological desert". Actually, they harbour unique communities of organisms. The biodiversity on islands is primarily influenced by the effects of area and isolation (distance from the mainland), which mainly focused on plants and animals, encompassing studies of entire islands. However, the application of area and isolation effects to soil microorganisms on island beaches across the intertidal zones remains largely unexplored. We hypothesized that island area and isolation shape soil bacterial communities by regulating soil properties on island beaches, due to the fact that local soil properties might be strongly influenced by land-use, which may vary among islands of different sizes and isolations. To test this hypothesis, we conducted a study on 108 plots spanning 4 intertidal zones on 9 representative island beaches within Zhoushan Archipelago, eastern China. We employed one-way ANOVA and Tukey's honestly significant difference (HSD) test to assess the differences in diversity, composition of soil bacterial communities and soil properties among intertidal zones. Redundancy analysis and structural equation modelling (SEM) were used to examine the direct and indirect impacts of beach area and isolation on soil bacterial communities. Our findings revealed that the area and isolation did not significantly influence soil bacterial diversity and the relative abundance of dominant soil bacterial phyla. However, soil nitrogen (soil N), phosphorus (soil P), organic carbon (SOC), available potassium content (soil AK), and electrical conductivity (soil EC) showed significant increases with the area and isolation. As the tidal gradient increased on beaches, soil bacterial OTU richness, Chao 1, and relative abundance of Planctomycetota and Crenarchaeota decreased, while relative abundance of other soil bacterial phyla increased. We found that influences of island area and isolation shape soil bacterial communities on beaches by regulating soil properties, particularly soil moisture, salinity, and nutrients, all of which are also influenced by area and isolation. Island with larger areas and in lower intertidal zones, characterized by higher soil water content (SWC), soil EC, and soil AK, exhibited greater soil bacterial diversity and fewer dominant soil bacterial phyla. Conversely, in the higher intertidal zones with vegetation containing higher soil N and SOC, lower soil bacterial diversity and more dominant soil bacterial phyla were observed. These findings have the potential to enhance our new understanding of how island biogeography in interpreting island biome patterns.


Assuntos
Bactérias , Biodiversidade , Microbiologia do Solo , Solo , Solo/química , China , Ilhas , Microbiota , Monitoramento Ambiental , Nitrogênio/análise , Praias , Ecossistema
20.
Mar Pollut Bull ; 202: 116342, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626635

RESUMO

Anthropogenic marine litter (AML) is a global environmental concern. One of the most conspicuous effects of AML is beach litter accumulation, the distribution of which is typically heterogenous. Little information is available on the potential effects of coastal topographic features on litter dispersal. We analysed the abundance, composition, and sources of beach litter on the East coast of England in relation to the presence of coastal groyne structures. Six beaches were surveyed in autumn and winter 2021 using the OSPAR methodology for monitoring beach litter. Litter abundance was lower on beaches with groynes present, which could infer that groynes deflect or bury AML. The presence of groynes had no significant effect on the composition/sources of beach litter. Single-use plastic packaging, fishing waste, and sewage-related debris were the largest contributors of beach litter in this region. Our findings indicate that man-made topographic features may affect marine litter dispersal and coastal accumulation.


Assuntos
Praias , Monitoramento Ambiental , Inglaterra , Praias/estatística & dados numéricos , Animais , Resíduos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA