Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Pathog ; 17(10): e1009726, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695163

RESUMO

The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNAs and, through the recruitment of TRIM25, KHNYN and other cofactors, target them for degradation or prevent their translation. The long and short isoforms of ZAP (ZAP-L and ZAP-S) have different intracellular localization and it is unclear how this regulates their antiviral activity against viruses with different sites of replication. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), which transcribe the viral RNA in the nucleus and assemble virions at the plasma membrane, we show that the catalytically inactive poly-ADP-ribose polymerase (PARP) domain in ZAP-L is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the residues in place of the catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks antiviral activity for CpG-enriched HIV-1 despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together jointly modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, which replicates in double-membrane vesicles derived from the endoplasmic reticulum. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in ZAP-L-mediated antiviral activity against divergent viruses with different subcellular replication sites.


Assuntos
Prenilação/fisiologia , Vírus de RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/farmacologia , Replicação Viral/fisiologia , Ilhas de CpG/fisiologia , Células HEK293 , HIV-1/fisiologia , Células HeLa , Humanos , Vírus de RNA/fisiologia , RNA Viral/química , RNA Viral/metabolismo , Motivos de Ligação ao RNA/fisiologia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/fisiologia , Transfecção , Replicação Viral/efeitos dos fármacos
2.
Molecules ; 26(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34684845

RESUMO

4-Hydroxycoumarin (4HC) has been used as a lead compound for the chemical synthesis of various bioactive substances and drugs. Its prenylated derivatives exhibit potent antibacterial, antitubercular, anticoagulant, and anti-cancer activities. In doing this, E. coli BL21(DE3)pLysS strain was engineered as the in vivo prenylation system to produce the farnesyl derivatives of 4HC by coexpressing the genes encoding Aspergillus terreus aromatic prenyltransferase (AtaPT) and truncated 1-deoxy-D-xylose 5-phosphate synthase of Croton stellatopilosus (CstDXS), where 4HC was the fed precursor. Based on the high-resolution LC-ESI(±)-QTOF-MS/MS with the use of in silico tools (e.g., MetFrag, SIRIUS (version 4.8.2), CSI:FingerID, and CANOPUS), the first major prenylated product (named compound-1) was detected and ultimately elucidated as ferulenol, in which information concerning the correct molecular formula, chemical structure, substructures, and classifications were obtained. The prenylated product (named compound-2) was also detected as the minor product, where this structure proposed to be the isomeric structure of ferulenol formed via the tautomerization. Note that both products were secreted into the culture medium of the recombinant E. coli and could be produced without the external supply of prenyl precursors. The results suggested the potential use of this engineered pathway for synthesizing the farnesylated-4HC derivatives, especially ferulenol.


Assuntos
Cumarínicos/metabolismo , Escherichia coli/metabolismo , 4-Hidroxicumarinas/metabolismo , Aspergillus/metabolismo , Simulação por Computador , Dimetilaliltranstransferase/metabolismo , Cinética , Prenilação/fisiologia
3.
Biochem Pharmacol ; 192: 114750, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461118

RESUMO

Statins decrease the serum LDL-cholesterol concentration and reduce the risk for cardiovascular diseases but can cause myopathy, which may be related to mTORC inhibition. In the current study, we investigated which mTORC is inhibited by simvastatin and by which mechanisms. In C2C12 myoblasts and myotubes and mouse gastrocnemius, simvastatin was cytotoxic and inhibited S6rp and Akt Ser473 phosphorylation, indicating inhibition of mTORC1 and mTORC2, respectively. In contrast to simvastatin, the mTORC1 inhibitor rapamycin did not inhibit mTORC2 activity and was not cytotoxic. Like simvastatin, knock-down of Rictor, an essential component of mTORC2, impaired Akt Ser473 and S6rp phosphorylation and was cytotoxic for C2C12 myoblasts, suggesting that mTORC2 inhibition is an important myotoxic mechanism. The investigation of the mechanism of mTORC2 inhibition showed that simvastatin impaired Ras farnesylation, which was prevented by farnesol but without restoring mTORC2 activity. In comparison, Rap1 knock-down reduced mTORC2 activity and was cytotoxic for C2C12 myoblasts. Simvastatin impaired Rap1 geranylgeranylation and function, which was prevented by geranylgeraniol. In addition, simvastatin and the complex III inhibitor antimycin A caused mitochondrial superoxide accumulation and impaired the activity of mTORC2, which could partially be prevented by the antioxidant MitoTEMPO. In conclusion, mTORC2 inhibition is an important mechanism of simvastatin-induced myotoxicity. Simvastatin inhibits mTORC2 by impairing geranylgeranylation of Rap1 and by inducing mitochondrial dysfunction.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Prenilação/efeitos dos fármacos , Sinvastatina/toxicidade , Proteínas rap1 de Ligação ao GTP/antagonistas & inibidores , Animais , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Prenilação/fisiologia , Sinvastatina/administração & dosagem , Proteínas rap1 de Ligação ao GTP/metabolismo
4.
PLoS One ; 16(7): e0254190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214105

RESUMO

Several isoflavonoids are well known for their ability to act as soybean phytoalexins. However, the overall effects of the soybean-Aspergillus oryzae interaction on metabolism remain largely unknown. The aim of this study is to reveal an overview of nutritive and metabolic changes in germinated and A. oryzae-elicited soybeans. The levels of individual nutrients were measured using the ustulation, ashing, Kjeldahl, and Folch methods. The levels of individual amino acids were measured using high-performance liquid chromatography. Low-molecular-weight compounds were measured through metabolome analysis using liquid chromatography-mass spectrometry. Although the levels of individual nutrients and amino acids were strongly influenced by the germination process, the elicitation process had little effect on the change in the contents of individual nutrients and amino acids. However, after analyzing approximately 700 metabolites using metabolome analysis, we found that the levels of many of the metabolites were strongly influenced by soybean-A. oryzae interactions. In particular, the data indicate that steroid, terpenoid, phenylpropanoid, flavonoid, and fatty acid metabolism were influenced by the elicitation process. Furthermore, we demonstrated that not the germination process but the elicitation process induced daidzein prenylation, suggesting that the soybean-A. oryzae interactions produce various phytoalexins that are valuable for health promotion and/or disease prevention.


Assuntos
Aspergillus oryzae/metabolismo , Glycine max/metabolismo , Isoflavonas/metabolismo , Metaboloma/fisiologia , Prenilação/fisiologia , Aminoácidos/metabolismo , Fermentação/fisiologia , Flavonoides/metabolismo , Germinação/fisiologia , Nutrientes/metabolismo , Extratos Vegetais/metabolismo
5.
Int J Mol Sci ; 22(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067346

RESUMO

Prenylated flavonoids are an important class of naturally occurring flavonoids with important biological activity, but their low abundance in nature limits their application in medicines. Here, we showed the hemisynthesis and the determination of various biological activities of seven prenylated flavonoids, named 7-13, with an emphasis on antimicrobial ones. Compounds 9, 11, and 12 showed inhibitory activity against human pathogenic fungi. Compounds 11, 12 (flavanones) and 13 (isoflavone) were the most active against clinical isolated Staphylococcus aureus MRSA, showing that structural requirements as prenylation at position C-6 or C-8 and OH at positions C-5, 7, and 4' are key to the antibacterial activity. The combination of 11 or 12 with commercial antibiotics synergistically enhanced the antibacterial activity of vancomycin, ciprofloxacin, and methicillin in a factor of 10 to 100 times against drug-resistant bacteria. Compound 11 combined with ciprofloxacin was able to decrease the levels of ROS generated by ciprofloxacin. According to docking results of S enantiomer of 11 with ATP-binding cassette transporter showed the most favorable binding energy; however, more studies are needed to support this result.


Assuntos
Antibacterianos/farmacologia , Flavonoides/farmacologia , Prenilação/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Simulação por Computador , Flavanonas/farmacologia , Fungos/efeitos dos fármacos , Humanos , Isoflavonas/farmacologia , Camundongos , Testes de Sensibilidade Microbiana/métodos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos
6.
Inflammopharmacology ; 29(3): 841-854, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33864564

RESUMO

In our previous laboratory findings, Cyathocalyx pruniferus extracts exhibited platelet-activating factor inhibition, suggesting their anti-inflammatory potential. Hence, this study was designed with the aim to isolate phyto-constituents from C. pruniferus with potent anti-inflammatory activities. Column and volume liquid chromatography were used for isolation of phyto-constituents. The structure elucidation was carried out using spectroscopic analysis (HRESI-MS, 1H and 13C-NMR) and compared with published literature. For cytotoxicity analysis, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide assay was performed on peripheral blood mononuclear cells. Anti-inflammatory activities were evaluated against the levels of inflammatory cytokines (IL-1ß and IL-6), prostaglandin-E2 (PGE2) and cyclooxegenase-2 (COX-2), in lipopolysaccharide (LPS)-induced human plasma using ELISA and radioimmunoassay (RIA). The chromatographic purification of methanol leaves extract afforded 13 (1-13) secondary metabolites. Additionally, cytotoxicity analysis suggested that isolates were non-cytotoxic at 100 µM. In anti-inflammatory evaluation, 2-octaprenyl-1, 4-benzoquinone (5) produced strong (≥ 70%) inhibition of PGE2, COX-2, IL-1ß and IL-6 at 50 µM. Moreover, 2-octaprenyl-1,4-benzoquinone (5) exhibited concentration-dependent inhibition with IC50 values (µM) of 11.21, 6.61, 2.20 and 3.56 as compared to controls; indomethacin for PGE2 (11.84) and dexamethasone in COX-2 (5.19), IL-1ß (1.83) and IL-6 (3.76) analysis, respectively. In conclusion, two new compounds including 2-octaprenyl-1, 4-benzoquinone (5) and 14-methyloctadec-1-ene (6) are reported for the first time from plant species. Additionally, 2-octaprenyl-1, 4-benzoquinone (5) dose-dependently suppressed the production of pro-inflammatory mediators involved in acute and chronic inflammation at non-cytotoxic concentrations.


Assuntos
Annonaceae , Benzoquinonas/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas/antagonistas & inibidores , Dinoprostona/antagonistas & inibidores , Mediadores da Inflamação/antagonistas & inibidores , Extratos Vegetais/farmacologia , Benzoquinonas/isolamento & purificação , Benzoquinonas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Inibidores de Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Prenilação/fisiologia
7.
Int J Biol Macromol ; 174: 61-68, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33493569

RESUMO

This study was to assess the possibility of using competitive and slow binding experiments with affinity-based ultrafiltration UPLC-QTof-MS analysis to identify potent bacterial neuraminidase (bNA) inhibitors from the Broussonetia papyrifera roots extract. To isolate unbound compounds from the enzyme-binding complex, the root bark extracts were either incubated in the absence of bNA, in the presence of bNA, or with the time-dependent bNA before the ultrafiltration was performed. Thirteen flavonoids were separated from the target extract, and their inhibitory activities were tested against bNA. The isolated flavonoids exhibited potent inhibition against NA (IC50 = 0.7-54.0 µM). Our kinetic analysis of representative active flavonoids (1, 2, and 6) showed slow and time-dependent reversible inhibition. Additionally, chalcones exhibited noncompetitive inhibition characteristics, whereas flavonols and flavans showed mixed-type behavior. The computational results supported the experimental behaviors of flavonoids 2, 6, 10, and 12, indicating that bounded to the active site, but flavonoids 6 and 10 binds near but not accurately at the active site. Although this is mixed-type inhibition, their binding can be considered competitive.


Assuntos
Broussonetia/química , Flavonoides/química , Raízes de Plantas/química , Chalcona/química , Chalconas/química , Flavonóis/química , Cinética , Neuraminidase/química , Neuraminidase/isolamento & purificação , Neuraminidase/metabolismo , Casca de Planta/química , Extratos Vegetais/química , Polifenóis/química , Prenilação/fisiologia
8.
PLoS One ; 15(12): e0239269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315887

RESUMO

The integral membrane zinc metalloprotease ZMPSTE24 plays a key role in the proteolytic processing of farnesylated prelamin A, the precursor of the nuclear scaffold protein lamin A. Failure of this processing step results in the accumulation of permanently farnesylated forms of prelamin A which cause the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS), as well as related progeroid disorders, and may also play a role in physiological aging. ZMPSTE24 is an intriguing and unusual protease because its active site is located inside of a closed intramembrane chamber formed by seven transmembrane spans with side portals in the chamber permitting substrate entry. The specific features of prelamin A that make it the sole known substrate for ZMPSTE24 in mammalian cells are not well-defined. At the outset of this work it was known that farnesylation is essential for prelamin A cleavage in vivo and that the C-terminal region of prelamin A (41 amino acids) is sufficient for recognition and processing. Here we investigated additional features of prelamin A that are required for cleavage by ZMPSTE24 using a well-established humanized yeast system. We analyzed the 14-residue C-terminal region of prelamin A that lies between the ZMPSTE24 cleavage site and the farnesylated cysteine, as well 23-residue region N-terminal to the cleavage site, by generating a series of alanine substitutions, alanine additions, and deletions in prelamin A. Surprisingly, we found that there is considerable flexibility in specific requirements for the length and composition of these regions. We discuss how this flexibility can be reconciled with ZMPSTE24's selectivity for prelamin A.


Assuntos
Lamina Tipo A/metabolismo , Membranas/metabolismo , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Zinco/metabolismo , Alanina/metabolismo , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Cisteína/metabolismo , Proteínas de Membrana/metabolismo , Prenilação/fisiologia , Leveduras/metabolismo
9.
J Ethnopharmacol ; 263: 113147, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32736058

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Macaranga Thou. (Euphorbiaceae) is a large genus that comprises over 300 species distributed between Western Africa and the islands of the South Pacific. Plants of this genus have a long-standing history of use in traditional medicine for different purposes, including the treatment of inflammation. Fresh and dried leaves of certain Macaranga species (e.g. M. tanarius (L.) Müll.Arg.), have been used to treat cuts, bruises, boils, swellings, sores and covering of wounds in general. Several reports described Macaranga spp. being a rich source of polyphenols, such as prenylated stilbenoids and flavonoids, mostly responsible for its biological activity. Similarly, an abundant content of prenylated stilbenes was also described in M. siamensis S.J.Davies, species recently identified (2001) in Thailand. While the respective biological activity of the prenylated stilbenes from M. siamensis was poorly investigated to date, our recent study pointed out the interest as the natural source of several novel anti-inflammatory stilbenoids isolated from this species. AIM OF THE STUDY: This work investigated the potential anti-inflammatory effects of the stilbenoid macasiamenene F (MF) isolated from M. siamensis S.J.Davies (Euphorbiaceae) on the lipopolysaccharide (LPS)-induced inflammation-like response of monocytes and microglia, major cells involved in the peripheral and central inflammatory response, respectively. MATERIALS AND METHODS: LPS-induced stimulation of TLR4 signaling led to the activation of inflammatory pathways in in vitro models of THP-1 and THP-1-XBlue™-MD2-CD14 human monocytes, BV-2 mouse microglia, and an ex vivo model of brain-sorted mouse microglia. The ability of the stilbenoid MF to intervene in the IкB/NF-кB and MAPKs/AP-1 inflammatory cascade was investigated. The gene and protein expressions of the pro-inflammatory cytokines IL-1ß and TNF-α were evaluated at the transcription and translation levels. The protective effect of MF against LPS-triggered microglial loss was assessed by cell counting and the LDH assay. RESULTS: MF demonstrated beneficial effects, reducing both monocyte and microglial inflammation as assessed in vitro. It efficiently inhibited the degradation of IкBα, thereby reducing the NF-кB activity and TNF-α expression in human monocytes. Furthermore, the LPS-induced expression of IL-1ß and TNF-α in microglia was dampened by pre-, co-, or post-treatment with MF. In addition to its anti-inflammatory effect, MF demonstrated a cytoprotective effect against the LPS-induced death of BV-2 microglia. CONCLUSION: Our research into anti-inflammatory and protective effects of MF has shown that it is a promising candidate for further in vitro and in vivo investigations of MF interventions with respect to acute and chronic inflammation, including potentially beneficial effects on the inflammatory component of brain diseases such as stroke and Alzheimer's disease.


Assuntos
Anti-Inflamatórios/uso terapêutico , Citoproteção/efeitos dos fármacos , Euphorbiaceae , Microglia/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Prenilação/efeitos dos fármacos , Estilbenos/uso terapêutico , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Citoproteção/fisiologia , Relação Dose-Resposta a Droga , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Monócitos/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Prenilação/fisiologia , Estilbenos/isolamento & purificação , Estilbenos/farmacologia
10.
J Nat Med ; 74(3): 501-512, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32180104

RESUMO

Aromatic prenyltransferases (PTases), including ABBA-type and dimethylallyl tryptophan synthase (DMATS)-type enzymes from bacteria and fungi, play important role for diversification of the natural products and improvement of the biological activities. For a decade, the characterization of enzymes and enzymatic synthesis of prenylated compounds by using ABBA-type and DMATS-type PTases have been demonstrated. Here, I introduce several examples of the studies on chemoenzymatic synthesis of unnatural prenylated compounds and the enzyme engineering of ABBA-type and DMATS-type PTases.


Assuntos
Alquil e Aril Transferases/metabolismo , Bactérias/enzimologia , Dimetilaliltranstransferase/metabolismo , Fungos/enzimologia , Engenharia de Proteínas , Bactérias/metabolismo , Produtos Biológicos/metabolismo , Fungos/metabolismo , Prenilação/fisiologia
11.
Nat Commun ; 10(1): 565, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718485

RESUMO

Prenylation of natural compounds adds structural diversity, alters biological activity, and enhances therapeutic potential. Because prenylated compounds often have a low natural abundance, alternative production methods are needed. Metabolic engineering enables natural product biosynthesis from inexpensive biomass, but is limited by the complexity of secondary metabolite pathways, intermediate and product toxicities, and substrate accessibility. Alternatively, enzyme catalyzed prenyl transfer provides excellent regio- and stereo-specificity, but requires expensive isoprenyl pyrophosphate substrates. Here we develop a flexible cell-free enzymatic prenylating system that generates isoprenyl pyrophosphate substrates from glucose to prenylate an array of natural products. The system provides an efficient route to cannabinoid precursors cannabigerolic acid (CBGA) and cannabigerovarinic acid (CBGVA) at >1 g/L, and a single enzymatic step converts the precursors into cannabidiolic acid (CBDA) and cannabidivarinic acid (CBDVA). Cell-free methods may provide a powerful alternative to metabolic engineering for chemicals that are hard to produce in living organisms.


Assuntos
Produtos Biológicos/metabolismo , Canabinoides/metabolismo , Proteínas Fúngicas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Engenharia Metabólica/métodos , Estrutura Molecular , Prenilação/fisiologia , Especificidade por Substrato
12.
Biochem Pharmacol ; 162: 109-122, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30316820

RESUMO

The development of neuroprotective agents is necessary for the treatment of neurodegenerative diseases. Here, we report PQA-11, a prenylated quinolinecarboxylic acid (PQA) derivative, as a potent neuroprotectant. PQA-11 inhibits glutamate-induced cell death and caspase-3 activation in hippocampal cultures, as well as inhibits N-Methyl-4-phenylpyridinium iodide- and amyloid ß1-42-induced cell death in SH-SY5Y cells. PQA-11 also suppresses mitogen-activated protein kinase kinase 4 (MKK4) and c-jun N-terminal kinase (JNK) signaling activated by these neurotoxins. Quartz crystal microbalance analysis and in vitro kinase assay reveal that PQA-11 interacts with MKK4, and inhibits its sphingosine-induced activation. The administration of PQA-11 by intraperitoneal injection alleviates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced degeneration of nigrostriatal dopaminergic neurons in mice. These results suggest that PQA-11 is a unique MKK4 inhibitor with potent neuroprotective effects in vitro and in vivo. PQA-11 may be a valuable lead for the development of novel neuroprotectants.


Assuntos
Ácidos Carboxílicos/farmacologia , MAP Quinase Quinase 4/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Prenilação/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Humanos , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Prenilação/fisiologia
13.
ACS Chem Neurosci ; 10(3): 1420-1433, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30556996

RESUMO

Alzheimer's disease is likely to be caused by copathogenic factors including aggregation of Aß peptides into oligomers and fibrils, neuroinflammation, and oxidative stress. To date, no effective treatments are available, and because of the multifactorial nature of the disease, it emerges the need to act on different and simultaneous fronts. Despite the multiple biological activities ascribed to curcumin as neuroprotector, its poor bioavailability and toxicity limit the success in clinical outcomes. To tackle Alzheimer's disease on these aspects, the curcumin template was suitably modified and a small set of analogues was attained. In particular, derivative 1 turned out to be less toxic than curcumin. As evidenced by capillary electrophoresis and transmission electron microscopy studies, 1 proved to inhibit the formation of large toxic Aß oligomers, by shifting the equilibrium toward smaller nontoxic assemblies and to limit the formation of insoluble fibrils. These findings were supported by molecular docking and steered molecular dynamics simulations which confirmed the superior capacity of 1 to bind Aß structures of different complexity. Remarkably, 1 also showed in vitro anti-inflammatory and antioxidant properties. In summary, the curcumin-based analogue 1 emerged as multipotent compound worthy to be further investigated and exploited in the Alzheimer's disease multitarget context.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Curcumina/análogos & derivados , Curcumina/metabolismo , Mediadores da Inflamação/metabolismo , Fragmentos de Peptídeos/toxicidade , Prenilação/fisiologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Animais , Animais Recém-Nascidos , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/uso terapêutico , Células Cultivadas , Curcumina/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Simulação de Acoplamento Molecular/métodos , Prenilação/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
14.
Proc Natl Acad Sci U S A ; 115(38): 9563-9568, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30190425

RESUMO

SmgGDS has dual functions in cells and regulates small GTPases as both a guanine nucleotide exchange factor (GEF) for the Rho family and a molecular chaperone for small GTPases possessing a C-terminal polybasic region followed by four C-terminal residues called the CaaX motif, which is posttranslationally prenylated at its cysteine residue. Our recent structural work revealed that SmgGDS folds into tandem copies of armadillo-repeat motifs (ARMs) that are not present in other GEFs. However, the precise mechanism of GEF activity and recognition mechanism for the prenylated CaaX motif remain unknown because SmgGDS does not have a typical GEF catalytic domain and lacks a pocket to accommodate a prenyl group. Here, we aimed to determine the crystal structure of the SmgGDS/farnesylated RhoA complex. We found that SmgGDS induces a significant conformational change in the switch I and II regions that opens up the nucleotide-binding site, with the prenyl group fitting into the cryptic pocket in the N-terminal ARMs. Taken together, our findings could advance the understanding of the role of SmgGDS and enable drug design strategies for targeting SmgGDS and small GTPases.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Chaperonas Moleculares/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Dobramento de Proteína , Proteína rhoA de Ligação ao GTP/química , Motivos de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Ensaios Enzimáticos , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Simulação de Acoplamento Molecular , Prenilação/fisiologia , Ligação Proteica , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Plant Signal Behav ; 12(10): e1382795, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28949830

RESUMO

Protein farnesylation refers to the addition of a 15-carbon farnesyl isoprenoid to the cysteine residue of the CaaX motif at the carboxy terminus of target proteins. In spite of its known roles in plant development and abiotic stress tolerance, how these processes are precisely regulated by farnesylation had remained elusive. We recently showed that CYP85A2, the cytochrome P450, which converts castasterone to brassinolide in the last step of brassinosteroid synthesis must be farnesylated in order to function in this pathway. Lack of either CYP85A2 or the farnesylation motif of CYP85A2 resulted in reduced brassinolide accumulation, hypersensitivity to ABA, and increased plant drought tolerance. In this study, we have assessed the influence of the N-terminal secretory signal and the C-terminal CaaX motif of CYP85A2 in mediating CYP85A2 function and targeting to endomembrane compartments. We show that CaaX motif could still target CYPA85A2 in the absence of an intact N-terminal secretory signal to the respective membrane compartments and partially rescue cyp85a2-2 phenotypes. However, in the absence of both the CaaX motif and the secretory signal, CYP85A2 is not targeted to the membranes and becomes unstable.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Sementes/metabolismo , Esteroides Heterocíclicos/metabolismo , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Prenilação/genética , Prenilação/fisiologia , Sementes/genética
16.
Arch Biochem Biophys ; 632: 209-221, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754323

RESUMO

The UbiX-UbiD system consists of the flavin prenyltransferase UbiX that produces prenylated FMN that serves as the cofactor for the (de)carboxylase UbiD. Recent developments have provided structural insights into the mechanism of both enzymes, detailing unusual chemistry in each case. The proposed reversible 1,3-dipolar cycloaddition between the cofactor and substrate serves as a model to explain many of the key UbiD family features. However, considerable variation exists in the many branches of the UbiD family tree.


Assuntos
Carboxiliases , Dimetilaliltranstransferase , Proteínas de Escherichia coli , Escherichia coli , Flavinas , Flavoproteínas , Prenilação/fisiologia , Carboxiliases/química , Carboxiliases/genética , Carboxiliases/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flavinas/biossíntese , Flavinas/química , Flavinas/genética , Flavoproteínas/química , Flavoproteínas/genética , Flavoproteínas/metabolismo
17.
Arch Pharm Res ; 40(1): 32-36, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25749845

RESUMO

Versicolols A and B (1 and 2), two rare prenylated isocoumarin derivatives, along with five known isocoumarins (3-7) were isolated from the fermentation products of an endophytic fungus Aspergillus versicolor. Their structures were elucidated on the basis of extensive spectroscopic analysis, including 1D- and 2D-NMR techniques. Compounds 1 and 2 were evaluated for their cytotoxicity against five human tumor cell lines. The results showed that compounds 1 exhibited weak cytotoxicity against A549 and MCF7 cells with IC50 values of 9.4 and 8.8 µm, and compound 2 exhibited weak cytotoxicity against SHSY5Y and MCF7 cells with IC50 values of 8.2 and 6.8 µm, respectively.


Assuntos
Aspergillus , Citotoxinas/química , Citotoxinas/metabolismo , Endófitos , Isocumarinas/química , Isocumarinas/metabolismo , Prenilação/fisiologia , Células A549 , Citotoxinas/isolamento & purificação , Humanos , Isocumarinas/isolamento & purificação , Células MCF-7
18.
Biochem Biophys Res Commun ; 474(3): 594-598, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27086854

RESUMO

Increased activity of prenyl transferases is observed in pathological states of insulin resistance, diabetes, and obesity. Thus, functional inhibitors of farnesyl transferase (FTase) and geranylgeranyl transferase (GGTase) may be promising therapeutic treatments. We previously identified insulin responsive genes from a rat H4IIE hepatoma cell cDNA library, including ß-actin, EGR1, Pip92, c-fos, and Hsp60. In the present study, we investigated whether acute treatment with FTase and GGTase inhibitors would alter insulin responsive gene initiation and/or elongation rates. We observed differential regulation of insulin responsive gene expression, suggesting a differential sensitivity of these genes to one or both of the specific protein prenylation inhibitors.


Assuntos
Hepatócitos/metabolismo , Insulina/farmacologia , Prenilação/fisiologia , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica/fisiologia , Actinas/metabolismo , Animais , Linhagem Celular , Chaperonina 60/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hepatócitos/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Prenilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Transcrição Gênica/efeitos dos fármacos
19.
Biochem Pharmacol ; 105: 55-65, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26827943

RESUMO

Development of new immunosuppressing agents is necessary in organ transplantation or immune diseases. Because Ppc-1 exhibits a suppressing effect on interleukin-2 (IL2) production in Jurkat cells, we synthesized and screened Ppc-1 derivatives that preserve prenylated quinolinecarboxylic acid (PQA) structure, and identified compound 18 (PQA-18) as a novel molecule with immunosuppressing effect. PQA-18 suppressed not only IL2 but also IL4, IL6, and tumor necrosis factor-α production in human peripheral lymphocytes without affecting cell viability. Two-dimensional gel electrophoresis analysis and in vitro kinase assay revealed that PQA-18 inhibits kinase activity of p21-activated kinase 2 (PAK2). Administration of PQA-18 by intraperitoneal injection suppressed the population of a subset of regulatory T cells and the immunoglobulin (Ig) production against T cell-dependent antigens in mice. Treatment with the PQA-18 ointment on Nc/Nga mice, a model of human atopic dermatitis, improved skin lesions and serum IgE levels. These results suggest that PQA-18 is a unique PAK2 inhibitor with potent immunosuppressing effects in vitro and in vivo. PQA-18 may be a valuable lead for the development of novel immunosuppressants.


Assuntos
Ácidos Carboxílicos/farmacologia , Imunidade Celular/fisiologia , Imunossupressores/farmacologia , Prenilação/fisiologia , Quinolinas/farmacologia , Quinases Ativadas por p21/metabolismo , Animais , Ácidos Carboxílicos/química , Dermatite/tratamento farmacológico , Dermatite/imunologia , Dermatite/metabolismo , Relação Dose-Resposta a Droga , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prenilação/efeitos dos fármacos , Prenilação/imunologia , Quinolinas/química , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ácidos Tri-Iodobenzoicos/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/imunologia
20.
J Pathol ; 238(3): 375-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26575346

RESUMO

Glucose-stimulated insulin secretion (GSIS) involves interplay between metabolic and cationic events. Several lines of evidence suggest novel regulatory roles for small G proteins (Rac1, Cdc42, Rab27A) in cytoskeletal remodelling and docking of insulin granules on the plasma membrane for insulin secretion. Emerging evidence implicates novel roles for post-translational prenylation (farnesylation and geranylgeranylation) of G proteins for their targeting to appropriate membranous compartments. While several recent studies were focused on prenylating enzymes in the islet ß-cell, a significant knowledge gap exists on the regulatory roles and function of enzymes that mediate intracellular generation of prenyl pyrophosphate substrates (farnesyl and geranylgeranyl pyrophosphates) for prenyltransferases. Recent work published in The Journal of Pathology by Jiang and associates highlights requisite roles for geranylgeranyl pyrophosphate synthase (GGPPS) in islet ß-cell function in health and diabetes. These studies are timely and will form the basis for a series of new investigations to further validate roles for G-protein prenylation in GSIS under physiological conditions. They also pave the path towards the identification of potential defects in these signalling pathways in ß-cell models of impaired insulin secretion including metabolic stress and diabetes.


Assuntos
Diabetes Mellitus/fisiopatologia , Células Secretoras de Insulina/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Glicemia/metabolismo , Glicemia/fisiologia , Humanos , Camundongos , Prenilação/fisiologia , Ratos , Proteínas rab27 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA