Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Microb Cell Fact ; 23(1): 234, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182107

RESUMO

BACKGROUND: Several two-component systems of Streptomyces coelicolor, a model organism used for studying antibiotic production in Streptomyces, affect the expression of the bfr (SCO2113) gene that encodes a bacterioferritin, a protein involved in iron storage. In this work, we have studied the effect of the deletion mutant ∆bfr in S. coelicolor. RESULTS: The ∆bfr mutant exhibits a delay in morphological differentiation and produces a lesser amount of the two pigmented antibiotics (actinorhodin and undecylprodigiosin) compared to the wild type on complex media. The effect of iron in minimal medium was tested in the wild type and ∆bfr mutant. Consequently, we also observed different levels of production of the two pigmented antibiotics between the two strains, depending on the iron concentration and the medium (solid or liquid) used. Contrary to expectations, no differences in intracellular iron concentration were detected between the wild type and ∆bfr mutant. However, a higher level of reactive oxygen species in the ∆bfr mutant and a higher tolerance to oxidative stress were observed. Proteomic analysis showed no variation in iron response proteins, but there was a lower abundance of proteins related to actinorhodin and ribosomal proteins, as well as others related to secondary metabolite production and differentiation. Additionally, a higher abundance of proteins related to various types of stress, such as respiration and hypoxia among others, was also revealed. Data are available via ProteomeXchange with identifier PXD050869. CONCLUSION: This bacterioferritin in S. coelicolor (Bfr) is a new element in the complex regulation of secondary metabolism in S. coelicolor and, additionally, iron acts as a signal to modulate the biosynthesis of active molecules. Our model proposes an interaction between Bfr and iron-containing regulatory proteins. Thus, identifying these interactions would provide new information for improving antibiotic production in Streptomyces.


Assuntos
Antraquinonas , Antibacterianos , Proteínas de Bactérias , Ferritinas , Ferro , Streptomyces coelicolor , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento , Antibacterianos/biossíntese , Antibacterianos/metabolismo , Ferritinas/metabolismo , Ferritinas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ferro/metabolismo , Antraquinonas/metabolismo , Grupo dos Citocromos b/metabolismo , Grupo dos Citocromos b/genética , Regulação Bacteriana da Expressão Gênica , Prodigiosina/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Benzoisocromanequinonas
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125963

RESUMO

The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries' approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising compound, but its high production cost and promiscuous bioactivity hinder its wide application. Metal ions can modulate the electronic properties of organic molecules, leading to novel mechanisms of action and increased target potency, while metal complex formation can improve the stability, solubility and bioavailability of the parent compound. The objectives of this study were optimizing PG production through bacterial fermentation using food waste, allowing good quantities of the pure natural product for further synthesizing and evaluating copper(II) and zinc(II) complexes with it. Their antimicrobial and anticancer activities were assessed, and their binding affinity toward biologically important molecules, bovine serum albumin (BSA) and DNA was investigated by fluorescence emission spectroscopy and molecular docking. The yield of 83.1 mg/L of pure PG was obtained when processed meat waste at 18 g/L was utilized as the sole fermentation substrate. The obtained complexes CuPG and ZnPG showed high binding affinity towards target site III of BSA, and molecular docking simulations highlighted the affinity of the compounds for DNA minor grooves.


Assuntos
Complexos de Coordenação , Cobre , DNA , Simulação de Acoplamento Molecular , Prodigiosina , Soroalbumina Bovina , Zinco , Prodigiosina/química , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Cobre/química , Cobre/metabolismo , Zinco/metabolismo , Zinco/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , DNA/metabolismo , DNA/química , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Humanos , Bovinos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sítios de Ligação
3.
Sci Rep ; 14(1): 17750, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085460

RESUMO

Serratia marcescens is an opportunistic human pathogen that produces a vibrant red pigment called prodigiosin. Prodigiosin has implications in virulence of S. marcescens and promising clinical applications. We discovered that addition of the virulent flagellotropic bacteriophage χ (Chi) to a culture of S. marcescens stimulates a greater than fivefold overproduction of prodigiosin. Active phage infection is required for the effect, as a χ-resistant strain lacking flagella does not respond to phage presence. Via a reporter fusion assay, we have determined that the addition of a χ-induced S. marcescens cell lysate to an uninfected culture causes a threefold increase in transcription of the pig operon, containing genes essential for pigment biosynthesis. Replacement of the pig promoter with a constitutive promoter abolished the pigmentation increase, indicating that regulatory elements present in the pig promoter likely mediate the phenomenon. We hypothesize that S. marcescens detects the threat of phage-mediated cell death and reacts by producing prodigiosin as a stress response. Our findings are of clinical significance for two main reasons: (i) elucidating complex phage-host interactions is crucial for development of therapeutic phage treatments, and (ii) overproduction of prodigiosin in response to phage could be exploited for its biosynthesis and use as a pharmaceutical.


Assuntos
Bacteriófagos , Prodigiosina , Regiões Promotoras Genéticas , Serratia marcescens , Serratia marcescens/metabolismo , Serratia marcescens/genética , Prodigiosina/metabolismo , Prodigiosina/biossíntese , Bacteriófagos/genética , Bacteriófagos/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/metabolismo
4.
Mol Microbiol ; 122(1): 68-80, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845079

RESUMO

Iron is an essential element for microbial survival and secondary metabolism. However, excess iron availability and overloaded secondary metabolites can hinder microbial growth and survival. Microorganisms must tightly control iron homeostasis and secondary metabolism. Our previous studies have found that the stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis by activating iron uptake in Pseudoalteromonas sp. strain R3. It is believed that the interaction between SspA and the small nucleotide ppGpp is important for iron to exert regulation functions. However, the roles of ppGpp in iron absorption and prodiginine biosynthesis, and the underlying relationship between ppGpp and SspA in strain R3 remain unclear. In this study, we found that ppGpp accumulation in strain R3 could be induced by limiting iron. In addition, ppGpp not only positively regulated iron uptake and prodiginine biosynthesis via increasing the SspA level but also directly repressed iron uptake and prodiginine biosynthesis independent of SspA, highlighting the finding that ppGpp can stabilize both iron levels and prodiginine production. Notably, the abolishment of ppGpp significantly increased prodiginine production, thus providing a theoretical basis for manipulating prodiginine production in the future. This dynamic ppGpp-mediated interaction between iron uptake and prodiginine biosynthesis has significant implications for understanding the roles of nutrient uptake and secondary metabolism for the survival of bacteria in unfavorable environments.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Ferro , Prodigiosina , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Ferro/metabolismo , Prodigiosina/metabolismo , Prodigiosina/biossíntese , Prodigiosina/análogos & derivados , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Homeostase , Metabolismo Secundário
5.
Appl Microbiol Biotechnol ; 108(1): 306, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656376

RESUMO

The Streptomyces genus comprises Gram-positive bacteria known to produce over two-thirds of the antibiotics used in medical practice. The biosynthesis of these secondary metabolites is highly regulated and influenced by a range of nutrients present in the growth medium. In Streptomyces coelicolor, glucose inhibits the production of actinorhodin (ACT) and undecylprodigiosin (RED) by a process known as carbon catabolite repression (CCR). However, the mechanism mediated by this carbon source still needs to be understood. It has been observed that glucose alters the transcriptomic profile of this actinobacteria, modifying different transcriptional regulators, including some of the one- and two-component systems (TCSs). Under glucose repression, the expression of one of these TCSs SCO6162/SCO6163 was negatively affected. We aimed to study the role of this TCS on secondary metabolite formation to define its influence in this general regulatory process and likely establish its relationship with other transcriptional regulators affecting antibiotic biosynthesis in the Streptomyces genus. In this work, in silico predictions suggested that this TCS can regulate the production of the secondary metabolites ACT and RED by transcriptional regulation and protein-protein interactions of the transcriptional factors (TFs) with other TCSs. These predictions were supported by experimental procedures such as deletion and complementation of the TFs and qPCR experiments. Our results suggest that in the presence of glucose, the TCS SCO6162/SCO6163, named GarR/GarS, is an important negative regulator of the ACT and RED production in S. coelicolor. KEY POINTS: • GarR/GarS is a TCS with domains for signal transduction and response regulation • GarR/GarS is an essential negative regulator of the ACT and RED production • GarR/GarS putatively interacts with and regulates activators of ACT and RED.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor , Antraquinonas/metabolismo , Antibacterianos/biossíntese , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzoisocromanequinonas , Repressão Catabólica , Glucose/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Prodigiosina/metabolismo , Metabolismo Secundário/genética , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Mol Pharmacol ; 105(4): 286-300, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38278554

RESUMO

Prodigiosin (PG) is a naturally occurring polypyrrole red pigment produced by numerous microorganisms including some Serratia and Streptomyces strains. PG has exhibited promising anticancer activity; however, the molecular mechanisms of action of PG on malignant cells remain ambiguous. Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that governs a wide array of cellular processes in development and tissue homeostasis. Malfunctions of TGF-ß signaling are associated with numerous human cancers. Emerging evidence underscores the significance of internalized TGF-ß receptors and their intracellular trafficking in initiating signaling cascades. In this study, we identified PG as a potent inhibitor of the TGF-ß pathway. PG blocked TGF-ß signaling by targeting multiple sites of this pathway, including facilitating the sequestering of TGF-ß receptors in the cytoplasm by impeding the recycling of type II TGF-ß receptors to the cell surface. Additionally, PG prompts a reduction in the abundance of receptors on the cell surface through the disruption of the receptor glycosylation. In human Caucasian lung carcinoma cells and human hepatocellular cancer cell line cells, nanomolar concentrations of PG substantially diminish TGF-ß-triggered phosphorylation of Smad2 protein. This attenuation is further reflected in the suppression of downstream target gene expression, including those encoding fibronectin, plasminogen activator inhibitor-1, and N-cadherin. SIGNIFICANCE STATEMENT: Prodigiosin (PG) emerges from this study as a potent TGF-ß pathway inhibitor, disrupting receptor trafficking and glycosylation and reducing TGF-ß signaling and downstream gene expression. These findings not only shed light on PG's potential therapeutic role but also present a captivating avenue towards future anti-TGF-ß strategies.


Assuntos
Proteínas Serina-Treonina Quinases , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Polímeros/metabolismo , Pirróis , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fosforilação , Células Epiteliais/metabolismo , Fator de Crescimento Transformador beta1 , Proteína Smad2/metabolismo
7.
Microb Biotechnol ; 17(1): e14312, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37435812

RESUMO

Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.


Assuntos
Produtos Biológicos , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Prodigiosina/metabolismo , Produtos Biológicos/metabolismo , Biotecnologia , Zeaxantinas/metabolismo
8.
ACS Infect Dis ; 9(12): 2607-2621, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37971550

RESUMO

Quorum sensing (QS) inhibition is recognized as a novel antimicrobial target for infections caused by drug-resistant pathogens and is an attractive strategy for antipathogenic agent development. We designed and synthesized three parts of 3-(2-isocyanobenzyl)-1H-indole derivatives and tested their activity as novel quorum sensing inhibitors (QSIs). 3-(2-Isocyanobenzyl)-1H-indole derivatives demonstrated promising QS, biofilms, and prodigiosin inhibitory activities against Serratia marcescens at subminimum inhibitory concentrations (sub-MICs). In particular, 3-(2-isocyano-6-methylbenzyl)-1H-indole (IMBI, 32) was identified as the best candidate based on several screening assays, including biofilm and prodigiosin inhibition. Further studies demonstrated that exposure to IMBI at 1.56 µg/mL to S. marcescens NJ01 significantly inhibited the formation of biofilms by 42%. The IMBI treatment on S. marcescens NJ01 notably enhanced the susceptibility of the formed biofilms, destroying the architecture of the biofilms by up to 40%, as evidenced by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). For interference of virulence factors in S. marcescens NJ01, IMBI at 3.12 µg/mL inhibited the activity of protease and extracellular polysaccharides (EPS) by 17% and 51%, respectively, which were higher than that of the positive control vanillic acid (VAN). Furthermore, IMBI downregulated the expression of QS- and biofilm-related genes fimA, bsmA, pigP, flhC, rssB, fimC, and rsmA by 1.02- to 2.74-fold. To confirm these findings, molecular docking was performed, which indicated that the binding of IMBI to SmaR, RhlI, RhlR, LasR, and CviR could antagonize the expression of QS-linked traits. In addition, molecular dynamic simulations (MD) and energy calculations indicated that the binding of receptors with IMBI was extremely stable. The biofilms of S. marcescens NJ01 were markedly reduced by 50% when IMBI (0.39 µg/mL) was combined with kanamycin (0.15 µg/mL). In conclusion, this study highlights the potency of IMBI in inhibiting the virulence factors of S. marcescens. IMBI has all the potential to be developed as an effective and efficient QS inhibitor and antibiofilm agent in order to restore or improve antimicrobial drug sensitivity.


Assuntos
Percepção de Quorum , Serratia marcescens , Serratia marcescens/metabolismo , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/química , Fatores de Virulência/metabolismo , Indóis/farmacologia
9.
Cell Commun Signal ; 21(1): 275, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798768

RESUMO

BACKGROUND: The bacterial secondary metabolite prodigiosin has been shown to exert anticancer, antimalarial, antibacterial and immunomodulatory properties. With regard to cancer, it has been reported to affect cancer cells but not non-malignant cells, rendering prodigiosin a promising lead compound for anticancer drug discovery. However, a direct protein target has not yet been experimentally identified. METHODS: We used mass spectrometry-based thermal proteome profiling in order to identify target proteins of prodigiosin. For target validation, we employed a genetic knockout approach and electron microscopy. RESULTS: We identified the Golgi stacking protein GRASP55 as target protein of prodigiosin. We show that prodigiosin treatment severely affects Golgi morphology and functionality, and that prodigiosin-dependent cytotoxicity is partially reduced in GRASP55 knockout cells. We also found that prodigiosin treatment results in decreased cathepsin activity and overall blocks autophagic flux, whereas co-localization of the autophagosomal marker LC3 and the lysosomal marker LAMP1 is clearly promoted. Finally, we observed that autophagosomes accumulate at GRASP55-positive structures, pointing towards an involvement of an altered Golgi function in the autophagy-inhibitory effect of this natural compound. CONCLUSION: Taken together, we propose that prodigiosin affects autophagy and Golgi apparatus integrity in an interlinked mode of action involving the regulation of organelle alkalization and the Golgi stacking protein GRASP55. Video Abstract.


Assuntos
Complexo de Golgi , Prodigiosina , Humanos , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Autofagossomos/metabolismo , Autofagia
10.
Antonie Van Leeuwenhoek ; 116(11): 1197-1208, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37728826

RESUMO

Regulation of prodigiosin biosynthesis is received wide attention due to the antimicrobial, immunosuppressive and anticancer activities of prodigiosin. Here, we constructed a transposon mutant library in S. marcescens FS14 to identify genes involved in the regulation of prodigiosin biosynthesis. 62 strains with apparently different colors were obtained. Identification of the transposon insertion sites revealed that they are classified into three groups: the coding region of cyaA and two component system eepS/R and the promoter region of rpoH. Since the effect of cyaA and eepS/R genes on prodigiosin was extensively investigated in Serratia marcescens, we chose the mutant of rpoH for further investigation. Further deletion mutation of rpoH gene showed no effect on prodigiosin production suggesting that the effect on prodigiosin production caused by transposon insertion is not due to the deletion of RpoH. We further demonstrated that multicopy expression of RpoH reduced prodigiosin biosynthesis indicating that transposon insertion caused RpoH enhanced expression. Previous results indicate that RpoS is the sigma factor for transcription of pig gene cluster in FS14, to test whether the enhanced expression of RpoH prevents prodigiosin by competing with RpoS, we found that multicopy expression of RpoS could alleviate the prodigiosin production inhibition by enhanced RpoH. We proposed that multicopy expressed RpoH competes with RpoS for core RNA polymerase (RNAP) resulting in decreased transcription of pig gene cluster and prodigiosin production reduction. We also demonstrated that RpoH is not directly involved in prodigiosin biosynthesis. Our results suggest that manipulating the transcription level of sigma factors may be applied to regulate the production of secondary metabolites.


Assuntos
Prodigiosina , Serratia marcescens , Animais , Suínos , Serratia marcescens/metabolismo , Prodigiosina/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Sequência de Bases
11.
Microbiol Res ; 274: 127422, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37301080

RESUMO

Prodigiosin pigment is a secondary metabolite produced by many bacterial species and is known for its medicinal properties. A few of these prodigiosin-producing bacteria are also reported to be entomopathogenic. It is intriguing to unravel the role of prodigiosin in insecticidal activities and its mode of action. In this study, we have shown the production and characterization of prodigiosin from the Serratia rubidaea MJ 24 isolated from the soil of the Western Ghats, India. Further, we assessed the effect of this pigment on the lepidopteran agricultural pest, Helicoverpa armigera. Prodigiosin-fed H. armigera indicated defective development of insect growth upon treatment. Due to defective early development, about 50% mortality and 40% reduction in body weight were observed in insects fed on a 500 ppm prodigiosin-containing diet. The transcriptomic analysis of these insects indicated significant dysregulation of Juvenile hormone synthesis and response related genes. In addition, dopamine related processes and their resultant melanization and sclerotization processes were also found to be affected. The changes in the expression levels of the key transcripts were further validated using real-time quantitative PCR. The metabolome data confirmed the developmental dysregulation of precursors and products of differentially regulated genes due to prodigiosin. Therefore, the corroborated data suggests that prodigiosin majorly affects H. armigera development through dysregulation of the Juvenile hormone-dopamine system and can be considered as a bioactive scaffold to design insect-pest management compounds. This study provides the first report of in-depth analysis of insecticidal system dynamics in H. armigera insects upon prodigiosin feeding via gene expression and metabolic change via omics approach.


Assuntos
Inseticidas , Mariposas , Animais , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Serratia/genética , Mariposas/microbiologia , Inseticidas/metabolismo , Larva/microbiologia
12.
Environ Toxicol ; 38(2): 266-277, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36447373

RESUMO

Prodigiosin (PDG) is a bacterial metabolite with numerous biological and pharmaceutical properties. Exposure to aluminium is considered a root etiological factor in the pathological progress of Alzheimer's disease (AD). Here, in this investigation, we explored the neuroprotective potential of PDG against aluminium chloride (AlCl3 )-mediated AD-like neurological alterations in rats. For this purpose, rats were gavaged either AlCl3 (100 mg/kg), PDG (300 mg/kg), or both for 42 days. As a result of the analyzes performed on the hippocampal tissue, it was observed that AlCl3 induced biochemical, molecular, and histopathological changes like those related to AD. PDG pre-treatment significantly decreased acetylcholinesterase activity and restored the levels of brain-derived neurotrophic factor, monoamines (dopamine, norepinephrine, and serotonin), and transmembrane protein (Na+ /K+ -ATPase). Furthermore, PDG boosted the hippocampal antioxidant capacity, as shown by the increased superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents. These findings were accompanied by decreases in malondialdehyde and nitric oxide levels. The antioxidant effect may promote the upregulation of the expression of antioxidant genes (Nrf2 and HO-1). Moreover, PDG exerted notable anti-inflammatory effects via the lessening of interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor kappa B, and decreases in the gene expression of inducible nitric oxide synthase. In addition, noteworthy decreases in pro-apoptotic (Bax and caspase-3) levels and increases in anti-apoptotic (Bcl-2) biomarkers suggested an anti-apoptotic effect of PDG. In support, the hippocampal histological examination validated the aforementioned changes. To summarize, the promising neuromodulatory, antioxidative, anti-inflammatory, and anti-apoptotic activities of PDG establish it as a potent therapeutic option for AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Animais , Ratos , Acetilcolinesterase/metabolismo , Cloreto de Alumínio/toxicidade , Cloreto de Alumínio/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Glutationa/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Prodigiosina/uso terapêutico
13.
Res Microbiol ; 174(3): 104010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36410584

RESUMO

BarA/UvrY, a two-component system and global regulator that controls expression of more than a hundred of genes involved in virulence, motility, biofilm formation, and central carbon metabolism under various stress conditions. In this study, we investigated the function of BarA/UvrY system in Serratia marcescens FS14. The disruption of barA or/and uvrY results in the yield increase of secondary metabolite prodigiosin. We further demonstrated that BarA/UvrY system represses prodigiosin production by inhibiting the transcription level of pig gene cluster with direct binding to the pigA promoter. In addition, deletion of barA or/and uvrY abolished the swarming motility of FS14, but not the swimming motility. We revealed that BarA/UvrY activates swarming through directly upregulating the expression of the biosurfactant synthesis gene swrW rather than flagella system. We also observed that BarA/UvrY positively regulates the resistance to H2O2 same as in Escherichia coli highlighting the importance of BarA/UvrY on hydrogen peroxide resistance. Our results demonstrated that the BarA/UvrY system differentially regulates the biosynthesis of the secondary metabolite prodigiosin and swarming motility in S. marcescens FS14. Comparison of our results with those observed for Serratia sp. 39006 suggests that BarA/UvrY's role in regulation of secondary metabolite production is different among Serratia species.


Assuntos
Proteínas de Escherichia coli , Prodigiosina , Animais , Suínos , Prodigiosina/metabolismo , Serratia marcescens/genética , Fatores de Transcrição/genética , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosfotransferases/genética , Proteínas de Escherichia coli/metabolismo
14.
Sci Rep ; 12(1): 18527, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323805

RESUMO

Prodigiosin (PG), a member of a family of natural red pigments produced by a variety of bacteria, was first discovered in Serratia marcescens. PG has been reported to have an apoptosis-inducing effect in many cancers, such as lymphoma, colon cancer and nasopharyngeal carcinoma. For this study, we used three glioblastoma (GBM) cell lines (LN229, U251 and A172) to explore the effect of prodigiosin on GBM cells. A CCK8 assay was used to evaluate cell viability. We determinedthe cell cycle distribution by flow cytometry and measured proliferation by an EdU incorporation assay. The expression of different molecules was investigated by western blotting and RT-PCR. We further confirmed our results by plasmid transfection and lentiviral transduction. The LN229 xenograft model was used to study the effect of prodigiosin in vivo. We confirmed that prodigiosin played an anticancer role in several GBM cell lines through the KIAA1524/PP2A/Akt signalling pathway. Prodigiosin inhibited the protein expression of KIAA1524 by suppressing its transcription, which led to activation of PP2A. Afterward, PP2A inhibited the phosphorylation of Akt, thereby inducing increased expression of p53/p21. Furthermore, it was verified that prodigiosin inhibited the KIAA1524/PP2A/Akt axis in vivo in the LN229 xenograft model. These data improve the understanding of the anticancer effects of prodigiosin and further highlight the potential of prodigiosin for the development of anti-glioma drugs.


Assuntos
Glioblastoma , Prodigiosina , Humanos , Apoptose , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serratia marcescens/metabolismo , Transdução de Sinais , Proteína Fosfatase 2/metabolismo
15.
Appl Microbiol Biotechnol ; 106(23): 7721-7735, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36319792

RESUMO

Prodiginines are a large family of microbial secondary metabolites with a core structure of tripyrrole rings. They exhibit not only diverse chemical structures but also rich biological activities, such as anti-cancer, anti-microbial, anti-algae, anti-parasitic, pesticides, and UV radiation resistance. The preferred cytotoxicity to cancer cells rather than normal cells indicates a good biological selectivity and safety, which makes the prodiginines promising candidates for drug development and novel additives for food processing. Until now, 33 prodiginine natural products have been identified in various bacteria, including Serratia, Hahella, Pseudoalteromonas, Vibrio, Zooshikella, Streptomyces, and Actinomadura. However, most efforts are still focused on the star molecule prodigiosin, while little yet is known about other prodiginine members, which retards the research and application of prodiginine compounds. To gain insight into the prodiginine family, we reviewed the recent discoveries on their chemical structures, biosynthesis, biological activities, and mechanisms of action. We believe this article will provide a guideline for new research on prodiginines, such as the discovery of new congeners and drug development. KEY POINTS: • The prodiginines are a large family of natural products with a core structure of tripyrrole rings and exhibit various bioactivities. • The prodiginines have a widespread distribution among many environmental microbes and diverse biosynthetic pathways, indicating important ecological roles and a great potential for new congeners. • The potent biological activities and good selectivity of action make prodiginines good lead compounds for drug development.


Assuntos
Produtos Biológicos , Streptomyces , Prodigiosina/metabolismo , Produtos Biológicos/farmacologia , Streptomyces/metabolismo , Serratia/metabolismo
16.
J Biotechnol ; 359: 65-74, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36184003

RESUMO

Heavy metal contamination is a global issue, with cadmium (Cd2+) and its treatment becoming major environmental challenge that could be solved by microbial restoration, an eco-friendly technique. Serratia marcescens KMR-3 exhibits high tolerance and removal rate of Cd2+ (≤500 mg/L). Here, we aimed to explore mechanisms underlying tolerance to and removal of Cd2+ by KMR-3. Scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry were conducted to analyze characteristics of the KMR-3 biofilm and Cd2+ combined forms. The results revealed varying degrees of cell adhesion, membrane thickening, and shrinkage on the surface of the bacteria. The binding elements, electronic binding energy, and functional groups on the surface of the bacteria exhibited changes. Furthermore, the biofilm amount following treatment with Cd2+ was 1.5-3 times higher than that in the controls, treatment with Cd2+ substantially enhanced biofilm generation and increased Cd2+ adsorption. Cd2+ adsorption by its own secondary metabolite prodigiosin produced by KMR-3 was enhanced by 19.5 % compared with that observed without prodigiosin. Through transcriptome sequencing and RT-qPCR, we observed that Znu protein-chelating system regulated gene expression (znuA, znuB, and znuC), and the efflux mechanism of the P-type ATPase regulated the expression of genes (zntA, zntB, and zntR), which were significantly enhanced. Through the combined action of various strategies, KMR-3 demonstrated a high tolerance and removal ability of Cd2+, providing a theoretical basis to treat Cd2+ pollution.


Assuntos
Metais Pesados , ATPases do Tipo-P , Serratia marcescens/genética , Serratia marcescens/química , Serratia marcescens/metabolismo , Prodigiosina/metabolismo , Cádmio , Metais Pesados/metabolismo , ATPases do Tipo-P/metabolismo
17.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144766

RESUMO

Prodigiosin is a secondary metabolite produced in several species of bacteria. It exhibits antimicrobial and anticancer properties. Methods for the extraction and identification of prodigiosin and their related derivatives from bacterial cultures typically depend on solvent-based extractions followed by NMR spectroscopy. The estuarine bacterium, V. gazogenes PB1, was previously shown to produce prodigiosin. This conclusion, however, was based on analytical data obtained from ultraviolet-visible absorption spectrophotometry and infrared spectroscopy. Complete dependence on these techniques would be considered inadequate for the accurate identification of the various members of the prodiginine family of compounds, which possess very similar chemical structures and near-identical optical properties. In this study, we extracted prodigiosin from a culture of Vibrio gazogenes PB1 cultivated in minimal media, and for the first time, confirmed the synthesis of prodigiosin Vibrio gazogenes PB1 using NMR techniques. The chemical structure was validated by 1H and 13C NMR spectroscopy, and further corroborated by 2D NMR, which included 1H-1H-gDQFCOSY, 1H-13C-gHSQC, and 1H-13C-gHMBC, as well as 1H-1H-homonuclear decoupling experiments. Based on this data, previous NMR spectral assignments of prodigiosin are reaffirmed and in some cases, corrected. The findings will be particularly relevant for experimental work relating to the use of V. gazogenes PB1 as a host for the synthesis of prodigiosin.


Assuntos
Prodigiosina , Vibrio , Antibacterianos/metabolismo , Espectroscopia de Ressonância Magnética , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Solventes
18.
J Inorg Biochem ; 236: 111978, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36063739

RESUMO

Prodigiosin (2-methyl-3-pentyl-6-methoxyprodiginine), a red-colored microbial pigment, is produced in large quantities by Serratia marcescens KMR-3. This bacterium can grow in a medium with a Cd2+ concentration of 500 mg/L, but it does not produce prodigiosin when the Cd2+ concentration in the medium is higher than 140 mg/L. Therefore, we investigated the mechanisms by which Cd2+ inhibits prodigiosin synthesis. Upon addition of Cd2+ to the medium, the expression of the prodigiosin (pig) gene cluster was significantly downregulated. Simultaneously, genes encoding proteins related to the synthesis of arginine and proline(prodigiosin precursors) were significantly downregulated, while the degradation-related genes were upregulated. Furthermore, PigF, which encodes a key enzyme involved in the synthesis of 4-methoxy-2,2'-bipyrrole-5-carboxaldehyde and PigC, which encodes a key enzyme involved in the last step of prodigiosin synthesis, were downregulated by 80% and 55%, respectively, following Cd2+ treatment. As PigC and PigF are located on the cell membrane and are involved in the final steps of prodigiosin synthesis, the cell membrane might be presumed to be the site of prodigiosin synthesis. The bacterial membrane exhibited different degrees of elongation, folding, fragmentation, and sagging after the addition of Cd2+, while likely destroying the site of prodigiosin synthesis.


Assuntos
Prodigiosina , Serratia marcescens , Animais , Arginina/metabolismo , Cádmio/metabolismo , Feminino , Fator de Crescimento Placentário/metabolismo , Prodigiosina/metabolismo , Prolina , Serratia marcescens/genética , Serratia marcescens/metabolismo
19.
Microbiol Spectr ; 10(5): e0182922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972277

RESUMO

Serratia marcescens (S. marcescens) is an environmental bacterium that causes infections with high morbidity and mortality. Notably, infections caused by multidrug-resistant S. marcescens have become a global public health issue. Therefore, the discovery of promising compounds to reduce the virulence of pathogens and restore antibiotic activity against multidrug-resistant bacteria is critical. Quorum sensing (QS) regulates virulence factors and biofilm formation of microorganisms to increase their pathogenicity and is, therefore, an important factor in the formation of multidrug resistance. In this study, we found that 3-phenylpropan-1-amine (3-PPA) inhibited S. marcescens NJ01 biofilm formation and virulence factors, including prodigiosin, protease, lipase, hemolysin, and swimming. The combination of 3-PPA (50.0 µg/mL) and ofloxacin (0.2 µg/mL) enhanced S. marcescens NJ01 sensitivity to ofloxacin. Based on crystalline violet staining, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM), 3-PPA (50.0 µg/mL) reduced S. marcescens NJ01 biofilm formation by 48%. Quantitative real-time PCR (qRT-PCR) showed that 3-PPA regulated the expression of virulence- and biofilm-related genes fimA, fimC, bsmB, pigP, flhC, flhD, and sodB. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that 3-PPA affected intracellular metabolites of S. marcescens NJ01, leading to reduce metabolic activity. These results suggested that 3-PPA inhibits the pathogenicity of S. marcescens NJ01 by occluding QS. Thus, 3-PPA is feasible as an ofloxacin adjuvant to overcome multidrug-resistant S. marcescens and improve the treatment of intractable infections. IMPORTANCE Multidrug-resistant bacteria have become a major threat to global public health, leading to increased morbidity, mortality, and health care costs. Bacterial virulence factors and biofilms, which are regulated by quorum sensing (QS), are the primary causes of multidrug resistance. In this study, 3-PPA reduced virulence factors and eliminated biofilm formation by inhibiting QS in S. marcescens NJ01 bacteria, without affecting bacterial growth, thus restoring sensitivity to ofloxacin. Thus, the discovery of compounds that can restore antibiotic activity against bacteria is a promising strategy to mitigate multidrug resistance in pathogens.


Assuntos
Percepção de Quorum , Serratia marcescens , Serratia marcescens/genética , Serratia marcescens/metabolismo , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Ofloxacino/farmacologia , Ofloxacino/metabolismo , Cromatografia Líquida , Aminas/metabolismo , Aminas/farmacologia , Espectrometria de Massas em Tandem , Biofilmes , Fatores de Virulência/metabolismo , Antibacterianos/farmacologia , Lipase/metabolismo , Lipase/farmacologia , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/farmacologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-35805215

RESUMO

Eutrophication has become an increasingly serious environmental issue and has contributed towards an explosion in harmful algal blooms (HABs) affecting local development. HABs can cause serious threats to ecosystems and human health. A newly isolated algicidal strain, Enterobacter hormaechei F2, showed high algicidal activity against the typical HAB species Microcystis aeruginosa. Potential algicides were detected through liquid chromatograph-mass spectrometer analysis, revealing that prodigiosin is an algicide and PQS is a quorum sensing molecule. RNA-seq was used to understand the algicidal mechanisms and the related pathways. We concluded that the metabolism of prodigiosin and PQS are active at the transcriptional level. The findings indicate that E. hormaechei F2 can be used as a potential biological agent to control harmful algal blooms to prevent the deterioration of the ecological and economic value of water bodies.


Assuntos
Herbicidas , Microcystis , Ecossistema , Enterobacter , Proliferação Nociva de Algas , Herbicidas/metabolismo , Humanos , Prodigiosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA