Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
2.
Plant Dis ; 107(8): 2384-2394, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36627810

RESUMO

Management of plant-parasitic nematodes uses host plant resistance, crop rotation, cultural methods, and nematicide applications. Host plant resistance is tedious to develop, and crop rotation and cultural methods are challenging to use. Environmental and human health concerns render sole reliance on chemical nematode suppression nonsustainable. Previously, digestate from anaerobically fermented maize silage suppressed Heterodera schachtii in Beta vulgaris crops. Here, seven digestates were investigated for nematode suppressive potential: liquid dairy manure digestate (LDMD), liquid dairy manure digestate with ammonia removed (LDMDA-), food waste digestate (FWD), liquid food waste digestate with ammonia removed (LFWDA-), liquid food waste digestate (LFWD), food waste hydrolysate from the Renewable Energy Anaerobic Digester (HREAD), and food waste hydrolysate from the South Area Transfer Station in Sacramento (HSATS). In a red radish (Raphanus sativus) bioassay with H. schachtii, digestates were amended at rates of 0.02, 0.11, 0.57, and 2.86 ml per 100 cm3 of soil. At a rate of 2.86 ml, all amendments except LDMDA- and LFWDA- significantly reduced juvenile root penetration compared with the infested control. In a greenhouse watermelon (Citrullus lanatus) bioassay with Meloidogyne incognita, amendments FWD, LFWD, HREAD, and HSATS as well as LDMD (less effectively) at 2.86 and 5.76 ml per 100 cm3 of soil significantly reduced egg masses per root system compared with the nontreated, nematode-infested control. In a microplot experiment with M. incognita and red radish, in the treatment amended with LFWD at 2.37 ml per 100 cm3 of soil, marketable yields were improved by approximately 50% over the nontreated control and were comparable with those in the treatment with the nematicide Reklemel. In a second microplot experiment with M. incognita and watermelon, treatments that contained LFWD at rates of 3.55 ml per 100 cm3 of soil had transient numerical effects of initial nematode suppression that were not maintained throughout the 3-month growth period. The results of these studies demonstrated that digestates FWD and LFWD consistently expressed some nematode-suppressive capacity.


Assuntos
Brassicaceae , Eliminação de Resíduos , Tylenchida , Tylenchoidea , Animais , Humanos , Esterco , Amônia/farmacologia , Solo/parasitologia , Antinematódeos/farmacologia , Produtos Agrícolas/parasitologia
3.
Proc Natl Acad Sci U S A ; 119(37): e2208813119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067287

RESUMO

Increasing diversity on farms can enhance many key ecosystem services to and from agriculture, and natural control of arthropod pests is often presumed to be among them. The expectation that increasing the size of monocultural crop plantings exacerbates the impact of pests is common throughout the agroecological literature. However, the theoretical basis for this expectation is uncertain; mechanistic mathematical models suggest instead that increasing field size can have positive, negative, neutral, or even nonlinear effects on arthropod pest densities. Here, we report a broad survey of crop field-size effects: across 14 pest species, 5 crops, and 20,000 field years of observations, we quantify the impact of field size on pest densities, pesticide applications, and crop yield. We find no evidence that larger fields cause consistently worse pest impacts. The most common outcome (9 of 14 species) was for pest severity to be independent of field size; larger fields resulted in less severe pest problems for four species, and only one species exhibited the expected trend of larger fields worsening pest severity. Importantly, pest responses to field size strongly correlated with their responses to the fraction of the surrounding landscape planted to the focal crop, suggesting that shared ecological processes produce parallel responses to crop simplification across spatial scales. We conclude that the idea that larger field sizes consistently disrupt natural pest control services is without foundation in either the theoretical or empirical record.


Assuntos
Proteção de Cultivos , Produtos Agrícolas , Controle de Insetos , Insetos , Controle Biológico de Vetores , Animais , Produtos Agrícolas/parasitologia , Ecossistema
4.
Annu Rev Plant Biol ; 73: 433-455, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35363532

RESUMO

In contrast to most autotrophic plants, which produce carbohydrates from carbon dioxide using photosynthesis, parasitic plants obtain water and nutrients by parasitizing host plants. Many important crop plants are infested by these heterotrophic plants, leading to severe agricultural loss and reduced food security. Understanding how host plants perceive and resist parasitic plants provides insight into underlying defense mechanisms and the potential for agricultural applications. In this review, we offer a comprehensive overview of the current understanding of host perception of parasitic plants and the pre-attachment and post-attachment defense responses mounted by the host. Since most current research overlooks the role of organ specificity in resistance responses, we also summarize the current understanding and cases of cross-organ parasitism, which indicates nonconventional haustorial connections on other host organs, for example, when stem parasitic plants form haustoria on their host roots. Understanding how different tissue types respond to parasitic plants could provide the potential for developing a universal resistance mechanism in crops against both root and stem parasitic plants.


Assuntos
Parasitos , Animais , Produtos Agrícolas/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Simbiose
5.
Sci Rep ; 12(1): 2915, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190634

RESUMO

The root-knot nematode, Meloidogyne javanica is a devastating pest affecting tomato production worldwide. Entomopathogenic nematodes (EPNs) are considered very promising biocontrol agents that could be used to effectively manage plant-parasitic nematode. The antagonistic activity of five EPN strains isolated from different fields in Morocco was evaluated against juvenile (J2s) antagonism in soil, the number of egg masses, and the galling index of M. javanica and J2s reproduction in the root. In greenhouse experiments, Steinernema feltiae strains (EL45 and SF-MOR9), Steinernema sp. (EL30), and those of Heterorhabditis bacteriophora (HB-MOR7 and EL27) were applied to the soil alongside RKN J2s. There was a significant reduction in M. javanica densities in the soil and roots by EPNs treatments when compared to the positive control. The EPNs decreased both egg masses formation and galling index by 80% compared to the positive control. The application of EPNs at a rate of 50 and 75 infective juveniles (IJs) cm-2 gave significant control of all studied nematological parameters compared to the positive control, which confirmed the importance of the doses applied. The applied dose was significantly correlated with M. javanica parameters according to polynomial regression models. The results also showed that S. feltiae strain (EL45) significantly increased plant height and root length, while H. bacteriophora strain (HB-MOR7) only enhanced root fresh weight. Therefore, both indigenous EPN strains; EL45 and SF-MOR9 have eco-friendly biological potential against M. javanica in vegetable crops.


Assuntos
Agricultura/métodos , Antibiose/fisiologia , Produtos Agrícolas/parasitologia , Nematoides/fisiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Animais , Marrocos , Controle Biológico de Vetores/métodos , Reprodução , Solo/parasitologia
6.
Sci Rep ; 12(1): 1941, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121788

RESUMO

The fall armyworm, Spodoptera frugiperda (J.E. Smith) is native to the Americas and a major pest of corn and several other crops of economic importance. The species has characteristics that make it of particular concern as an invasive pest, including broad host range, long-distance migration behavior, and a propensity for field-evolved pesticide resistance. The discovery of fall armyworm in western Africa in 2016 was followed by what was apparently a remarkably rapid spread throughout sub-Saharan Africa by 2018, causing economic damage estimated in the tens of billions USD and threatening the food security of the continent. Understanding the history of the fall armyworm invasion of Africa and the genetic composition of the African populations is critical to assessing the risk posed to different crop types, the development of effective mitigation strategies, and to make Africa less vulnerable to future invasions of migratory moth pests. This paper tested and expanded on previous studies by combining data from 22 sub-Saharan nations during the period from 2016 to 2019. The results support initial descriptions of the fall armyworm invasion, including the near absence of the strain that prefers rice, millet, and pasture grasses, while providing additional evidence that the magnitude and extent of FAW natural migration on the continent is more limited than expected. The results also show that a second entry of fall armyworm likely occurred in western Africa from a source different than that of the original introduction. These findings indicate that western Africa continues to be at high risk of future introductions of FAW, which could complicate mitigation efforts.


Assuntos
Migração Animal , Produtos Agrícolas/parasitologia , Spodoptera/genética , África , Animais , Abastecimento de Alimentos , Haplótipos , Fenótipo , Filogenia , Densidade Demográfica
7.
Sci Rep ; 12(1): 1880, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115603

RESUMO

In crop systems, successful management of invasive insect herbivores can be achieved through the introduction of exotic biocontrol agents, parasitoids or predators, having a coevolutionary history with the pest. To avert threats to local biodiversity, recent legislations require a risk assessment for the organism to be released. Evaluation of its ability to exploit, for host location, odours associated with target and non-target species is crucial for a better definition of its ecological host range. Using Y-tube olfactometer bioassays in a quarantine laboratory, we investigated the ability of the Asian egg parasitoid Trissolcus mitsukurii (Hymenoptera: Scelionidae) to exploit odours associated with the global invader Halyomorpha halys (Hemiptera: Pentatomidae) and with non-target stink bugs native to Southern Europe. We demonstrated that T. mitsukurii is attracted by plants exposed to feeding and egg deposition of the coevolved H. halys and the native Nezara viridula, while it is not attracted by physogastric (gravid) females or eggs alone. Remarkably, T. mitsukurii is repelled by plants bearing eggs of the beneficial Arma custos. Our results contribute to a more thorough and nuanced assessment of the potential non-target risks in the case of mass-release of parasitoids as part of a biological control programme for invasive stink bugs.


Assuntos
Produtos Agrícolas/parasitologia , Hemípteros/metabolismo , Himenópteros/fisiologia , Odorantes , Controle Biológico de Vetores , Olfato , Animais , Ovos/parasitologia , Interações Hospedeiro-Parasita , Oviposição
8.
Toxins (Basel) ; 14(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051000

RESUMO

Transgenic crops producing Bacillus thuringiensis (Bt) toxins are widely planted for insect control, but their efficacy may decrease as insects evolve resistance. Understanding the genetic basis of insect resistance is essential for developing an integrated strategy of resistance management. To understand the genetic basis of resistance in pink bollworm (Pectinophora gossypiella) to Bt cotton in the Yangtze River Valley of China, we conducted an F2 screening for alleles associated with resistance to the Bt (Cry1Ac) protein for the first time. A total of 145 valid single-paired lines were screened, among which seven lines were found to carry resistance alleles. All field parents in those seven lines carried recessive resistance alleles at the cadherin locus, including three known alleles, r1, r13 and r15, and two novel alleles, r19 and r20. The overall frequency of resistance alleles in 145 lines was 0.0241 (95% CI: 0.0106-0.0512). These results demonstrated that resistance was rare and that recessive mutation in the cadherin gene was the primary mechanism of pink bollworm resistance to Bt cotton in the Yangtze River Valley of China, which will provide a scientific basis for implementing targeted resistance management statics of pink bollworm in this region.


Assuntos
Bacillus thuringiensis , Caderinas/genética , Caderinas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Resistência a Inseticidas/genética , Gorgulhos/genética , Gorgulhos/metabolismo , Animais , Toxinas Bacterianas , Agentes de Controle Biológico , China , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/parasitologia , Variação Genética , Genótipo , Gossypium/parasitologia , Controle de Insetos , Mutação , Plantas Geneticamente Modificadas/genética
9.
Plant Physiol ; 188(2): 1369-1384, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34850204

RESUMO

The obligate hemiparasitic weed Striga hermonthica grows on cereal roots and presents a severe threat to global food security by causing enormous yield losses, particularly in sub-Saharan Africa. The rapidly increasing Striga seed bank in infested soils provides a major obstacle in controlling this weed. Striga seeds require host-derived strigolactones (SLs) for germination, and corresponding antagonists could be used as germination inhibitors. Recently, we demonstrated that the common detergent Triton X-100 is a specific inhibitor of Striga seed germination by binding noncovalently to its receptor, S. hermonthica HYPO-SENSITIVE TO LIGHT 7 (ShHTL7), without blocking the rice (Oryza sativa) SL receptor DWARF14 (OsD14). Moreover, triazole ureas, the potent covalently binding antagonists of rice SL perception with much higher activity toward OsD14, showed inhibition of Striga but were less specific. Considering that Triton X-100 is not suitable for field application and by combining structural elements of Triton and triazole urea, we developed two hybrid compounds, KK023-N1 and KK023-N2, as potential Striga-specific germination inhibitors. Both compounds blocked the hydrolysis activity of ShHTL7 but did not affect that of OsD14. Binding of KK023-N1 diminished ShHTL7 interaction with S. hermonthica MORE AXILLARY BRANCHING 2, a major component in SL signal transduction, and increased ShHTL7 thermal specificity. Docking studies indicate that KK023-N1 binding is not covalent but is caused by hydrophobic interactions. Finally, in vitro and greenhouse tests revealed specific inhibition of Striga seed germination, which led to a 38% reduction in Striga infestation in pot experiments. These findings reveal that KK023-N1 is a potential candidate for combating Striga and a promising basis for rational design and development of further Striga-specific herbicides.


Assuntos
Grão Comestível/parasitologia , Germinação/efeitos dos fármacos , Reguladores de Crescimento de Plantas , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Striga/efeitos dos fármacos , Striga/crescimento & desenvolvimento , Agentes de Controle Biológico , Produtos Agrícolas/parasitologia , Sementes/efeitos dos fármacos , Controle de Plantas Daninhas/métodos
10.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830030

RESUMO

RNAi technology is a versatile, effective, safe, and eco-friendly alternative for crop protection. There is plenty of evidence of its use through host-induced gene silencing (HIGS) and emerging evidence that spray-induced gene silencing (SIGS) techniques can work as well to control viruses, bacteria, fungi, insects, and nematodes. For SIGS, its most significant challenge is achieving stability and avoiding premature degradation of RNAi in the environment or during its absorption by the target organism. One alternative is encapsulation in liposomes, virus-like particles, polyplex nanoparticles, and bioclay, which can be obtained through the recombinant production of RNAi in vectors, transgenesis, and micro/nanoencapsulation. The materials must be safe, biodegradable, and stable in multiple chemical environments, favoring the controlled release of RNAi. Most of the current research on encapsulated RNAi focuses primarily on oral delivery to control insects by silencing essential genes. The regulation of RNAi technology focuses on risk assessment using different approaches; however, this technology has positive economic, environmental, and human health implications for its use in agriculture. The emergence of alternatives combining RNAi gene silencing with the induction of resistance in crops by elicitation and metabolic control is expected, as well as multiple silencing and biotechnological optimization of its large-scale production.


Assuntos
Proteção de Cultivos , Produtos Agrícolas , Doenças das Plantas , Interferência de RNA , RNA Interferente Pequeno , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Produtos Agrícolas/parasitologia , Humanos , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle
11.
BMC Plant Biol ; 21(1): 551, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809555

RESUMO

BACKGROUND: Ascochyta blight caused by Ascochyta fabae Speg. and broomrape (Orobanche crenata) are among the economically most significant pathogens of faba bean. Several QTLs conferring resistance against the two pathogens have been identified and validated in different genetic backgrounds. The aim of this study was to saturate the most stable QTLs for ascochyta and broomrape resistance in two Recombinant Inbred Line (RIL) populations, 29H x Vf136 and Vf6 x Vf136, to identify candidate genes conferring resistance against these two pathogens. RESULTS: We exploited the synteny between faba bean and the model species Medicago truncatula by selecting a set of 219 genes encoding putative WRKY transcription factors and defense related proteins falling within the target QTL intervals, for genotyping and marker saturation in the two RIL populations. Seventy and 50 of the candidate genes could be mapped in 29H x Vf136 and Vf6 x Vf136, respectively. Besides the strong reduction of the QTL intervals, the mapping process allowed replacing previous dominant and pedigree-specific RAPD flanking markers with robust and transferrable SNP markers, revealing promising candidates for resistance against the two pathogens. CONCLUSIONS: Although further efforts in association mapping and expression studies will be required to corroborate the candidate genes for resistance, the fine-mapping approach proposed here increases the genetic resolution of relevant QTL regions and paves the way for an efficient deployment of useful alleles for faba bean ascochyta and broomrape resistance through marker-assisted breeding.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Medicago truncatula/genética , Orobanche/parasitologia , Locos de Características Quantitativas , Vicia faba/genética , Vicia faba/microbiologia , Vicia faba/parasitologia , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Produtos Agrícolas/parasitologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Marcadores Genéticos , Variação Genética , Sintenia
12.
PLoS Comput Biol ; 17(11): e1009559, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748536

RESUMO

In agricultural landscapes, the amount and organization of crops and semi-natural habitats (SNH) have the potential to promote a bundle of ecosystem services due to their influence on ecological community at multiple spatio-temporal scales. SNH are relatively undisturbed and are often source of complementary resources and refuges, therefore supporting more diverse and abundant natural pest enemies. However, the nexus of SNH proportion and organization with pest suppression is not trivial. It is thus crucial to understand how the behavior of pest and natural enemy species, the underlying landscape structure, and their interaction, may influence conservation biological control (CBC). Here, we develop a generative stochastic landscape model to simulate realistic agricultural landscape compositions and configurations of fields and linear elements. Generated landscapes are used as spatial support over which we simulate a spatially explicit predator-prey dynamic model. We find that increased SNH presence boosts predator populations by sustaining high predator density that regulates and keeps pest density below the pesticide application threshold. However, predator presence over all the landscape helps to stabilize the pest population by keeping it under this threshold, which tends to increase pest density at the landscape scale. In addition, the joint effect of SNH presence and predator dispersal ability among hedge and field interface results in a stronger pest regulation, which also limits pest growth. Considering properties of both fields and linear elements, such as local structure and geometric features, provides deeper insights for pest regulation; for example, hedge presence at crop field boundaries clearly strengthens CBC. Our results highlight that the integration of species behaviors and traits with landscape structure at multiple scales is necessary to provide useful insights for CBC.


Assuntos
Controle Biológico de Vetores/métodos , Praguicidas/farmacologia , Agricultura/métodos , Agricultura/estatística & dados numéricos , Animais , Biologia Computacional , Simulação por Computador , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia , Ecossistema , Controle de Pragas/métodos , Controle de Pragas/estatística & dados numéricos , Controle Biológico de Vetores/estatística & dados numéricos , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Comportamento Predatório
13.
Sci Rep ; 11(1): 20751, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675238

RESUMO

Frankliniella occidentalis (Pergande) has become an important vegetable pest worldwide because of its economic damage to crop production. However, it is difficult to control due to its unique living habits. In this study, the eggs of F. occidentalis were used as the target to explore the ovicidal activity of spirotetramat on the thrips and its effect on hatching, development and formation. After the treatment of spirotetramat, the LC50 value descreased with increased egg age using egg dipping method, and showed the same trend as the leaf dipping method verified on living plants. Through ultra-depth-of-field microscopy, scanning electron microscopy and transmission electron microscopy, the egg shell and internal structures of F. occidentalis eggs were studied. Spirotetramat can destroy the egg shells of F. occidentalis, resulting in shrinkage of the egg surface, sunken pores, egg deformities, egg shell rupture and other phenomena. This allows spirotetramat to enter the egg and destroy the egg structure, making the egg internal structure flocculent, fuzzy and unevenly distributed, which affects embryonic development and causes the nymphs to die before hatching. Therefore, the prevention and control of F. occidentalis using spirotetramat before damage is caused to crops should have a better effect.


Assuntos
Compostos Aza/toxicidade , Produtos Agrícolas/parasitologia , Inseticidas/toxicidade , Doenças das Plantas/parasitologia , Compostos de Espiro/toxicidade , Tisanópteros/efeitos dos fármacos , Animais , Dose Letal Mediana , Ninfa/efeitos dos fármacos , Ninfa/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Tisanópteros/crescimento & desenvolvimento
14.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638623

RESUMO

How herbivorous insects adapt to host plants is a key question in ecological and evolutionary biology. The fall armyworm, (FAW) Spodoptera frugiperda (J.E. Smith), although polyphagous and a major pest on various crops, has been reported to have a rice and corn (maize) feeding strain in its native range in the Americas. The species is highly invasive and has recently established in China. We compared behavioral changes in larvae and adults of a corn population (Corn) when selected on rice (Rice) and the molecular basis of these adaptational changes in midgut and antennae based on a comparative transcriptome analysis. Larvae of S. frugiperda reared on rice plants continuously for 20 generations exhibited strong feeding preference for with higher larval performance and pupal weight on rice than on maize plants. Similarly, females from the rice selected population laid significantly more eggs on rice as compared to females from maize population. The most highly expressed DEGs were shown in the midgut of Rice vs. Corn. A total of 6430 DEGs were identified between the populations mostly in genes related to digestion and detoxification. These results suggest that potential adaptations for feeding on rice crops, may contribute to the current rapid spread of fall armyworm on rice crops in China and potentially elsewhere. Consistently, highly expressed DEGs were also shown in antennae; a total of 5125 differentially expressed genes (DEGs) s were identified related to the expansions of major chemosensory genes family in Rice compared to the Corn feeding population. These results not only provide valuable insight into the molecular mechanisms in host plants adaptation of S. frugiperda but may provide new gene targets for the management of this pest.


Assuntos
Spodoptera/genética , Spodoptera/fisiologia , Adaptação Fisiológica/genética , Animais , China , Produtos Agrícolas/parasitologia , Fenômenos Fisiológicos do Sistema Digestório , Comportamento Alimentar/fisiologia , Feminino , Ontologia Genética , Genes de Insetos , Herbivoria/genética , Herbivoria/fisiologia , Adaptação ao Hospedeiro/genética , Adaptação ao Hospedeiro/fisiologia , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/fisiologia , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Larva/fisiologia , Masculino , Oryza/parasitologia , Oviposição/fisiologia , Spodoptera/patogenicidade , Transcriptoma , Zea mays/parasitologia
15.
PLoS One ; 16(9): e0257925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34591899

RESUMO

Tuta absoluta is one of the most damaging pests of tomato crops worldwide. Damage due to larvae may cause up to 100% loss of tomato production. Use of natural enemies to control the pest, notably predatory mirids such as Nesidiocoris tenuis and Macrolophus pygmaeus, is increasingly being promoted. However, considering the potential damage caused to tomatoes by these omnivorous predators in the absence of T. absoluta, an alternative solution could be required to reduce tomato damage and improve the predators' performance. The use of companion plants can be an innovative solution to cope with these issues. The present study aimed to determine the influence of companion plants and alternative preys on the predators' performance in controlling T. absoluta and protecting tomato plants. We evaluated the effect of predators (alone or combined) and a companion plant (sesame (Sesamum indicum)) on T. absoluta egg predation and crop damage caused by N. tenuis. The influence of an alternative prey (Ephestia kuehniella eggs) on the spatial distribution of predators was also evaluated by caging them in the prey presence or absence, either on tomato or sesame plants or on both. We found that the presence of sesame did not reduce the efficacy of N. tenuis or M. pygmaeus in consuming T. absoluta eggs; hatched egg proportion decreased when N. tenuis, M. pygmaeus, or both predators were present. More specifically, this proportion was more strongly reduced when both predators were combined. Sesame presence also reduced necrotic rings caused by N. tenuis on tomato plants. Nesidiocoris tenuis preferred sesame over tomato plants (except when food was provided only on the tomato plant) and the upper part of the plants, whereas M. pygmaeus preferred tomato to sesame plants (except when food was provided only on the sesame plant) and had no preference for a plant part. Combination of predators N. tenuis and M. pygmaeus allows for better coverage of cultivated plants in terms of occupation of different plant parts and better regulation of T. absoluta populations. Sesamum indicum is a potential companion plant that can be used to significantly reduce N. tenuis damage to tomatoes.


Assuntos
Heterópteros/fisiologia , Lepidópteros/patogenicidade , Sesamum/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Animais , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia , Larva/fisiologia , Lepidópteros/parasitologia , Solanum lycopersicum/parasitologia , Controle Biológico de Vetores , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/parasitologia , Comportamento Predatório , Sesamum/parasitologia
16.
PLoS One ; 16(8): e0255372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34383810

RESUMO

This study was conducted in Farta district, south Gondar from 2019 to 2020 cropping years to identify rodent pest species and estimate damage caused on barley crops. Four independent barley crop fields (40 x 40 m each) were sampled randomly to estimate the loss. Two were located near Alemsaga Priority State Forest and the other two were away from the forest. Four (2 x 2 m) rodent exclusion plots were established at 10 m interval as control units in each selected experimental barley fields using fine wire mesh. Rodent pest species were collected using both Sherman and snap traps throughout the different crop growing stages. The damaged and undamaged barley tillers by pest rodents were counted on five 1 x 1 m randomly sampled quadrats for each selected experimental fields. Variations on pest rodent population between cropping years and sites were analyzed using Chi square test. The mean crop damages between cropping years and experimental field sites were analyzed using two way ANOVA. Arvicanthis abyssinicus, Mastomys natalensis, Arvicanthis dembeensis, Mus musculus, Lophuromys simensis, Tachyoryctes splendens and Hystrix cristata were identified as pest rodents in the study area. A total of 968 individual rodents (427 in 2019 and 541 in 2020) were trapped during the study period. There was a statistical variation (χ2 = 13.42, df = 1 and P<0.05) between trapped individuals of the two successive years. The crop fields near the forest were more vulnerable than away from the forest during both cropping years. Statistical variations was observed on mean crop losses between cropping years and experimental barley crop sites. The highest crop damage was seen at maturity stage and the lowest during sowing in all experimental plots and cropping years. The percentage of barley yield loss due to rodent pests was 21.7 kg ha-1. The monetary value of this yield loss was equivalent to 4875 Birr (121.9 US$ h-1). Alemsaga Forest as shelter and conservation strategies like free of farmland from livestock and terracing for soil conservation have great role for the high rodent pest populations in the study area. Field sanitation, trapping and using restricted rodenticides like zinc phosphide are the possible recommendation to local farmers against rodent pests.


Assuntos
Produção Agrícola/métodos , Hordeum/crescimento & desenvolvimento , Roedores/fisiologia , Animais , Produção Agrícola/economia , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia , Demografia , Etiópia , Fazendas , Florestas , Herbivoria , Hordeum/parasitologia , Controle de Pragas , Roedores/classificação
17.
Int J Mol Sci ; 22(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299036

RESUMO

Parasitic angiosperms, comprising a diverse group of flowering plants, are partially or fully dependent on their hosts to acquire water, mineral nutrients and organic compounds. Some have detrimental effects on agriculturally important crop plants. They are also intriguing model systems to study adaptive mechanisms required for the transition from an autotrophic to a heterotrophic metabolism. No less than any other plant, parasitic plants are affected by abiotic stress factors such as drought and changes in temperature, saline soils or contamination with metals or herbicides. These effects may be attributed to the direct influence of the stress, but also to diminished host availability and suitability. Although several studies on abiotic stress response of parasitic plants are available, still little is known about how abiotic factors affect host preferences, defense mechanisms of both hosts and parasites and the effects of combinations of abiotic and biotic stress experienced by the host plants. The latter effects are of specific interest as parasitic plants pose additional pressure on contemporary agriculture in times of climate change. This review summarizes the existing literature on abiotic stress response of parasitic plants, highlighting knowledge gaps and discussing perspectives for future research and potential agricultural applications.


Assuntos
Produtos Agrícolas/parasitologia , Interações Hospedeiro-Parasita , Parasitos/fisiologia , Estresse Fisiológico , Animais , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Secas
18.
Commun Biol ; 4(1): 853, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244609

RESUMO

Plant-herbivore interactions promote the generation and maintenance of both plant and herbivore biodiversity. The antagonistic interactions between plants and herbivores lead to host race formation: the evolution of herbivore types specializing on different plant species, with restricted gene flow between them. Understanding how ecological specialization promotes host race formation usually depends on artificial approaches, using laboratory experiments on populations associated with agricultural crops. However, evidence on how host races are formed and maintained in a natural setting remains scarce. Here, we take a multidisciplinary approach to understand whether populations of the generalist spider mite Tetranychus urticae form host races in nature. We demonstrate that a host race co-occurs among generalist conspecifics in the dune ecosystem of The Netherlands. Extensive field sampling and genotyping of individuals over three consecutive years showed a clear pattern of host associations. Genome-wide differences between the host race and generalist conspecifics were found using a dense set of SNPs on field-derived iso-female lines and previously sequenced genomes of T. urticae. Hybridization between lines of the host race and sympatric generalist lines is restricted by post-zygotic breakdown, and selection negatively impacts the survival of generalists on the native host of the host race. Our description of a host race among conspecifics with a larger diet breadth shows how ecological and reproductive isolation aid in maintaining intra-specific variation in sympatry, despite the opportunity for homogenization through gene flow. Our findings highlight the importance of explicitly considering the spatial and temporal scale on which plant-herbivore interactions occur in order to identify herbivore populations associated with different plant species in nature. This system can be used to study the underlying genetic architecture and mechanisms that facilitate the use of a large range of host plant taxa by extreme generalist herbivores. In addition, it offers the chance to investigate the prevalence and mechanisms of ecological specialization in nature.


Assuntos
Adaptação Fisiológica/genética , Produtos Agrícolas/genética , Fluxo Gênico/genética , Variação Genética , Tetranychidae/genética , Animais , Proteínas de Artrópodes/classificação , Proteínas de Artrópodes/genética , Produtos Agrícolas/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Especiação Genética , Herbivoria/classificação , Herbivoria/genética , Interações Hospedeiro-Parasita/genética , Países Baixos , Filogenia , Isolamento Reprodutivo , Especificidade da Espécie , Simpatria , Tetranychidae/classificação
19.
PLoS One ; 16(7): e0241256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260582

RESUMO

Potato cyst nematodes (PCN) from the genus Globodera spp. cause major losses in the potato (Solanum tuberosum) industry worldwide. Despite their importance, at present little is known about the status of this plant pathogen in cultivated potatoes in Colombia. In this study, a total of 589 samples collected from 75 geographic localities in nine potato producing regions of Colombia (Cundinamarca, Boyacá, Antioquia, Nariño, Santander, Norte de Santander, Tolima, Caldas and Cauca) were assayed for the presence of potato cyst nematodes. Fifty-seven percent of samples tested positive for PCN. Based on phylogenetic analysis of the internal transcribed spacer region (ITS1-5.8S-ITS2) of the rRNA gene and D2-D3 expansion segments of the 28S rRNA gene, all populations but one were identified as Globodera pallida. Sequences of G. pallida from Colombia formed a monophyletic group closely related to Peruvian populations, with the lowest average number of nucleotide substitutions per site (Dxy = 0.002) and net nucleotide substitutions per site (Da = 0.001), when compared to G. pallida populations from Europe, South and North America. A single sample formed a well-supported subclade along with G. rostochiensis and G. tabacum from Japan, USA and Argentina. To our knowledge this is the first comprehensive survey of Globodera populations from Colombia that includes genetic data. Our findings on species diversity and phylogenetic relationships of Globodera populations from Colombia may help elucidate the status and distribution of Globodera species, and lead to the development of accurate management strategies for the potato cyst nematodes.


Assuntos
Produtos Agrícolas/parasitologia , Filogenia , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia , Animais , Colômbia , Doenças das Plantas
20.
Sci Rep ; 11(1): 12428, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127751

RESUMO

Sugarcane (Saccharum officinarum L.) is a cash crop grown commercially for its higher amounts of sucrose, stored within the mature internodes of the stem. Numerous studies have been done for the resistance development against biotic and abiotic stresses to save the sucrose yields. Quality and yield of sugarcane production is always threatened by the damages of cane borers and weeds. In current study two problems were better addressed through the genetic modification of sugarcane for provision of resistance against insects and weedicide via the expression of two modified cane borer resistant CEMB-Cry1Ac (1.8 kb), CEMB-Cry2A (1.9 kb) and one glyphosate tolerant CEMB-GTGene (1.4 kb) genes, driven by maize Ubiquitin Promoter and nos terminator. Insect Bio-toxicity assays were carried out for the assessment of Cry proteins through mortality percent of shoot borer Chilo infuscatellus at 2nd instar larvae stage. During V0, V1 and V2 generations young leaves from the transgenic sugarcane plants were collected at plant age of 20, 40, 60, 80 days and fed to the Chilo infuscatellus larvae. Up to 100% mortality of Chilo infuscatellus from 80 days old transgenic plants of V2 generation indicated that these transgenic plants were highly resistant against shoot borer and the gene expression level is sufficient to provide complete resistance against target pests. Glyphosate spray assay was carried out for complete removal of weeds. In V1-generation, 70-76% transgenic sugarcane plants were found tolerant against glyphosate spray (3000 mL/ha) under field conditions. While in V2-generation, the replicates of five selected lines 4L/2, 5L/5, 6L/5, L8/4, and L9/6 were found 100% tolerant against 3000 mL/ha glyphosate spray. It is evident from current study that CEMB-GTGene, CEMB-Cry1Ac and CEMB-Cry2A genes expression in sugarcane variety CPF-246 showed an efficient resistance against cane borers (Chilo infuscatellus) and was also highly tolerant against glyphosate spray. The selected transgenic sugarcane lines showed sustainable resistance against cane borer and glyphosate spray can be further exploited at farmer's field level after fulfilling the biosafety requirements to boost the sugarcane production in the country.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Controle de Pragas/métodos , Plantas Geneticamente Modificadas/genética , Saccharum/genética , Animais , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/parasitologia , Glicina/análogos & derivados , Glicina/farmacologia , Resistência a Herbicidas/genética , Larva , Mariposas , Proteínas de Plantas/genética , Plantas Daninhas , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/parasitologia , Saccharum/efeitos dos fármacos , Saccharum/parasitologia , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA