RESUMO
The canonical function of lentiviral Vif proteins is to counteract the mutagenic potential of APOBEC3 antiviral restriction factors. However, recent studies have discovered that Vif proteins from diverse HIV-1 and simian immunodeficiency virus (SIV) isolates degrade cellular B56 phosphoregulators to remodel the host phosphoproteome and induce G2/M cell cycle arrest. Here, we evaluate the conservation of this activity among non-primate lentiviral Vif proteins using fluorescence-based degradation assays and demonstrate that maedi-visna virus (MVV) Vif efficiently degrades all five B56 family members. Testing an extensive panel of single amino acid substitution mutants revealed that MVV Vif recognizes B56 proteins through a conserved network of electrostatic interactions. Furthermore, experiments using genetic and pharmacologic approaches demonstrate that degradation of B56 proteins requires the cellular cofactor cyclophilin A. Lastly, MVV Vif-mediated depletion of B56 proteins induces a potent G2/M cell cycle arrest phenotype. Therefore, remodeling of the cellular phosphoproteome and induction of G2/M cell cycle arrest are ancient and conserved functions of lentiviral Vif proteins, which suggests that they are advantageous for lentiviral pathogenesis.
Assuntos
HIV-1 , Vírus Visna-Maedi , Animais , Evolução Biológica , Pontos de Checagem do Ciclo Celular , Produtos do Gene vif/genética , Produtos do Gene vif/metabolismo , HIV-1/genética , HIV-1/metabolismo , Ovinos , Vírus Visna-Maedi/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Simian immunodeficiency virus infecting sooty mangabeys (SIVsmm) has been transmitted to humans on at least nine occasions, giving rise to human immunodeficiency virus type 2 (HIV-2) groups A to I. SIVsmm isolates replicate in human T cells and seem capable of overcoming major human restriction factors without adaptation. However, only groups A and B are responsible for the HIV-2 epidemic in sub-Saharan Africa, and it is largely unclear whether adaptive changes were associated with spread in humans. To address this, we examined the sensitivity of infectious molecular clones (IMCs) of five HIV-2 strains and representatives of five different SIVsmm lineages to various APOBEC3 proteins. We confirmed that SIVsmm strains replicate in human T cells, albeit with more variable replication fitness and frequently lower efficiency than HIV-2 IMCs. Efficient viral propagation was generally dependent on intact vif genes, highlighting the need for counteraction of APOBEC3 proteins. On average, SIVsmm was more susceptible to inhibition by human APOBEC3D, -F, -G, and -H than HIV-2. For example, human APOBEC3F reduced infectious virus yield of SIVsmm by â¼80% but achieved only â¼40% reduction in the case of HIV-2. Functional and mutational analyses of human- and monkey-derived alleles revealed that an R128T polymorphism in APOBEC3F contributes to species-specific counteraction by HIV-2 and SIVsmm Vifs. In addition, a T84S substitution in SIVsmm Vif increased its ability to counteract human APOBEC3F. Altogether, our results confirm that SIVsmm Vif proteins show intrinsic activity against human APOBEC3 proteins but also demonstrate that epidemic HIV-2 strains evolved an increased ability to counteract this class of restriction factors during human adaptation. IMPORTANCE Viral zoonoses pose a significant threat to human health, and it is important to understand determining factors. SIVs infecting great apes gave rise to HIV-1. In contrast, SIVs infecting African monkey species have not been detected in humans, with one notable exception. SIVsmm from sooty mangabeys has crossed the species barrier to humans on at least nine independent occasions and seems capable of overcoming many innate defense mechanisms without adaptation. Here, we confirmed that SIVsmm Vif proteins show significant activity against human APOBEC3 proteins. Our analyses also revealed, however, that different lineages of SIVsmm are significantly more susceptible to inhibition by various human APOBEC3 proteins than HIV-2 strains. Mutational analyses suggest that an R128T substitution in APOBEC3F and a T84S change in Vif contribute to species-specific counteraction by HIV-2 and SIVsmm. Altogether, our results support that epidemic HIV-2 strains acquired increased activity against human APOBEC3 proteins to clear this restrictive barrier.
Assuntos
Citosina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , Infecções por HIV/prevenção & controle , HIV-2/genética , Interações Hospedeiro-Patógeno , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/fisiologia , Animais , Cercocebus atys , Citosina Desaminase/genética , Transmissão de Doença Infecciosa/prevenção & controle , Produtos do Gene vif/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Mutação , Síndrome de Imunodeficiência Adquirida dos Símios/epidemiologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Replicação ViralRESUMO
The APOBEC3 deaminases are potent inhibitors of virus replication and barriers to cross-species transmission. For simian immunodeficiency virus (SIV) to transmit to a new primate host, as happened multiple times to seed the ongoing HIV-1 epidemic, the viral infectivity factor (Vif) must be capable of neutralizing the APOBEC3 enzymes of the new host. Although much is known about current interactions of HIV-1 Vif and human APOBEC3s, the evolutionary changes in SIV Vif required for transmission from chimpanzees to gorillas and ultimately to humans are poorly understood. Here, we demonstrate that gorilla APOBEC3G is a factor with the potential to hamper SIV transmission from chimpanzees to gorillas. Gain-of-function experiments using SIVcpzPtt Vif revealed that this barrier could be overcome by a single Vif acidic amino acid substitution (M16E). Moreover, degradation of gorilla APOBEC3F is induced by Vif through a mechanism that is distinct from that of human APOBEC3F. Thus, our findings identify virus adaptations in gorillas that preceded and may have facilitated transmission to humans.
Assuntos
Desaminase APOBEC-3G/metabolismo , Evolução Molecular , Produtos do Gene vif/metabolismo , Interações Hospedeiro-Patógeno , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/isolamento & purificação , Replicação Viral , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/genética , Sequência de Aminoácidos , Animais , Produtos do Gene vif/química , Produtos do Gene vif/genética , Gorilla gorilla , Humanos , Pan troglodytes , Filogenia , Conformação Proteica , Homologia de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/virologiaRESUMO
Caprine arthritis-encephalitis (CAE) is a chronic progressive infectious disease caused by caprine arthritis-encephalitis virus (CAEV) that seriously threatens the goat industry. Chronic infection and life-long multi-tissue inflammation are the typical features of the disease. Innate antiviral immunity is essential for the host defense system that rapidly recognizes and eliminates invading viruses. Interferon ß (IFN-ß) is important for innate immunity and regulates immunity against a broad spectrum of viruses. To investigate the details of the IFN-ß response to CAEV infection, the effects of six viral proteins and the molecular mechanisms by which they affect IFN-ß production were analyzed. Overexpression of DU and Vif promote virus proliferation and inhibit the production of IFN-ß. qRT-PCR and luciferase reporter assays showed that overexpression of Vif inhibits the expression of luciferase under the control of the ISRE, NF-κB or IFN-ß promoter but does not affect the expression of IFN-ß activated by IRF3, indicating that Vif negatively regulates IFN-ß production by affecting upstream signal transduction of IRF3. Amino acids 149-164 of Vif were found to be necessary for the inhibitory effect of IFN-ß production. Our results indicate that CAEV evades surveillance and clearance by intracellular innate immunity by downregulating IFN-ß production.
Assuntos
Vírus da Artrite-Encefalite Caprina/imunologia , Produtos do Gene vif/imunologia , Doenças das Cabras/imunologia , Interferon beta/imunologia , Infecções por Lentivirus/veterinária , Animais , Vírus da Artrite-Encefalite Caprina/genética , Produtos do Gene vif/genética , Doenças das Cabras/genética , Doenças das Cabras/virologia , Cabras , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferon beta/genética , Infecções por Lentivirus/genética , Infecções por Lentivirus/imunologia , Infecções por Lentivirus/virologia , NF-kappa B/genética , NF-kappa B/imunologiaRESUMO
Primate lentiviruses encode a Vif protein that counteracts the host antiviral APOBEC3 (A3) family members. The adaptation of Vif to species-specific A3 determinants is a critical event that allowed the spillover of a lentivirus from monkey reservoirs to chimpanzees and subsequently to humans, which gave rise to HIV-1 and the acquired immune deficiency syndrome (AIDS) pandemic. How Vif-A3 protein interactions are remodeled during evolution is unclear. Here, we report a 2.94 Å crystal structure of the Vif substrate receptor complex from simian immunodeficiency virus isolated from red-capped mangabey (SIVrcm). The structure of the SIVrcm Vif complex illuminates the stage of lentiviral Vif evolution that is immediately prior to entering hominid primates. Structure-function studies reveal the adaptations that allowed SIVrcm Vif to antagonize hominid A3G. These studies show a partitioning between an evolutionarily dynamic specificity determinant and a conserved protein interacting surface on Vif that enables adaptation while maintaining protein interactions required for potent A3 antagonism.
Assuntos
Produtos do Gene vif , Vírus da Imunodeficiência Símia , Desaminase APOBEC-3G/metabolismo , Síndrome da Imunodeficiência Adquirida , Animais , Cercocebus , Cristalografia , Evolução Molecular , Produtos do Gene vif/química , Produtos do Gene vif/genética , HIV-1/genética , HIV-1/metabolismo , Hominidae , Interações Hospedeiro-Patógeno , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Doenças dos Macacos/virologia , Pan troglodytes , Primatas , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/ultraestruturaRESUMO
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) proteins comprise an important family of restriction factors that produce hypermutations on proviral DNA and are able to limit virus replication. Vif, an accessory protein present in almost all lentiviruses, counteracts the antiviral A3 activity. Seven haplotypes of APOBEC3Z3 (A3Z3) were described in domestic cats (hap Iâ»VII), and in-vitro studies have demonstrated that these proteins reduce infectivity of vif-defective feline immunodeficiency virus (FIV). Moreover, hap V is resistant to vif-mediated degradation. However, studies on the effect of A3Z3 in FIV-infected cats have not been developed. Here, the correlation between APOBEC A3Z3 haplotypes in domestic cats and the frequency of hypermutations in the FIV vif and env genes were assessed in a retrospective cohort study with 30 blood samples collected between 2012 and 2016 from naturally FIV-infected cats in Brazil. The vif and env sequences were analyzed and displayed low or undetectable levels of hypermutations, and could not be associated with any specific A3Z3 haplotype.
Assuntos
Citidina Desaminase/genética , Síndrome de Imunodeficiência Adquirida Felina/sangue , Produtos do Gene vif/genética , Genes env , Vírus da Imunodeficiência Felina/genética , Mutação , Animais , Brasil , Gatos/genética , Síndrome de Imunodeficiência Adquirida Felina/virologia , Haplótipos , Vírus da Imunodeficiência Felina/patogenicidade , Provírus/genética , Estudos Retrospectivos , Vírion/genética , Replicação ViralRESUMO
BACKGROUND: Hosts are able to restrict viral replication to contain virus spread before adaptive immunity is fully initiated. Many viruses have acquired genes directly counteracting intrinsic restriction mechanisms. This phenomenon has led to a co-evolutionary signature for both the virus and host which often provides a barrier against interspecies transmission events. Through different mechanisms of action, but with similar consequences, spumaviral feline foamy virus (FFV) Bet and lentiviral feline immunodeficiency virus (FIV) Vif counteract feline APOBEC3 (feA3) restriction factors that lead to hypermutation and degradation of retroviral DNA genomes. Here we examine the capacity of vif to substitute for bet function in a chimeric FFV to assess the transferability of anti-feA3 factors to allow viral replication. RESULTS: We show that vif can replace bet to yield replication-competent chimeric foamy viruses. An in vitro selection screen revealed that an engineered Bet-Vif fusion protein yields suboptimal protection against feA3. After multiple passages through feA3-expressing cells, however, variants with optimized replication competence emerged. In these variants, Vif was expressed independently from an N-terminal Bet moiety and was stably maintained. Experimental infection of immunocompetent domestic cats with one of the functional chimeras resulted in seroconversion against the FFV backbone and the heterologous FIV Vif protein, but virus could not be detected unambiguously by PCR. Inoculation with chimeric virus followed by wild-type FFV revealed that repeated administration of FVs allowed superinfections with enhanced antiviral antibody production and detection of low level viral genomes, indicating that chimeric virus did not induce protective immunity against wild-type FFV. CONCLUSIONS: Unrelated viral antagonists of feA3 cellular restriction factors can be exchanged in FFV, resulting in replication competence in vitro that was attenuated in vivo. Bet therefore may have additional functions other than A3 antagonism that are essential for successful in vivo replication. Immune reactivity was mounted against the heterologous Vif protein. We conclude that Vif-expressing FV vaccine vectors may be an attractive tool to prevent or modulate lentivirus infections with the potential option to induce immunity against additional lentivirus antigens.
Assuntos
Produtos do Gene vif/genética , Vírus da Imunodeficiência Felina/genética , Proteínas dos Retroviridae/genética , Spumavirus/genética , Vacinas Virais/genética , Replicação Viral , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Gatos , Linhagem Celular , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Ordem dos Genes , Produtos do Gene gag/metabolismo , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Vírus da Imunodeficiência Felina/imunologia , Recombinação Genética , Infecções por Retroviridae/genética , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/virologia , Spumavirus/imunologia , Carga Viral , Vacinas Virais/imunologiaRESUMO
Viral infectivity factor (Vif) encoded by lentiviruses is essential for viral replication and escaping from antiviral activity of host defensive factors APOBEC3. Jembrana disease virus (JDV) causes an acute disease syndrome with approximately 20% case fatality rate in Bali cattle. However, the interplay mechanism between JDV Vif and Bos taurus APOBEC3 (btA3) is poorly understood. In this study, we determined that JDV Vif recruits ElonginB, ElonginC(ELOB/C), Cul2 and RBX1 but without the need of CBF-ß to form E3 ubiquitin ligase and induces the degradation of btA3 proteins. Further investigation identified BC-box (T149LQ151) motif required for ELOB/C binding, Cul2 box (Y167xxxxV/X172) and a zinc-binding motif (H95-C113-H115-C133) required for Cul2 binding in JDV Vif. The precise mechanism of JDV Vif overcoming the antiviral activity of btA3 proteins is helpful for the application of the broad spectrum antiviral drug targeting conserved functional domains of various species Vif proteins in the future.
Assuntos
Desaminases APOBEC/metabolismo , Produtos do Gene vif/metabolismo , Lentivirus Bovinos/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bovinos , Elonguina/metabolismo , Produtos do Gene vif/química , Produtos do Gene vif/genética , Células HEK293 , Humanos , Lentivirus Bovinos/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genéticaRESUMO
The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease.IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals.
Assuntos
Desaminases APOBEC/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Felina/genética , Desaminases APOBEC/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Gatos , Evolução Molecular , Produtos do Gene vif/genética , Interações Hospedeiro-Patógeno , Vírus da Imunodeficiência Felina/metabolismo , Vírus da Imunodeficiência Felina/patogenicidade , VirulênciaRESUMO
Feline immunodeficiency virus (FIV) Vif protein counteracts feline APOBEC3s (FcaA3s) restriction factors by inducing their proteasomal degradation. The functional domains in FIV Vif for interaction with FcaA3s are poorly understood. Here, we have identified several motifs in FIV Vif that are important for selective degradation of different FcaA3s. Cats (Felis catus) express three types of A3s: single-domain A3Z2, single-domain A3Z3, and double-domain A3Z2Z3. We proposed that FIV Vif would selectively interact with the Z2 and the Z3 A3s. Indeed, we identified two N-terminal Vif motifs (12LF13 and 18GG19) that specifically interacted with the FcaA3Z2 protein but not with A3Z3. In contrast, the exclusive degradation of FcaA3Z3 was regulated by a region of three residues (M24, L25, and I27). Only a FIV Vif carrying a combination of mutations from both interaction sites lost the capacity to degrade and counteract FcaA3Z2Z3. However, alterations in the specific A3s interaction sites did not affect the cellular localization of the FIV Vif protein and binding to feline A3s. Pulldown experiments demonstrated that the A3 binding region localized to FIV Vif residues 50 to 80, outside the specific A3 interaction domain. Finally, we found that the Vif sites specific to individual A3s are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in the FIV Vif of pumas. Our data support a complex model of multiple Vif-A3 interactions in which the specific region for selective A3 counteraction is discrete from a general A3 binding domain. IMPORTANCE: Both human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV) Vif proteins counteract their host's APOBEC3 restriction factors. However, these two Vif proteins have limited sequence homology. The molecular interaction between FIV Vif and feline APOBEC3s are not well understood. Here, we identified N-terminal FIV Vif sites that regulate the selective interaction of Vif with either feline APOBEC3Z2 or APOBEC3Z3. These specific Vif sites are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in FIV Vif from puma. Our findings provide important insights for future experiments describing the FIV Vif interaction with feline APOBEC3s and also indicate that the conserved feline APOBEC3s interaction sites of FIV Vif allow FIV transmissions in Felidae.
Assuntos
Citidina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Felina/metabolismo , Sequência de Aminoácidos , Animais , Gatos/virologia , Linhagem Celular , Citidina Desaminase/química , Citidina Desaminase/genética , Produtos do Gene vif/química , Produtos do Gene vif/genética , Genes Virais , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Vírus da Imunodeficiência Felina/classificação , Vírus da Imunodeficiência Felina/genética , Leões/virologia , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Homologia de Sequência de Aminoácidos , Especificidade da EspécieRESUMO
BACKGROUND: Feline immunodeficiency virus (FIV) is a global pathogen of Felidae species and a model system for Human immunodeficiency virus (HIV)-induced AIDS. In felids such as the domestic cat (Felis catus), APOBEC3 (A3) genes encode for single-domain A3Z2s, A3Z3 and double-domain A3Z2Z3 anti-viral cytidine deaminases. The feline A3Z2Z3 is expressed following read-through transcription and alternative splicing, introducing a previously untranslated exon in frame, encoding a domain insertion called linker. Only A3Z3 and A3Z2Z3 inhibit Vif-deficient FIV. Feline A3s also are restriction factors for HIV and Simian immunodeficiency viruses (SIV). Surprisingly, HIV-2/SIV Vifs can counteract feline A3Z2Z3. RESULTS: To identify residues in feline A3s that Vifs need for interaction and degradation, chimeric human-feline A3s were tested. Here we describe the molecular direct interaction of feline A3s with Vif proteins from cat FIV and present the first structural A3 model locating these interaction regions. In the Z3 domain we have identified residues involved in binding of FIV Vif, and their mutation blocked Vif-induced A3Z3 degradation. We further identified additional essential residues for FIV Vif interaction in the A3Z2 domain, allowing the generation of FIV Vif resistant A3Z2Z3. Mutated feline A3s also showed resistance to the Vif of a lion-specific FIV, indicating an evolutionary conserved Vif-A3 binding. Comparative modelling of feline A3Z2Z3 suggests that the residues interacting with FIV Vif have, unlike Vif-interacting residues in human A3s, a unique location at the domain interface of Z2 and Z3 and that the linker forms a homeobox-like domain protruding of the Z2Z3 core. HIV-2/SIV Vifs efficiently degrade feline A3Z2Z3 by possible targeting the linker stretch connecting both Z-domains. CONCLUSIONS: Here we identified in feline A3s residues important for binding of FIV Vif and a unique protein domain insertion (linker). To understand Vif evolution, a structural model of the feline A3 was developed. Our results show that HIV Vif binds human A3s differently than FIV Vif feline A3s. The linker insertion is suggested to form a homeo-box domain, which is unique to A3s of cats and related species, and not found in human and mouse A3s. Together, these findings indicate a specific and different A3 evolution in cats and human.
Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , HIV-1/metabolismo , Vírus da Imunodeficiência Felina/metabolismo , Animais , Gatos , Linhagem Celular , Citidina Desaminase/genética , Evolução Molecular , Produtos do Gene vif/genética , Genes Homeobox , HIV-1/genética , Humanos , Vírus da Imunodeficiência Felina/genética , Modelos Moleculares , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Mammals have co-evolved with retroviruses, including lentiviruses, over a long period. Evidence supporting this contention is that viral infectivity factor (Vif) encoded by lentiviruses antagonizes the anti-viral action of cellular apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) of the host. To orchestrate E3 ubiquitin ligase complex for APOBEC3 degradation, Vifs utilize mammalian proteins such as core-binding factor beta (CBFB; for primate lentiviruses) or cyclophilin A (CYPA; for Maedi-Visna virus [MVV]). However, the co-evolutionary relationship between lentiviral Vif and the mammalian proteins associated with Vif-mediated APOBEC3 degradation is poorly understood. Moreover, it is unclear whether Vif proteins of small ruminant lentiviruses (SRLVs), including MVV and caprine arthritis encephalitis virus (CAEV), commonly utilize CYPA to degrade the APOBEC3 of their hosts. In this study, molecular phylogenetic and protein homology modeling revealed that Vif co-factors are evolutionarily and structurally conserved. It was also found that not only MVV but also CAEV Vifs degrade APOBEC3 of both sheep and goats and that CAEV Vifs interact with CYPA. These findings suggest that lentiviral Vifs chose evolutionarily and structurally stable proteins as their partners (e.g., CBFB or CYPA) for APOBEC3 degradation and, particularly, that SRLV Vifs evolved to utilize CYPA as their co-factor in degradation of ovine and caprine APOBEC3.
Assuntos
Vírus da Artrite-Encefalite Caprina/genética , Ciclofilina A/genética , Ciclofilina A/metabolismo , Citidina Desaminase/metabolismo , Produtos do Gene vif/genética , Produtos do Gene vif/metabolismo , Animais , Vírus da Artrite-Encefalite Caprina/metabolismo , Células Cultivadas , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Citidina Desaminase/genética , Evolução Molecular , Cabras , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interleucina-2/genética , Filogenia , OvinosRESUMO
How host-virus co-evolutionary relationships manifest is one of the most intriguing issues in virology. To address this topic, the mammal-lentivirus relationship can be considered as an interplay of cellular and viral proteins, particularly apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) and viral infectivity factor (Vif). APOBEC3s enzymatically restrict lentivirus replication, whereas Vif antagonizes the host anti-viral action mediated by APOBEC3. In this study, the focus was on the interplay between feline APOBEC3 proteins and two feline immunodeficiency viruses in cats and pumas. To our knowledge, this study provides the first evidence of non-primate lentiviral Vif being incapable of counteracting a natural host's anti-viral activity mediated via APOBEC3 protein.
Assuntos
Citosina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Felina/metabolismo , Desaminases APOBEC , Animais , Gatos , Citidina Desaminase , Citosina Desaminase/genética , Evolução Molecular , Produtos do Gene vif/genética , Produtos do Gene vif/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus da Imunodeficiência Felina/genética , Vírus da Imunodeficiência Felina/imunologia , Puma , Especificidade da Espécie , Viroses/veterinária , Replicação ViralRESUMO
Like most other lentiviruses, maedi-visna virus (MVV) requires Vif for replication in natural target cells and in vivo. Here, we show that Vif-deficient MVV accumulates G-A mutations in the sequence context characteristic of ovine APOBEC3, consistent with a role of MVV Vif in neutralizing APOBEC3. We studied two point mutations in the vif gene of MVV. One was a tryptophan to arginine mutation that affects the interaction with APOBEC3 and caused G-A hypermutation. The other mutation was a proline to serine mutation that together with a mutation in the capsid protein caused attenuated replication in fetal ovine synovial (FOS) cells but not in sheep choroid plexus (SCP) cells. There was no hypermutation associated with this mutation. These results suggest that MVV Vif exerts more than one function and that there may be interaction between Vif and the capsid. The results also suggest the involvement of an unknown host factor in MVV Vif function.
Assuntos
Produtos do Gene vif/genética , Mutação de Sentido Incorreto , Mutação Puntual , Replicação Viral , Vírus Visna-Maedi/fisiologia , Proteínas do Capsídeo/genética , Fenótipo , Vírus Visna-Maedi/genéticaRESUMO
APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy.
Assuntos
Citidina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Desaminase APOBEC-3G , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citidina Desaminase/genética , Dano ao DNA , Produtos do Gene vif/genética , Células HEK293 , Humanos , Immunoblotting , Macaca mulatta/virologia , Antígenos de Histocompatibilidade Menor , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Vírus da Imunodeficiência Símia/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismoRESUMO
UNLABELLED: Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with "minigenes" encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01(+) vaccinees mounted CD8(+) T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication. IMPORTANCE: Immunodominance poses a major obstacle to the generation of broadly targeted, HIV-specific cellular responses by vaccination. Here we attempted to circumvent this phenomenon and thereby broaden the repertoire of SIV-specific cellular responses by vaccinating rhesus macaques with minigenes encoding fragments of Gag, Vif, and Nef. In contrast to previous mouse studies, this strategy appeared to minimally affect monkey CD8(+) T-cell immundominance hierarchies, as seen by the detection of only one subdominant epitope in Mamu-A*01(+) vaccinees. This finding underscores the difficulty of inducing subdominant CD8(+) T cells by vaccination and demonstrates that strategies other than gene fragmentation may be required to significantly alter immunodominance in primates. Although some of the regimens tested here were extremely immunogenic, vaccine efficacy was limited to a modest reduction in set point viremia after challenge with SIVmac239. No correlates of protection were identified. These results reinforce the notion that vaccine immunogenicity does not predict control of AIDS virus replication.
Assuntos
Produtos do Gene gag/imunologia , Produtos do Gene nef/imunologia , Produtos do Gene vif/imunologia , Vetores Genéticos/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas Sintéticas/uso terapêutico , Replicação Viral , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Produtos do Gene gag/genética , Produtos do Gene nef/genética , Produtos do Gene vif/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunidade Celular/imunologia , Macaca mulatta/virologia , Masculino , Camundongos , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , VacinaçãoRESUMO
APOBEC3 proteins are DNA cytosine deaminases that restrict the replication of human immunodeficiency virus deficient in the counterdefense protein Vif. Here, we address the capacity of APOBEC3F to restrict via deaminase-dependent and -independent mechanisms by monitoring spreading infections in diverse T cell lines. Our data indicate that only a deaminase-proficient protein is capable of long-term restriction of Vif-deficient HIV in T cells, analogous to prior reports for APOBEC3G. This indicates that the principal mechanism of APOBEC3F restriction is deaminase-dependent.
Assuntos
Citosina Desaminase/química , Citosina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , Infecções por HIV/enzimologia , HIV-1/metabolismo , Desaminase APOBEC-3G , Biocatálise , Linhagem Celular , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Citosina Desaminase/genética , Produtos do Gene vif/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Ligação Proteica , Linfócitos T/enzimologia , Linfócitos T/virologia , Produtos do Gene vif do Vírus da Imunodeficiência HumanaRESUMO
UNLABELLED: The human immunodeficiency virus type 1 (HIV-1)-encoded virion infectivity factor (Vif) is required to inactivate the host restriction factor APOBEC3 by engaging Cullin 5 (Cul5)-RING ubiquitin ligase (CRL5). Core binding factor beta (CBF-ß) is a novel regulator of Vif-CRL5 function; as yet, its mechanism of regulation remains unclear. In the present study, we demonstrate that CBF-ß promotion of Vif-CRL5 assembly is independent of its influence on Vif stability and is also a conserved feature of primate lentiviral Vif proteins. Furthermore, CBF-ß is critical for the formation of the Vif-ElonginB/ElonginC-Cul5 core E3 ubiquitin ligase complex in vitro. CBF-ß from diverse vertebrate species supported HIV-1 Vif function, indicating the conserved nature of Vif-CBF-ß interfaces. Considering the importance of the interaction between Vif and CBF-ß in viral CRL5 function, disrupting this interaction represents an attractive pharmacological intervention against HIV-1. IMPORTANCE: HIV-1 encodes virion infectivity factor (Vif) to inactivate its host's antiviral APOBEC3 proteins. Vif triggers APOBEC3 degradation by forming Vif-Cullin 5 (Cul5)-RING ubiquitin ligase (CRL5). Core binding factor beta (CBF-ß) is a novel regulator of Vif-CRL5 function whose mechanism of regulation remains poorly defined. In the present study, we demonstrate that the promotion of Vif-CRL5 assembly by CBF-ß can be separated from its influence on Vif stability. The promotion of Vif-CRL5 assembly, but not the influence on Vif stability, is conserved among primate lentiviral Vif proteins: we found that CBF-ß from diverse vertebrate species supported HIV-1 Vif function. Considering the importance of the interaction between Vif and CBF-ß in viral CRL5 function and HIV-1 replication, disrupting this interaction is an attractive strategy against HIV-1.
Assuntos
Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Proteínas Culina/metabolismo , Evolução Molecular , Infecções por HIV/metabolismo , HIV-1/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Subunidade beta de Fator de Ligação ao Core/química , Proteínas Culina/genética , Elonguina , Produtos do Gene vif/química , Produtos do Gene vif/genética , Produtos do Gene vif/metabolismo , Infecções por HIV/enzimologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , Humanos , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência , Vírus da Imunodeficiência Símia/química , Vírus da Imunodeficiência Símia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genéticaRESUMO
Previous studies have shown that apolipoprotein B mRNA editing, enzyme catalytic, polypeptide G (APOBEC3G; hA3G) and F (APOBEC3F; hA3F) proteins interact with a nonlinear binding site located at the N-terminal region of the HIV-1 Vif protein. We have analyzed the role of 12 positively charged amino acids of the N-terminal region of the SIV Vif. Simian-human immunodeficiency viruses (SHIV) were constructed that expressed each of these amino acid substitutions. These viruses were examined for replication in the presence of rhesus macaque APOBEC3 proteins (rhA3A-rhA3H), incorporation of the different A3 proteins into virions, and replication in rhesus macaque PBMC. Similar to other studies, we found that K27 was essential for rhA3G activity and rhA3F but was not important for restriction of SHIVΔvif by rhA3A, rhA3D or rhA3H. Our results identified the arginine at position 14 of the SIV Vif as a critical residue for virus restriction by rhA3D, rhA3G and rhA3H.