Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.149
Filtrar
1.
J Agric Food Chem ; 72(28): 16010-16017, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38965162

RESUMO

Maillard reaction products (MRPs) of xylose with phenylalanine and xylose with proline exhibit high antibacterial activity. However, the active antibacterial compounds in MRPs have not yet been identified or isolated. This study aimed to isolate the active compounds in the two antibacterial MRPs. The organic layer of the MRP solution was separated and purified using silica gel chromatography and high-performance liquid chromatography. The chemical structures of the isolated compounds were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds inhibited the growth of Bacillus cereus and Salmonella Typhimurium at 25 °C for 7 days at a concentration of 0.25 mM. Furthermore, the isolated compounds inhibited the growth of naturally occurring microflora of lettuce and chicken thighs at 25 °C for 2 days at a concentration of 0.5-1.0 mM. The antibacterial compounds found in MRPs demonstrated a wide range of effectiveness and indicated their potential as alternative preservatives.


Assuntos
Antibacterianos , Galinhas , Reação de Maillard , Fenilalanina , Prolina , Salmonella typhimurium , Xilose , Antibacterianos/farmacologia , Antibacterianos/química , Prolina/química , Fenilalanina/química , Xilose/química , Salmonella typhimurium/efeitos dos fármacos , Animais , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão
2.
Biochemistry (Mosc) ; 89(6): 1146-1157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981707

RESUMO

Water shortage induces physiological, biochemical, and molecular alterations in plant leaves that play an essential role in plant adaptive response. The effects of drought and post-drought rewatering on the activity of antioxidant enzymes and levels of H2O2, phenolic compounds, ascorbic acid, and proline were studied in six local tomato (Solanum lycopersicum L.) varieties. The contents of H2O2 and ascorbic acid increased in all drought-exposed tomato plants and then decreased upon rewatering. The level of phenolic compounds also decreased in response to water shortage and then recovered upon rehydration, although the extent of this response was different in different varieties. The activities of ascorbate peroxidase (APX) and guaiacol peroxidase (POX) and the content of proline significantly increased in the drought-stressed plants and then decreased when the plants were rewatered. The activities of 8 constitutive APX isoforms and 2 constitutive POX isoforms varied upon exposure to drought and were observed after rewatering in all studied varieties. The information on the response of tomato plants to drought and subsequent rewatering is of great importance for screening and selection of drought-tolerant varieties, as well as for development of strategies for increasing plant productivity under adverse environmental conditions.


Assuntos
Antioxidantes , Ascorbato Peroxidases , Secas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico , Água/metabolismo , Ácido Ascórbico/metabolismo , Peroxidase/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Prolina/metabolismo
3.
Funct Plant Biol ; 512024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39008621

RESUMO

One strategy to improve olive (Olea europaea ) tree drought tolerance is through the symbiosis of arbuscular mycorrhizal fungi (AMF), which helps alleviate water deficit through a combination of morphophysiological effects. Cuttings of olive varieties Arbequina (A) and Barnea (B) were grown with (+AMF) or without (-AMF) inoculum in the olive grove rhizosphere soil. One year after establishment, pots were exposed to four different water regimes: (1) control (100% of crop evapotranspiration); (2) short-period drought (20days); (3) long-period drought (25days); and (4) rewatering (R). To evaluate the influence of AMF on tolerance to water stress, stem water potential, stomatal conductance and the biomarkers for water deficit malondialdehyde, proline, soluble sugars, phenols, and flavonoids were evaluated at the end of the irrigation regimes. Stem water potential showed higher values in A(+) and B(+) in all water conditions, and the opposite was true for stomatal conductance. For proline and soluble sugars, the stem water potential trend is repeated with some exceptions. AMF inoculum spore communities from A(+ and -) and B(+ and -) were characterised at the morphospecies level in terms of richness and abundance. Certain morphospecies were identified as potential drought indicators. These results highlight that the benefits of symbiotic relationships between olive and native AMF can help to mitigate the effects of abiotic stress in soils affected by drought.


Assuntos
Micorrizas , Olea , Rizosfera , Água , Olea/microbiologia , Micorrizas/fisiologia , Água/metabolismo , Secas , Prolina/metabolismo , Simbiose , Estômatos de Plantas/fisiologia , Caules de Planta/microbiologia , Raízes de Plantas/microbiologia , Malondialdeído/metabolismo
4.
Nat Commun ; 15(1): 5503, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951531

RESUMO

Proline is widely known as the only proteogenic amino acid with a secondary amine. In addition to its crucial role in protein structure, the secondary amino acid modulates neurotransmission and regulates the kinetics of signaling proteins. To understand the structural basis of proline import, we solved the structure of the proline transporter SIT1 in complex with the COVID-19 viral receptor ACE2 by cryo-electron microscopy. The structure of pipecolate-bound SIT1 reveals the specific sequence requirements for proline transport in the SLC6 family and how this protein excludes amino acids with extended side chains. By comparing apo and substrate-bound SIT1 states, we also identify the structural changes that link substrate release and opening of the cytoplasmic gate and provide an explanation for how a missense mutation in the transporter causes iminoglycinuria.


Assuntos
Enzima de Conversão de Angiotensina 2 , Microscopia Crioeletrônica , Prolina , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Prolina/metabolismo , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/química , Modelos Moleculares
5.
N Engl J Med ; 391(3): 224-234, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39018532

RESUMO

BACKGROUND: Clinical trials of treatments for coronavirus disease 2019 (Covid-19) have not shown a significant benefit of postexposure prophylaxis. METHODS: We conducted a phase 2-3 double-blind trial to assess the efficacy and safety of nirmatrelvir-ritonavir in asymptomatic, rapid antigen test-negative adults who had been exposed to a household contact with Covid-19 within 96 hours before randomization. The participants were randomly assigned in a 1:1:1 ratio to receive nirmatrelvir-ritonavir (300 mg of nirmatrelvir and 100 mg of ritonavir) every 12 hours for 5 days or for 10 days or matching placebo for 5 or 10 days. The primary end point was the development of symptomatic SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection, confirmed on reverse-transcriptase-polymerase-chain-reaction (RT-PCR) or rapid antigen testing, through 14 days in participants who had a negative RT-PCR test at baseline. RESULTS: A total of 2736 participants were randomly assigned to a trial group - 921 to the 5-day nirmatrelvir-ritonavir group, 917 to the 10-day nirmatrelvir-ritonavir group, and 898 to the placebo group. Symptomatic, confirmed SARS-CoV-2 infection developed by day 14 in 2.6% of the participants in the 5-day nirmatrelvir-ritonavir group, 2.4% of those in the 10-day nirmatrelvir-ritonavir group, and 3.9% of those in the placebo group. In each nirmatrelvir-ritonavir group, the percentage of participants in whom symptomatic, confirmed SARS-CoV-2 infection developed did not differ significantly from that in the placebo group, with risk reductions relative to placebo of 29.8% (95% confidence interval [CI], -16.7 to 57.8; P = 0.17) in the 5-day nirmatrelvir-ritonavir group and 35.5% (95% CI, -11.5 to 62.7; P = 0.12) in the 10-day nirmatrelvir-ritonavir group. The incidence of adverse events was similar across the trial groups, with dysgeusia being the most frequently reported adverse event (in 5.9% and 6.8% of the participants in the 5-day and 10-day nirmatrelvir-ritonavir groups, respectively, and in 0.7% of those in the placebo group). CONCLUSIONS: In this placebo-controlled trial, postexposure prophylaxis with nirmatrelvir-ritonavir for 5 or 10 days did not significantly reduce the risk of symptomatic SARS-CoV-2 infection. (Funded by Pfizer; ClinicalTrials.gov number, NCT05047601.).


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Profilaxia Pós-Exposição , Ritonavir , SARS-CoV-2 , Humanos , Ritonavir/uso terapêutico , Ritonavir/efeitos adversos , Ritonavir/administração & dosagem , Método Duplo-Cego , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , COVID-19/prevenção & controle , Administração Oral , Indazóis/efeitos adversos , Indazóis/uso terapêutico , Combinação de Medicamentos , Antivirais/uso terapêutico , Antivirais/efeitos adversos , Antivirais/administração & dosagem , Indóis/efeitos adversos , Indóis/uso terapêutico , Indóis/administração & dosagem , Adulto Jovem , Quimioterapia Combinada , Lactamas , Leucina , Nitrilas , Prolina
6.
J Infect ; 89(2): 106190, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834107

RESUMO

OBJECTIVES: This study aimed to determine the association of early use of oral antiviral drugs (including nirmatrelvir-ritonavir and molnupiravir) with the risk of post COVID-19 condition (PCC) and compare the possible efficacy of nirmatrelvir-ritonavir and molnupiravir. METHODS: PubMed, Web of Science, Embase, Cochrane, MedRxiv, and Psycinfo were searched from inception until November 1, 2023. We included studies that assessed the effect of oral antiviral drugs on the incidence of PCC. Pairwise and network meta-analyses were conducted using a random-effects model. Risk ratios (RRs) for oral antiviral drugs were calculated with a confidence interval (CI). RESULTS: Nine observational studies containing 866,066 patients were included. Nirmatrelvir-ritonavir and molnupiravir were evaluated in eight and two studies respectively, with both drugs evaluated in one study. Pair-wise meta-analysis showed that early oral antiviral drugs reduced PCC risk (RR 0.77, 95% CI 0.68-0.88). Network meta-analysis showed that nirmatrelvir-ritonavir may perform better than molnupiravir (surface under the cumulative ranking curve: 95.5% vs. 31.6%) at reducing PCC risk. CONCLUSIONS: Early use of oral antiviral drugs may potentially protect against developing PCC in non-hospitalized patients with COVID-19. These findings support the standardized administration of oral antiviral drugs in patients during the acute phase of COVID-19 according to the guidelines.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Metanálise em Rede , Ritonavir , SARS-CoV-2 , Humanos , Antivirais/uso terapêutico , Antivirais/administração & dosagem , Ritonavir/uso terapêutico , Ritonavir/administração & dosagem , Administração Oral , COVID-19/epidemiologia , Combinação de Medicamentos , Hidroxilaminas/uso terapêutico , Hidroxilaminas/administração & dosagem , Síndrome de COVID-19 Pós-Aguda , Lactamas , Citidina/análogos & derivados , Nitrilas , Prolina , Leucina
7.
PLoS One ; 19(6): e0298254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843201

RESUMO

BACKGROUND: In randomized controlled trials, Nirmatrelvir/ritonavir (NMV/r) and Molnupiravir (MPV) reduced the risk of severe/fatal COVID-19 disease. Real-world data are limited, particularly studies directly comparing the two agents. METHODS: Using the VA National COVID-19 database, we identified previously uninfected, non-hospitalized individuals with COVID-19 with ≥1 risk factor for disease progression who were prescribed either NMV/r or MPV within 3 days of a positive test. We used inverse probability of treatment weights (IPTW) to account for providers' preferences for a specific treatment. Absolute risk difference (ARD) with 95% confidence intervals were determined for those treated with NMV/r vs. MPV. The primary outcome was hospitalization or death within 30 days of treatment prescription using the IPTW approach. Analyses were repeated using propensity-score matched groups. RESULTS: Between January 1 and November 30, 2022, 9,180 individuals were eligible for inclusion (6,592 prescribed NMV/r; 2,454 prescribed MPV). The ARD for hospitalization/death for NMV/r vs MPV was -0.25 (95% CI -0.79 to 0.28). There was no statistically significant difference in ARD among strata by age, race, comorbidities, or symptoms at baseline. Kaplan-Meier curves did not demonstrate a difference between the two groups (p-value = 0.6). Analysis of the propensity-score matched cohort yielded similar results (ARD for NMV/r vs. MPV -0.9, 95% CI -2.02 to 0.23). Additional analyses showed no difference for development of severe/critical/fatal disease by treatment group. CONCLUSION: We found no significant difference in short term risk of hospitalization or death among at-risk individuals with COVID-19 treated with either NMV/r or MPV.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Citidina , Progressão da Doença , Hospitalização , Hidroxilaminas , Leucina , Ritonavir , SARS-CoV-2 , Humanos , Masculino , Feminino , Ritonavir/uso terapêutico , Pessoa de Meia-Idade , Hidroxilaminas/uso terapêutico , Citidina/análogos & derivados , Citidina/uso terapêutico , COVID-19/mortalidade , COVID-19/epidemiologia , Antivirais/uso terapêutico , Leucina/análogos & derivados , Leucina/uso terapêutico , Idoso , SARS-CoV-2/isolamento & purificação , Prolina/análogos & derivados , Prolina/uso terapêutico , Indóis/uso terapêutico , Adulto , Pandemias , Fatores de Risco , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/mortalidade , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Betacoronavirus , Lactamas , Nitrilas
8.
J Hazard Mater ; 474: 134644, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838520

RESUMO

Nanoplastics, as emerging pollutants, have harmful effects on living organisms and the environment, the mechanisms and extent of which remain unclear. Microalgae, as one of the most important biological groups in the food chain and sensitive environmental indicators to various pollutants, are considered a suitable option for investigating the effects of nanoplastics. In this study, the effects of polystyrene nanoplastics on the growth rate, dry weight, chlorophyll a and carotenoid levels, proline, and lipid peroxidation in the Spirulina platensis were examined. Three concentrations of 0.1, 1, and 10 mg L-1 of PSNPs were used alongside a control sample with zero concentration, with four repetitions in one-liter containers for 20 days under optimal temperature and light conditions. Various analyses, including growth rate, dry weight, proline, chlorophyll a and carotenoid levels, and lipid peroxidation, were performed. The results indicated that exposure to PSNP stress led to a significant decrease in growth rate, dry weight, and chlorophyll a and carotenoid levels compared to the control sample. Furthermore, this stress increased the levels of proline and lipid peroxidation in Spirulina platensis. Morphological analysis via microscopy supported these findings, indicating considerable environmental risks associated with PSNPs.


Assuntos
Carotenoides , Clorofila , Peroxidação de Lipídeos , Microalgas , Poliestirenos , Prolina , Spirulina , Spirulina/efeitos dos fármacos , Spirulina/crescimento & desenvolvimento , Spirulina/metabolismo , Poliestirenos/toxicidade , Carotenoides/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Prolina/metabolismo , Clorofila/metabolismo , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Clorofila A/metabolismo , Nanopartículas/toxicidade
9.
Nat Commun ; 15(1): 4748, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834585

RESUMO

Non-self recognition is a fundamental aspect of life, serving as a crucial mechanism for mitigating proliferation of molecular parasites within fungal populations. However, studies investigating the potential interference of plants with fungal non-self recognition mechanisms are limited. Here, we demonstrate a pronounced increase in the efficiency of horizontal mycovirus transmission between vegetatively incompatible Sclerotinia sclerotiorum strains in planta as compared to in vitro. This increased efficiency is associated with elevated proline concentration in plants following S. sclerotiorum infection. This surge in proline levels attenuates the non-self recognition reaction among fungi by inhibition of cell death, thereby facilitating mycovirus transmission. Furthermore, our field experiments reveal that the combined deployment of hypovirulent S. sclerotiorum strains harboring hypovirulence-associated mycoviruses (HAVs) together with exogenous proline confers substantial protection to oilseed rape plants against virulent S. sclerotiorum. This unprecedented discovery illuminates a novel pathway by which plants can counteract S. sclerotiorum infection, leveraging the weakening of fungal non-self recognition and promotion of HAVs spread. These promising insights provide an avenue to explore for developing innovative biological control strategies aimed at mitigating fungal diseases in plants by enhancing the efficacy of horizontal HAV transmission.


Assuntos
Ascomicetos , Micovírus , Doenças das Plantas , Prolina , Micovírus/fisiologia , Micovírus/genética , Prolina/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Ascomicetos/virologia , Ascomicetos/fisiologia , Brassica napus/microbiologia , Brassica napus/virologia , Virulência , Interações Hospedeiro-Patógeno
10.
Langmuir ; 40(24): 12802-12809, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38850260

RESUMO

Since drug carriers are envisaged to be used in a wide variety of situations and environments, nanocarriers with diverse properties, such as biocompatibility, biodegradability, nonimmunogenicity, adequate particle size, robustness, and cell permeability, are required. Here, we report the construction of novel nanocapsules with the above-mentioned features by the self-assembly of peptides composed of oligoproline and oligoleucine (i.e., H-Pro10Leu4-NH2 and H-Pro10Leu6-NH2). The peptides self-organized via hydrogen bonds and hydrophobic interactions between oligoleucine moieties to form vesicle-like nanocapsules with cationic oligoproline exposed on the surface. The guest encapsulation experiments revealed that the nanocapsules were capable of uptake of both water-soluble and insoluble compounds. Furthermore, positively charged and/or oligoproline-based peptides are known to improve cell permeability and cellular uptake, suggesting that the peptide nanocapsules are good candidates for nanocarriers to complement liposomes and polymer micelles.


Assuntos
Nanocápsulas , Peptídeos , Nanocápsulas/química , Peptídeos/química , Leucina/química , Prolina/química , Tamanho da Partícula , Interações Hidrofóbicas e Hidrofílicas
11.
Physiol Plant ; 176(3): e14404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922894

RESUMO

Soil acidity is a global issue; soils with pH <4.5 are widespread in Europe. This acidity adversely affects nutrient availability to plants; pH levels <5.0 lead to aluminum (Al3+) toxicity, a significant problem that hinders root growth and nutrient uptake in faba bean (Vicia faba L.) and its symbiotic relationship with Rhizobium. However, little is known about the specific traits and tolerant genotypes among the European faba beans. This study aimed to identify response traits associated with tolerance to root zone acidity and Al3+ toxicity and potentially tolerant genotypes for future breeding efforts. Germplasm survey was conducted using 165 genotypes in a greenhouse aquaponics system. Data on the root and shoot systems were collected. Subsequently, 12 genotypes were selected for further phenotyping in peat medium, where data on physiological and morphological parameters were recorded along with biochemical responses in four selected genotypes. In the germplasm survey, about 30% of genotypes showed tolerance to acidity and approximately 10% exhibited tolerance to Al3+, while 7% showed tolerance to both. The phenotyping experiment indicated diverse morphological and physiological responses among treatments and genotypes. Acid and Al3+ increased proline concentration. Interaction between genotype and environment was observed for ascorbate peroxidase activity, malondialdehyde, and proline concentrations. Genomic markers associated with acidity and acid+Al3+-toxicity tolerances were identified using GWAS analysis. Four faba bean genotypes with varying levels of tolerance to acidity and Al3+ toxicity were identified.


Assuntos
Alumínio , Genótipo , Fenótipo , Vicia faba , Vicia faba/genética , Vicia faba/efeitos dos fármacos , Vicia faba/crescimento & desenvolvimento , Vicia faba/metabolismo , Alumínio/toxicidade , Solo/química , Concentração de Íons de Hidrogênio , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Prolina/metabolismo , Adaptação Fisiológica/genética , Adaptação Fisiológica/efeitos dos fármacos , Ácidos/metabolismo
12.
PLoS One ; 19(6): e0304831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38923971

RESUMO

This study investigated the mitigating effects of spermidine on salinity-stressed yarrow plants (Achillea millefolium L.), an economically important medicinal crop. Plants were treated with four salinity levels (0, 30, 60, 90 mM NaCl) and three spermidine concentrations (0, 1.5, 3 µM). Salinity induced electrolyte leakage in a dose-dependent manner, increasing from 22% at 30 mM to 56% at 90 mM NaCl without spermidine. However, 1.5 µM spermidine significantly reduced leakage across salinities by 1.35-11.2% relative to untreated stressed plants. Photosynthetic pigments (chlorophyll a, b, carotenoids) also exhibited salinity- and spermidine-modulated responses. While salinity decreased chlorophyll a, both spermidine concentrations increased chlorophyll b and carotenoids under most saline conditions. Salinity and spermidine synergistically elevated osmoprotectants proline and total carbohydrates, with 3 µM spermidine augmenting proline and carbohydrates up to 14.4% and 13.1% at 90 mM NaCl, respectively. Antioxidant enzymes CAT, POD and APX displayed complex regulation influenced by treatment factors. Moreover, salinity stress and spermidine also influenced the expression of linalool and pinene synthetase genes, with the highest expression levels observed under 90 mM salt stress and the application of 3 µM spermidine. The findings provide valuable insights into the responses of yarrow plants to salinity stress and highlight the potential of spermidine in mitigating the adverse effects of salinity stress.


Assuntos
Achillea , Clorofila , Estresse Salino , Espermidina , Espermidina/farmacologia , Espermidina/metabolismo , Achillea/metabolismo , Achillea/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Carotenoides/metabolismo , Prolina/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Salinidade , Antioxidantes/metabolismo , Cloreto de Sódio/farmacologia , Clorofila A/metabolismo
13.
Sci Rep ; 14(1): 14714, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926419

RESUMO

Stevia rebaudiana (stevia) is a plant in the Asteraceae that contains several biologically active compounds including the antidiabetic diterpene glycosides (e.g. stevioside, rebaudioside and dulcoside) that can serve as zero-calorie sugar alternatives. In this study, an elicitation strategy was applied using 5% polyethylene glycol (PEG), sodium chloride (NaCl; 50 and 100 mM) and gibberellic acid (2.0 and 4.0 mg/L GA3) to investigate their effect on shoot morphogenesis, and the production of phenolics, flavonoids, total soluble sugars, proline and stevioside, as well as antioxidant activity, in shoot cultures of S. rebaudiana. Herewith, the media supplemented with 2 mg/L and 4 mg/L GA3 exhibited the highest shooting response (87% and 80%). The augmentation of lower concentrations of GA3 (2 mg/L) in combination with 6-benzylaminopurine (BAP) resulted in the maximum mean shoot length (11.1 cm). The addition of 100 mM NaCl salts to the media led to the highest observed total phenolics content (TPC; 4.11 mg/g-DW compared to the control 0.52 mg/g-DW), total flavonoids content (TFC; 1.26 mg/g-DW) and polyphenolics concentration (5.39 mg/g-DW) in shoots cultured. However, the maximum antioxidant activity (81.8%) was observed in shoots raised in media treated with 50 mM NaCl. The application of 2 mg/L of GA3 resulted in the highest accumulation of proline (0.99 µg/mL) as compared to controls (0.37 µg/mL). Maximum stevioside content (71 µL/mL) was observed in cultures supplemented with 100 mM NaCl and 5% PEG, followed by the 4 mg/L GA3 treatment (70 µL/mL) as compared to control (60 µL/mL). Positive correlation was observed between GA3 and stevioside content. Notably, these two compounds are derived from a shared biochemical pathway. These results suggest that elicitation is an effective option to enhance the accumulation of steviosides and other metabolites and provides the groundwork for future industrial scale production using bioreactors.


Assuntos
Antioxidantes , Diterpenos do Tipo Caurano , Giberelinas , Glucosídeos , Brotos de Planta , Stevia , Stevia/metabolismo , Stevia/crescimento & desenvolvimento , Stevia/efeitos dos fármacos , Diterpenos do Tipo Caurano/metabolismo , Glucosídeos/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Giberelinas/metabolismo , Antioxidantes/metabolismo , Metabolismo Secundário , Flavonoides/metabolismo , Flavonoides/análise , Fenóis/metabolismo , Cloreto de Sódio/farmacologia , Purinas/metabolismo , Prolina/metabolismo , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Compostos de Benzil
14.
Sci Rep ; 14(1): 14511, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914646

RESUMO

Flavonoids are crucial secondary metabolites that possess the ability to mitigate UV damage and withstand both biotic and abiotic stresses. Therefore, it is of immense significance to investigate the flavonoid content as a pivotal indicator for a comprehensive assessment of chestnut's drought tolerance. This study aimed to determine the flavonoid content and drought tolerance-related physiological and biochemical indices of six chestnut varieties (clones) grafted trees-Qianxi 42 (QX42), Qinglong 45 (QL45), Yanshanzaofeng (YSZF), Yanzi (YZ), Yanqiu (YQ), and Yanlong (YL)-under natural drought stress. The results were used to comprehensively analyze the drought tolerance ability of these varieties. The study revealed that the ranking of drought tolerance indices in terms of their ability to reflect drought tolerance was as follows: superoxide (oxide) dismutase (SOD) activity, ascorbate peroxidase (APX) activity, flavone content, catalase (CAT) activity, proline (PRO) content, soluble sugar content, peroxidase (POD) activity, betaine content, flavonol content, hydrogen peroxide (H2O2) content, soluble protein content, superoxide ion (OFR) content, superoxide (ion OFR) production rate, malondialdehyde (MDA) content, chlorophyll content. Through principal component analysis, the contents of flavonoids and flavonols can be used as indicators for comprehensive evaluation of drought tolerance of chestnut. The comprehensive evaluation order of drought tolerance of grafted trees of 6 chestnut varieties (Clones) was: QL45 > QX42 > YQ > YZ > YSZF > YL.


Assuntos
Secas , Flavonoides , Flavonoides/metabolismo , Estresse Fisiológico , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Prolina/metabolismo , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Fagaceae/fisiologia , Fagaceae/genética , Adaptação Fisiológica , Catalase/metabolismo , Ascorbato Peroxidases/metabolismo , Resistência à Seca , População do Leste Asiático
15.
Cells ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38920664

RESUMO

Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.


Assuntos
Hepacivirus , Poliaminas , Prolina , Ureia , Replicação Viral , Prolina/metabolismo , Humanos , Hepacivirus/fisiologia , Hepacivirus/efeitos dos fármacos , Poliaminas/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Replicação Viral/efeitos dos fármacos , Arginase/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , Linhagem Celular Tumoral , Prolina Oxidase/metabolismo
16.
J Chem Inf Model ; 64(13): 5207-5218, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38913174

RESUMO

Nirmatrelvir, a pivotal component of the oral antiviral Paxlovid for COVID-19, targets the SARS-CoV-2 main protease (Mpro) as a covalent inhibitor. Here, we employed combined computational methods to explore how the prevalent Omicron variant mutation P132H, alone and in combination with A173V (P132H-A173V), affects nirmatrelvir's efficacy. Our findings suggest that P132H enhances the noncovalent binding affinity of Mpro for nirmatrelvir, whereas P132H-A173V diminishes it. Although both mutants catalyze the rate-limiting step more efficiently than the wild-type (WT) Mpro, P132H slows the overall rate of covalent bond formation, whereas P132H-A173V accelerates it. Comprehensive analysis of noncovalent and covalent contributions to the overall binding free energy of the covalent complex suggests that P132H likely enhances Mpro sensitivity to nirmatrelvir, while P132H-A173V may confer resistance. Per-residue decompositions of the binding and activation free energies pinpoint key residues that significantly affect the binding affinity and reaction rates, revealing how the mutations modulate these effects. The mutation-induced conformational perturbations alter drug-protein local contact intensities and the electrostatic preorganization of the protein, affecting noncovalent binding affinity and the stability of key reaction states, respectively. Our findings inform the mechanisms of nirmatrelvir resistance and sensitivity, facilitating improved drug design and the detection of resistant strains.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Mutação , SARS-CoV-2 , SARS-CoV-2/enzimologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Antivirais/farmacologia , Antivirais/química , Humanos , Tratamento Farmacológico da COVID-19 , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Leucina/química , Termodinâmica , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/metabolismo , Ligação Proteica , Succinatos/química , Succinatos/farmacologia , Succinatos/metabolismo , Lactamas , Nitrilas , Prolina
17.
Plant Physiol Biochem ; 213: 108865, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936071

RESUMO

The emergence of microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant threats to soil ecosystems. Given the widespread contamination of ecosystems by various types of MPs, including polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE), it is crucial to understand their effects on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC, and PE) on various aspects of sunflower (Helianthus annuus L.) growth with the addition of rice straw biochar (RSB). This study aimed to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, cellular fractionation in the plants and post-harvest soil properties. The research outcomes indicated that elevated levels of different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. Different types of MPs also induced oxidative stress, which caused an increase in various enzymatic and non-enzymatic antioxidant compounds, gene expression and sugar content; notably, a significant increase in proline metabolism, AsA-GSH cycle, and pigmentation of cellular components was also observed. Favorably, the addition of RSB significantly increased plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and relevant gene expression while decreasing oxidative stress. In addition, RSB amendment decreased proline metabolism and AsA-GSH cycle in H. annuus plants, thereby enhancing cellular fractionation and improving post-harvest soil properties. These results open new avenues for sustainable agriculture practices and show great potential for resolving the urgent issues caused by microplastic contamination in agricultural soils.


Assuntos
Antioxidantes , Carvão Vegetal , Helianthus , Microplásticos , Oryza , Solo , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Antioxidantes/metabolismo , Carvão Vegetal/farmacologia , Helianthus/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Solo/química , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Biomassa , Metabolismo Secundário , Prolina/metabolismo
18.
Chem Pharm Bull (Tokyo) ; 72(6): 596-599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945948

RESUMO

Alkene dipeptide isosteres (ADIs) are promising surrogates of peptide bonds that enhance the bioactive peptide resistance to enzymatic hydrolysis in medicinal chemistry. In this study, we investigated the substitution effects of an ADI on the energy barrier of cis-trans isomerization in the acetyl proline methyl ester (Ac-Pro-OMe) model. The (E)-alkene-type proline analog, which favors a cis-amide conformation, exhibits a lower rotational barrier than native Ac-Pro-OMe. A van't Hoff analysis suggests that the energy barrier is primarily reduced by enthalpic repulsion. It was concluded that although carbon-carbon double bonds and pyrrolidine rings individually increase the rigidity of the incorporation site, their combination can provide structural flexibility and disrupt bioactive conformations. This work provides new insights into ADI-based drug design.


Assuntos
Alcenos , Dipeptídeos , Dipeptídeos/química , Alcenos/química , Prolina/química , Estrutura Molecular , Termodinâmica , Rotação
19.
Open Biol ; 14(6): 230418, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835240

RESUMO

Mutations in the protein superoxide dismutase-1 (SOD1) promote its misfolding and aggregation, ultimately causing familial forms of the debilitating neurodegenerative disease amyotrophic lateral sclerosis (ALS). Currently, over 220 (mostly missense) ALS-causing mutations in the SOD1 protein have been identified, indicating that common structural features are responsible for aggregation and toxicity. Using in silico tools, we predicted amyloidogenic regions in the ALS-associated SOD1-G85R mutant, finding seven regions throughout the structure. Introduction of proline residues into ß-strands II (I18P) or III (I35P) reduced the aggregation propensity and toxicity of SOD1-G85R in cells, significantly more so than proline mutations in other amyloidogenic regions. The I18P and I35P mutations also reduced the capability of SOD1-G85R to template onto previously formed non-proline mutant SOD1 aggregates as measured by fluorescence recovery after photobleaching. Finally, we found that, while the I18P and I35P mutants are less structurally stable than SOD1-G85R, the proline mutants are less aggregation-prone during proteasome inhibition, and less toxic to cells overall. Our research highlights the importance of a previously underappreciated SOD1 amyloidogenic region in ß-strand II (15QGIINF20) to the aggregation and toxicity of SOD1 in ALS mutants, and suggests that ß-strands II and III may be good targets for the development of SOD1-associated ALS therapies.


Assuntos
Esclerose Lateral Amiotrófica , Agregados Proteicos , Superóxido Dismutase-1 , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/química , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Mutação , Conformação Proteica em Folha beta , Modelos Moleculares , Prolina/metabolismo , Amiloide/metabolismo , Amiloide/química , Dobramento de Proteína
20.
Org Lett ; 26(23): 5021-5026, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38842216

RESUMO

We describe a simple and robust oxidation strategy for preparing N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. We find for the first time that l-thioproline can be used as a protective agent to prevent the nitrosation of N-terminal thiazolidine during peptide hydrazide oxidation. The thioproline-based oxidation strategy has been successfully applied to the chemical synthesis of CC chemokine ligand-2 (69aa) and omniligase-C (113aa), thereby demonstrating its utility in hydrazide-based native chemical ligation.


Assuntos
Oxirredução , Peptídeos , Tiazolidinas , Tiazolidinas/química , Tiazolidinas/síntese química , Estrutura Molecular , Peptídeos/química , Peptídeos/síntese química , Hidrazinas/química , Prolina/química , Ésteres/química , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA