Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Dev Biol ; 469: 46-53, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065118

RESUMO

Ciliopathies affect a variety of tissues during development including the heart, kidneys, respiratory tract, and retina. Though an increasing number of monogenic causes of ciliopathies have been described, many remain unexplained. Recently, recessive variants in NUP93 and NUP205 encoding two proteins of the inner ring of the nuclear pore complex were implicated as causes of steroid resistant nephrotic syndrome. In addition, we previously found that the inner ring nucleoporins NUP93 and NUP188 function in proper left-right patterning in developing embryos via a role at the cilium. Here, we describe the role of an additional inner ring nucleoporin NUP205 in cilia biology and establishment of normal organ situs. Using knockdown in Xenopus, we show that Nup205 depletion results in loss of cilia and abnormal cardiac morphology. Furthermore, by transmission electron microscopy, we observe a loss of cilia and mispositioning of intracellular ciliary structures such as basal bodies and rootlets upon depleting inner ring nucleoporins. We describe a model wherein NUP93 interacting with either NUP188 or NUP205 is necessary for cilia. We thus provide evidence that dysregulation of inner ring nucleoporin genes that have been identified in patients may contribute to pathogenesis through cilia dysfunction.


Assuntos
Cílios/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Padronização Corporal , Cílios/ultraestrutura , Epiderme/embriologia , Epiderme/ultraestrutura , Técnicas de Silenciamento de Genes , Cardiopatias Congênitas/genética , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Pronefro/ultraestrutura , Xenopus/embriologia , Proteínas de Xenopus/genética
2.
Dis Model Mech ; 9(8): 873-84, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491085

RESUMO

Patients with von Hippel-Lindau (VHL) disease harbor a germline mutation in the VHL gene leading to the development of several tumor types including clear cell renal cell carcinoma (ccRCC). In addition, the VHL gene is inactivated in over 90% of sporadic ccRCC cases. 'Clear cell' tumors contain large, proliferating cells with 'clear cytoplasm', and a reduced number of cilia. VHL inactivation leads to the stabilization of hypoxia inducible factors 1a and 2a [HIF1a and HIF2a (HIF2a is also known as EPAS1)] with consequent up-regulation of specific target genes involved in cell proliferation, angiogenesis and erythropoiesis. A zebrafish model with a homozygous inactivation in the VHL gene (vhl(-/-)) recapitulates several aspects of the human disease, including development of highly vascular lesions in the brain and the retina and erythrocytosis. Here, we characterize for the first time the epithelial abnormalities present in the kidney of the vhl(-/-) zebrafish larvae as a first step in building a model of ccRCC in zebrafish. Our data show that the vhl(-/-) zebrafish kidney is characterized by an increased tubule diameter, disorganized cilia, the dramatic formation of cytoplasmic lipid vesicles, glycogen accumulation, aberrant cell proliferation and abnormal apoptosis. This phenotype of the vhl(-/-) pronephros is reminiscent of clear cell histology, indicating that the vhl(-/-) mutant zebrafish might serve as a model of early stage RCC. Treatment of vhl(-/-) zebrafish embryos with a small-molecule HIF2a inhibitor rescued the pronephric abnormalities, underscoring the value of the zebrafish model in drug discovery for treatment of VHL disease and ccRCC.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Pronefro/metabolismo , Pronefro/patologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Proliferação de Células , Vesículas Citoplasmáticas/metabolismo , Desenvolvimento Embrionário , Glicogênio/metabolismo , Humanos , Neoplasias Renais/metabolismo , Túbulos Renais/embriologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Túbulos Renais/ultraestrutura , Larva/metabolismo , Estadiamento de Neoplasias , Fenótipo , Pronefro/embriologia , Pronefro/ultraestrutura
3.
J Morphol ; 277(8): 1104-12, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185367

RESUMO

The zebrafish pronephros is a valuable model for studying kidney development and diseases. Ultrastructural studies have revealed that zebrafish and mammals share similarities in nephron structures such as podocytes, slit diaphragms, glomerular basement membrane, and endothelium. However, the basic ultrastructural features of the pronephric glomerulus during glomerulogenesis have not been characterized. To understand these features, it is instructive to consider the developmental process of the pronephros glomerulus. Here, we describe the ultrastructural features of pronephric glomerulus in detail from 24 h hours post-fertilization (hpf) to 144 hpf, the period during which the pronephric glomerulus develops from initiation to its mature morphology. The pronephric glomerulus underwent progressive morphogenesis from 24 to 72 hpf, and presumptive glomerular cells were observed ventral to the aorta region at 24 hpf. The nascent glomerular basement membrane and initial lumen were formed at 36 hpf. A lumen was clearly visible in the region of the pronephros at 48 hpf. At 60 hpf, the pronephric glomerulus contained more patches of capillaries. After these transformations, the complex capillary vessel networks had formed inside the glomerulus, which was surrounded by podocyte bodies with elaborate foot processes as well as well-formed glomerular basement membrane by 72 hpf. The number of renal glomerular cells rapidly increased, and the glomerulus presented its delicate structural features by 96 hpf. Morphogenesis was completed at 120 hpf with the final formation of the pronephric glomerulus. J. Morphol. 277:1104-1112, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Glomérulos Renais/embriologia , Glomérulos Renais/ultraestrutura , Pronefro/embriologia , Pronefro/ultraestrutura , Peixe-Zebra/embriologia , Animais , Diferenciação Celular , Embrião não Mamífero/ultraestrutura , Fertilização , Barreira de Filtração Glomerular , Morfogênese , Podócitos/citologia , Podócitos/ultraestrutura
4.
Dev Biol ; 376(1): 31-42, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23352791

RESUMO

In the kidney, proximal tubules are very important for the reabsorption of water, ions and organic solutes from the primary urine. They are composed of highly specialized epithelial cells that are characterized by an elaborate apical brush border to increase transport efficiency. Using the pronephric kidney of Xenopus laevis we discovered that the G-protein modulator cholera toxin resulted in a dramatic reduction of the proximal tubular size. This phenotype was accompanied by changes in the cytoarchitecture characterized by ectopic expression of the distal tubular marker 4A6 and an impairment of yolk platelet degradation. In addition, cholera toxin caused edema formation. However, this phenotype was not due to kidney defects, but rather due to impaired vasculature development. Based on experiments with antisense morpholino oligomers as well as pharmacological agonists and antagonists, we could show that the complex phenotype of cholera toxin in the pronephric kidney was caused by the hyperactivation of a single G-protein alpha subunit, Gnas. This-in turn-caused elevated cAMP levels, triggered a Rapgef4-dependent signaling cassette and perturbed exo- and endocytosis. This perturbation of the secretory pathway by Ctx was not only observed in Xenopus embryos. Also, in a human proximal tubular cell line, cholera toxin or a Rapgef4-specific agonist increased uptake and decreased secretion of FITC-labeled Albumin. Based on these data we propose that the Gnas/cAMP/Rapgef4 pathway regulates the signals inducing the proliferation of proximal tubules to acquire their final organ size.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Túbulos Renais Proximais/embriologia , Pronefro/embriologia , Transdução de Sinais/fisiologia , Xenopus laevis/embriologia , Albuminas , Animais , Linhagem Celular , Toxina da Cólera/farmacologia , AMP Cíclico/metabolismo , Primers do DNA/genética , Fluoresceína-5-Isotiocianato , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Técnicas Histológicas , Humanos , Imuno-Histoquímica , Hibridização In Situ , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Microscopia Eletrônica de Transmissão , Pronefro/metabolismo , Pronefro/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA