RESUMO
Background: Recent studies show e-cigarette (EC) users have increased rates of chronic bronchitic symptoms that may be associated with depressed mucociliary clearance (MCC). Little is known about the acute or chronic effects of EC inhalation on in vivo MCC. Methods: In vivo MCC was measured in young adult vapers (n = 5 males, mean age = 21) after controlled inhalation of a radiolabeled (Tc99m sulfur colloid) aerosol. Whole-lung clearance of radiolabeled deposited particles was measured over a 90-minute period for baseline MCC and associated with controlled periodic vaping over the first 60 minutes of MCC measurements. The vaping challenge was administered from a fourth generation box mod EC containing unflavored e-liquid (65% propylene glycol/35% vegetable glycerin, 3 mg/mL freebase nicotine). The challenge was administered at the start of each 10-minute interval of MCC measurements and consisted of 1 puff every 30 seconds for 5 minutes (i.e., 10 puffs for each 10-minute period for a total of 60 puffs during the initial 60 minutes of MCC measurements). Results: Compared with baseline, peripheral lung average clearance (%) over the 90 minutes of MCC measures was enhanced, associated with EC challenge, 12 (±6) versus 24 (±6), respectively (p < 0.05 by Wilcoxon signed-rank test). Conclusions: Acute enhancement of in vivo MCC during EC challenge is contrary to recent studies showing nicotine-associated slowing of ciliary beat and mucus transport at higher nicotine levels than those used here. However, our findings are consistent with an acute increase in fluid volume and mucin secretion to the bronchial airway surface that is likely short lived. Research reported in this publication was supported by the National Institutes of Health R01HL139369 and registered with ClinicalTrials.gov (NCT03700892).
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Pulmão , Depuração Mucociliar , Nicotina , Vaping , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Administração por Inalação , Aerossóis , Glicerol/administração & dosagem , Pulmão/metabolismo , Pulmão/fisiopatologia , Depuração Mucociliar/efeitos dos fármacos , Nicotina/administração & dosagem , Nicotina/farmacocinética , Nicotina/efeitos adversos , Propilenoglicol/administração & dosagem , Coloide de Enxofre Marcado com Tecnécio Tc 99m/administração & dosagem , Fatores de Tempo , Vaping/efeitos adversosRESUMO
INTRODUCTION: Recently, electric cigarettes with liquid (e-liquid) were introduced as an alternative to tobacco smoking. They were promoted as possible cessation aids and were considered to be potentially less harmful than traditional tobacco-based cigarettes. However, there is little information on the toxicants present in e-liquids and their possible carcinogenic effects. METHODS: Western blot analysis was performed to identify the protein levels of cancer progression related signal transducers. Patient-derived brain tumor cells (CSC2) were injected into mouse brains and tumor growth was then observed by performing magnetic resonance imaging (MRI) and hematoxylin and eosin (H&E) staining of the whole brain. Immunohistochemistry (IHC) staining and Immunofluorescence staining were performed to study the expression of pEGFR and pERK. RESULTS: Western blotting revealed that e-liquids increased pEGFR and pERK expression in a dose dependent manner. Animal experiments revealed that the e-liquid treated group had accelerated tumor growth and poor prognosis compared to the vehicle group. Histological staining showed activation of pEGFR and pERK in the e-liquid treated group. CONCLUSION: Our study revealed that e-liquid activates pEGFR and pERK, leading to accelerated brain tumor growth and poor prognosis.
Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Nicotina/administração & dosagem , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fumar Cigarros/metabolismo , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Feminino , Glioblastoma/patologia , Xenoenxertos/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias/métodos , Fosforilação/efeitos dos fármacos , Prognóstico , Propilenoglicol/administração & dosagem , Soluções , Solventes/administração & dosagem , Carga Tumoral/efeitos dos fármacosRESUMO
Pregnancy toxemia is the most frequent metabolic disorder of ewes in late pregnancy. Although propylene glycol (PG) and glycerol (GLY) are common glucogenic supplements for treating pregnancy toxemia in ewes, the relative benefit of these 2 supplements is not entirely clear. Therefore, the objectives of the present study were to determine the changes during 24 h in key blood metabolites and insulin in response to PG or GLY drenching in prolific ewes. To this end, 36 multiparous late-pregnant Afec-Assaf ewes (â¼132.4 d pregnant) bearing 2 to 4 fetuses, divided into 2 blocks (18 ewes in each block), with a blood ß-hydroxybutyrate (BHB) concentration of 0.5 to 1.6 mmol/L were included. Ewes were divided into 3 groups (12 ewes each; 6 ewes in each experimental day), according to their BHB levels, expected litter size, body weight, and body condition score, and were drenched with the following: (1) control group (CTL), 55 mL of water; (2) PG, 106 mL of PG (100% PG, 448 calories); or (3) GLY, 108 mL of Koforin 80 (80% GL; 448 calories). Blood samples were taken before drenching and every hour after drenching for 24 h. Plasma concentration of glucose, BHB, nonesterified fatty acids, lactate, glycerol, and insulin were determined. Because there were no effects of treatments after 12 h in the first block, the data were analyzed for 12 h after drenching rather than 24 h. The plasma glucose concentration during the first 5 h after drenching was the highest in the GLY, BHB concentration was the lowest in the PG, and the nonesterified fatty acid levels were lower in the PG compared with the CTL ewes during the first 5 h after drenching. However, glucose concentration was higher in the PG ewes at 9, 11, and 12 h after drenching than in CTL or GLY ewes. The mean lactate concentration in plasma for 12 h was 2.5- and 1.9-fold higher in the PG compared with the CTL and GLY ewes, respectively, and except at 11 h after drenching, it was significantly higher at each time point. The insulin concentration was higher in the GLY than in both other groups at 2 to 5 h after drenching. These results suggest that during the first few hours after drenching the effect of PG was more effective in reducing the BHB concentration, whereas the GLY effect was more effective in enhancing glucose concentration. The increased concentration in lactate following PG treatment suggests that the PG contribution to gluconeogenesis is mediated through its metabolism to lactate. In contrast, the lack of an effect on lactate, and the faster increase in blood glucose in response to GLY suggest that GLY has a more advanced entry point to gluconeogenesis, which influences the immediate response in enhancing the glucose blood concentration.
Assuntos
Ácido 3-Hidroxibutírico/sangue , Glicemia/análise , Glicerol/administração & dosagem , Propilenoglicol/administração & dosagem , Ovinos/sangue , Animais , Suplementos Nutricionais , Ácidos Graxos não Esterificados/sangue , Feminino , Idade Gestacional , Gluconeogênese/efeitos dos fármacos , Glicerol/sangue , Insulina/sangue , Lactação/efeitos dos fármacos , Ácido Láctico/sangue , Pré-Eclâmpsia/prevenção & controle , Pré-Eclâmpsia/veterinária , Gravidez , Doenças dos Ovinos/prevenção & controleRESUMO
The use of electronic nicotine delivery systems (ENDS), also known as electronic-cigarettes (e-cigs), has raised serious public health concerns, especially in light of the 2019 outbreak of e-cig or vaping product use-associated acute lung injury (EVALI). While these cases have mostly been linked to ENDS that contain vitamin E acetate, there is limited research that has focused on the chronic pulmonary effects of the delivery vehicles (i.e., without nicotine and flavoring). Thus, we investigated lung function and immune responses in a mouse model following exposure to the nearly ubiquitous e-cig delivery vehicles, vegetable glycerin (VG) and propylene glycol (PG), used with a specific 70%/30% ratio, with or without vanilla flavoring. We hypothesized that mice exposed sub-acutely to these e-cig aerosols would exhibit lung inflammation and altered lung function. Adult female C57BL/6 mice (n = 11-12 per group) were exposed to filtered air, 70%/30% VG/PG, or 70%/30% VG/PG with a French vanilla flavoring for 2 h a day for 6 weeks. Prior to sacrifice, lung function was assessed. At sacrifice, broncho-alveolar lavage fluid and lung tissue were collected for lipid mediator analysis, flow cytometry, histopathology, and gene expression analyses. Exposures to VG/PG + vanilla e-cig aerosol increased lung tidal and minute volumes and tissue damping. Immunophenotyping of lung immune cells revealed an increased number of dendritic cells, CD4+ T cells, and CD19+ B cells in the VG/PG-exposed group compared to air, irrespective of the presence of vanilla flavoring. Quantification of bioactive lung lipids demonstrated a >3-fold increase of 2-arachidonoylglycerol (2-AG), an anti-inflammatory mediator, and a 2-fold increase of 12-hydroxyeicosatetraenoic acid (12-HETE), another inflammatory mediator, following VG/PG exposure, with or without vanilla flavoring. This suggests that e-cig aerosol vehicles may affect immunoregulatory molecules. We also found that the two e-cig aerosols dysregulated the expression of lung genes. Ingenuity Pathway Analysis revealed that the gene networks that are dysregulated by the VG/PG e-cig aerosol are associated with metabolism of cellular proteins and lipids. Overall, our findings demonstrate that VG and PG, the main constituents of e-liquid formulations, when aerosolized through an e-cig device, are not harmless to the lungs, since they disrupt immune homeostasis.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica/efeitos dos fármacos , Glicerol/administração & dosagem , Glicerol/toxicidade , Imunoglobulinas/metabolismo , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pneumonia/fisiopatologia , Propilenoglicol/administração & dosagem , Propilenoglicol/toxicidade , Testes de Função RespiratóriaRESUMO
BACKGROUND: The objective of this study was to investigate the metabolic and osmotic effects of different doses of glycerol or a glycerol - propylene glycol mixture in Sarda sheep with the aim to identify those able to beneficially modify ewe's metabolic status without harmful changes in red blood cell (RBC) indices. Thereafter, the selected doses were tested for their effects on ewe's ovarian activity during an induced follicular phase and compared to the effects of a hormonal treatment with equine chorionic gonadotrophin (eCG). RESULTS: Glycerol was administered alone (G groups: 90% glycerol and 10% water; % v/v) or in combination with propylene glycol (M groups: 70% glycerol, 20% propylene glycol, 10% water; % v/v). Treatments were formulated to provide 100, 75, 50 and 25% of the amount of energy supplied in previous experiments. Obtained results showed that the formulations G75 and M75 (22.5 and 18.2% on DM basis, respectively) induce metabolic changes comparable to those induced by M100. The latter dose has been already evaluated for its effects on sheep metabolism and reproductive performance. However, with these high doses, plasma osmolality increased significantly, and RBC indices showed significant alterations. The low dose groups (G25 and M25, 8.6 and 6.9% on DM basis, respectively) did not show any alterations in plasma osmolality and RBC indices, but the metabolic milieu differed markedly from that of M100. Between the medium dose groups, M50 (12.9% on DM basis) showed a more comparable milieu to M100 than G50 (15.9% on DM basis) and no RBC alterations. Therefore, M75, G75 and M50 doses were tested for their effect on ovarian functions and proved to be equally effective as eCG. CONCLUSION: The results of the present study evidenced an alteration of RBC indices, and possibly of their functions, as a side effect of glycerol administration at high doses in the diet of ewes. Therefore, protocols foreseeing the administration of glycerol should be tested for their effects on RBC indices and functions. In general terms, the medium dose of the glucogenic mixture (12.9% of dietary DM on offer) should be preferred.
Assuntos
Glicerol/farmacologia , Ovulação/efeitos dos fármacos , Propilenoglicol/farmacologia , Carneiro Doméstico/fisiologia , Administração Oral , Fenômenos Fisiológicos da Nutrição Animal , Animais , Suplementos Nutricionais , Eritrócitos/efeitos dos fármacos , Feminino , Glicerol/administração & dosagem , Gonadotropinas Equinas/farmacologia , Propilenoglicol/administração & dosagemRESUMO
Spotted wolffish Anarhichas minor reproduction in captivity is dependent on in vitro fertilization. However, low sperm volume with relatively low cell concentration and the lack of gametes synchronization (simultaneous availability of mature eggs and sperm) represent a challenge for the industry. Thus, the development of protocols for sperm storage are crucial. Four sequential experiments were conducted to optimize a sperm cryopreservation protocol for this species. First, three different cryoprotectants (DMSO; 1, 2-propanediol; and methanol) at different concentrations (5, 10, and 20%) were tested for their toxicity. No significant differences (p > 0.05) were detected between the control samples and cryoprotectants at concentration up to 10% DMSO, 10% propanediol, and 20% methanol in terms of motility parameters. Second, using the highest non-toxic concentrations of cryoprotectants, sperm was cryopreserved in 0.5 mL straws, at different distances from the liquid nitrogen (1.5, 2.5, 4.5, and 7.5 cm) that correspond to different freezing rates. Motility parameters after freezing/thawing decreased for all the cryoprotectants (p < 0.001), however, methanol had the lowest protective capacity while DMSO the highest. Afterwards, two different thawing rates (1 min at 5 °C; and 25 s at 10 °C) were tested using only 10% DMSO and 10% propanediol. Both for the DMSO and propanediol, there were no significant differences (p > 0.05) between the two thawing rates. The best results were obtained using 10% DMSO. Finally, the fertilization capacity of cryopreserved sperm (10% DMSO and thawed at 5 °C for 1 min) was tested against fresh sperm using two spermatozoa:egg ratios and 4 h gametes contact time. The ratio of eggs with normal cell cleavage, abnormal cleavage or undeveloped were counted at the 2-4 cell stage. Cryopreserved sperm showed lower fertilization capacity at a concentration of 5 × 104 spermatozoa:egg compared with fresh sperm (p < 0.001). At a concentration of 5 × 105 spermatozoa:egg, similar fertilizations rates to the fresh sperm were obtained. The presence of the cryoprotectant DMSO during the 4 h contact time did not affect the fertilization rate or the percentage of embryos with abnormal cleavage (p > 0.05). To cryopreserve spotted wolffish sperm it is recommended to use 10% DMSO, loaded in 0.5 mL straws, freeze at a height between 4.5 (-14.05 °C/min) and 7.5 cm (-5.9 °C/min) from liquid nitrogen for 10 min and thaw for 1 min at 5 °C (177.9 °C/min). In vitro fertilization with cryopreserved sperm should be performed with a concentration of at least 5 × 105 spermatozoa per egg.
Assuntos
Criopreservação/veterinária , Crioprotetores/administração & dosagem , Perciformes/fisiologia , Preservação do Sêmen/veterinária , Espermatozoides/fisiologia , Animais , Criopreservação/instrumentação , Criopreservação/métodos , Crioprotetores/toxicidade , Dimetil Sulfóxido/administração & dosagem , Fertilização in vitro/métodos , Fertilização in vitro/veterinária , Masculino , Metanol/administração & dosagem , Propilenoglicol/administração & dosagem , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/efeitos dos fármacosAssuntos
Administração por Inalação , Nebulizadores e Vaporizadores , Pediatria/história , Transtornos Respiratórios/história , Aerossóis , Asma/terapia , Broncodilatadores/administração & dosagem , Criança , Fibrose Cística/terapia , Epiglotite/terapia , História do Século XX , História do Século XXI , Humanos , Laringite/terapia , Cooperação do Paciente , Pediatria/tendências , Propilenoglicol/administração & dosagem , Transtornos Respiratórios/terapia , Infecções Respiratórias/terapia , Cloreto de Sódio/administração & dosagem , Esteroides/administração & dosagem , Traqueíte/terapiaRESUMO
This study aims to develop in situ microemulsion-gel (ME-Gel) obtained from hydroxypropyl methylcellulose (HPMC) films for transdermal administration of Zidovudine (AZT). Firstly, HPMC films containing propylene glycol (PG) and eucalyptus oil (EO) were obtained and characterized. Later, a pseudo-ternary phase diagram composed of water, EO, tween 80 and PG was obtained and one microemulsion (ME) with a similar proportion of the film components was obtained. ME was transformed in ME-Gel by the incorporation of HPMC. Finally, HPMC films were hydrated with Tween 80 solution to yield in situ ME-Gel and its effect on AZT skin permeation was compared with HPMC film hydrated with water (F5hyd). The results showed that the ME and ME-Gel presented a droplet size of 16.79 and 122.13⯵m, respectively, polydispersity index (PDI) < 0.39 and pH between 5.10 and 5.40. The incorporation of HPMC resulted in viscosity about 2 times higher than the use of ME. The presence of AZT did not alter the formulation properties. The in situ ME-Gel promoted a two-fold increase in the permeated amount of AZT compared to F5hyd. The results suggest that it was possible to obtain an ME-Gel in situ from HPMC films and that its effect on transdermal permeation of AZT was significant.
Assuntos
Metilcelulose/química , Pró-Fármacos/química , Zidovudina/química , Administração Cutânea , Animais , Emulsões/administração & dosagem , Emulsões/química , Emulsões/metabolismo , Óleo de Eucalipto/administração & dosagem , Óleo de Eucalipto/química , Óleo de Eucalipto/metabolismo , Géis/administração & dosagem , Géis/química , Géis/metabolismo , Masculino , Metilcelulose/administração & dosagem , Metilcelulose/metabolismo , Tamanho da Partícula , Pró-Fármacos/administração & dosagem , Pró-Fármacos/metabolismo , Propilenoglicol/administração & dosagem , Propilenoglicol/química , Propilenoglicol/metabolismo , Ratos , Ratos Wistar , Pele/química , Pele/metabolismo , Absorção Cutânea , Propriedades de Superfície , Zidovudina/administração & dosagem , Zidovudina/metabolismoRESUMO
INTRODUCTION: Suprarenal aortic cross clamping (SRACC) and reperfusion may cause acute pulmonary hypertension and multiple organ failure. HYPOTHESIS: The organic mononitrites of 1,2-propanediol (PDNO), an nitric oxide donor with a very short half-life, are a more efficient pulmonary vasodilator and attenuator of end-organ damage and inflammation without significant side effects compared with nitroglycerin and inorganic nitrite in a porcine SRACC model. METHODS: Anesthetized and instrumented domestic pigs were randomized to either of four IV infusions until the end of the experiment (nâ=â10 per group): saline (control), PDNO (45 nmol kg min), nitroglycerin (44 nmol kg min), or inorganic nitrite (a dose corresponding to PDNO). Thereafter, all animals were subjected to 90 min of SRACC and 10âh of reperfusion and protocolized resuscitation. Hemodynamic and respiratory variables as well as blood samples were collected and analysed. RESULTS: During reperfusion, mean pulmonary arterial pressure and pulmonary vascular resistance were significantly lower, and stroke volume was significantly higher in the PDNO group compared with the control, nitroglycerin, and inorganic nitrite groups. In parallel, mean arterial pressure, arterial oxygenation, and fraction of methaemoglobin were similar in all groups. The serum concentration of creatinine and tumor necrosis factor alpha were lower in the PDNO group compared with the control group during reperfusion. CONCLUSIONS: PDNO was an effective pulmonary vasodilator and appeared superior to nitroglycerin and inorganic nitrite, without causing significant systemic hypotension, impaired arterial oxygenation, or methaemoglobin formation in an animal model of SRACC and reperfusion. Also, PDNO may have kidney-protective effects and anti-inflammatory properties.
Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Nitroglicerina/farmacologia , Propilenoglicóis/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Hipertensão Pulmonar/fisiopatologia , Infusões Intravenosas , Masculino , Nitritos/administração & dosagem , Nitritos/farmacologia , Nitroglicerina/administração & dosagem , Propilenoglicol/administração & dosagem , Propilenoglicol/farmacologia , Propilenoglicóis/administração & dosagem , SuínosRESUMO
Electronic cigarette (e-cig) use is continuing to increase, particularly among youth never-smokers, and is used by some smokers to quit. The acute and chronic toxicity of e-cig use is unclear generally in the context of increasing reports of inflammatory-type pneumonia in some e-cig users. To assess lung effects of e-cigs without nicotine or flavors, we conducted a pilot study with serial bronchoscopies over 4 weeks in 30 never-smokers, randomized either to a 4-week intervention with the use of e-cigs containing only 50% propylene glycol (PG) and 50% vegetable glycerine or to a no-use control group. Compliance to the e-cig intervention was assessed by participants sending daily puff counts and by urinary PG. Inflammatory cell counts and cytokines were determined in bronchoalveolar lavage (BAL) fluids. Genome-wide expression, miRNA, and mRNA were determined from bronchial epithelial cells. There were no significant differences in changes of BAL inflammatory cell counts or cytokines between baseline and follow-up, comparing the control and e-cig groups. However, in the intervention but not the control group, change in urinary PG as a marker of e-cig use and inhalation was significantly correlated with change in cell counts (cell concentrations, macrophages, and lymphocytes) and cytokines (IL8, IL13, and TNFα), although the absolute magnitude of changes was small. There were no significant changes in mRNA or miRNA gene expression. Although limited by study size and duration, this is the first experimental demonstration of an impact of e-cig use on inflammation in the human lung among never-smokers.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Glicerol/efeitos adversos , Pulmão/efeitos dos fármacos , Propilenoglicol/efeitos adversos , Administração por Inalação , Adulto , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Broncoscopia , Estudos Transversais , Citocinas/genética , Citocinas/imunologia , Ex-Fumantes , Feminino , Perfilação da Expressão Gênica , Glicerol/administração & dosagem , Humanos , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Masculino , não Fumantes , Projetos Piloto , Propilenoglicol/administração & dosagem , Propilenoglicol/urina , Fumantes , Fumar/efeitos adversos , Fumar/terapia , Fumar/urina , Abandono do Hábito de Fumar/métodos , Adulto JovemRESUMO
The hypothesis for the investigation was that the overall mechanism of action of skin penetration enhancers is best explained by the Solubility-Physicochemical-Thermodynamic (SPT) theory. To our knowledge, this is the first report of the application of SPT theory in transdermal/topical/enhancer research. The SPT theory puts forward the concept that the mode of action of enhancers is related to solubility parameters, physicochemical interactions and thermodynamic activity. This paper discusses these concepts by using experimentally derived permeation data, various physicochemical and solubility parameters (ingredient active gap (IAG), ingredient skin gap (ISG), solubility of active in the formulation (SolV) and the formulation solubility in the skin (SolS)) generated by using FFE (Formulating for Efficacy™ - ACT Solutions Corp) software. These studies suggest that there is an inverse relationship between measured flux and IAG values given that there is an optimum ingredient skin gap, SolV and SolS ratio. The study demonstrated that the flux is actually proportional to a gradient of thermodynamic activity rather than the concentration and maximum skin penetration and deposition can be achieved when the drug is at its highest thermodynamic activity.
Assuntos
Benzoquinonas/administração & dosagem , Excipientes/administração & dosagem , Nicotina/administração & dosagem , Absorção Cutânea , Administração Cutânea , Azepinas/administração & dosagem , Azepinas/química , Benzoquinonas/química , Eucaliptol/administração & dosagem , Eucaliptol/química , Excipientes/química , Humanos , Técnicas In Vitro , Modelos Teóricos , Nicotina/química , Ácido Oleico/administração & dosagem , Ácido Oleico/química , Polissorbatos/administração & dosagem , Polissorbatos/química , Propilenoglicol/administração & dosagem , Propilenoglicol/química , Pirrolidinonas/administração & dosagem , Pirrolidinonas/química , Pele/metabolismo , Software , Solubilidade , TermodinâmicaRESUMO
Electronic cigarette uses propylene glycol and glycerol to deliver nicotine and flavors to the lungs. Given the hundreds of different brands, the thousands of flavors available and the variations in nicotine concentrations, it is likely that electronic cigarette settings and e-liquid composition affect the size distribution of particles emitted and ultimately pulmonary deposition. We used the inExpose e-cigarette extension to study two separate modes of operation of electronic cigarettes, namely power-controlled and the temperature-controlled. We also assessed several e-liquids based on propylene glycol and glycerol concentrations, nicotine content, and selected monomolecular flavoring agents (menthol, vanillin, and maltol). Particle size distribution was measured using a Condensation Particle Counter and a Scanning Mobility Particle Sizer spectrometer. Lung deposition was predicted using the International Commission on Radiological Protection model. For all resistance coils, increase in power delivery generated larger particles while maintaining a higher coil temperature generated smaller particles. Increase in glycerol concentration led to the generation of larger particles. With regard to flavors, we showed that despite minor effect of menthol and maltol, vanillin dramatically increased particle size. Presence of nicotine also increased particle size. Finally, particles emitted by the electronic cigarette were predicted to mainly deposit in the alveoli and conditions generating larger particle sizes led to a reduction in predicted lung deposition. This study shows that coil temperature, propylene glycol and glycerol concentrations, presence of nicotine, and flavors affect the size of particles emitted by an electronic cigarette, directly affecting predicted lung deposition of these particles.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Pulmão/metabolismo , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Temperatura , Vaping , Administração por Inalação , Aerossóis , Desenho de Equipamento , Aromatizantes/administração & dosagem , Aromatizantes/química , Aromatizantes/metabolismo , Glicerol/administração & dosagem , Glicerol/química , Glicerol/metabolismo , Humanos , Modelos Biológicos , Nicotina/química , Nicotina/metabolismo , Agonistas Nicotínicos/química , Agonistas Nicotínicos/metabolismo , Tamanho da Partícula , Propilenoglicol/administração & dosagem , Propilenoglicol/química , Propilenoglicol/metabolismoRESUMO
BACKGROUND: Concern about intoxication by e-liquid is growing as calls to poison control centers have increased since their introduction. Only three cases of intoxication by injection have been reported worldwide. Our case is unique because of the precise follow-up of a patient who survived a lethal dose of self-injected e-liquid, without other co-intoxication. CASE PRESENTATION: A 51-year-old male presented to the Emergency Department after injecting himself intravenously (IV) in the forearm with 10 mL of e-liquid (1000 mg of nicotine diluted in propylene glycol). An agitation phase was followed by coma and bradypnoea requiring mechanical ventilation. The patient developed a transitory neurological impairment with the appearance of tetraparesis, gaze palsy and myoclonus due to nicotinic syndrome. The arterial blood gas (ABG) analysis confirmed uncompensated lactic acidosis with an elevated anion gap, which is an expected effect of propylene glycol. The toxicology screen indicated the presence of nicotine and cotinine in the blood and excluded the presence of concomitant intoxication. The patient recovered without sequelae. CONCLUSION: Even a small quantity of intravenous (IV) e-liquid can lead to an acute intoxication and fatal outcomes due to the toxic effects of nicotine. This case might help emergency doctors cope with acute intoxication by injection of e-liquid and increase their comprehension of the two main substances, nicotine and propylene glycol with overview of their pharmacodynamics and kinetic effects.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina/toxicidade , Propilenoglicol/toxicidade , Humanos , Injeções Intravenosas , Masculino , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Propilenoglicol/administração & dosagemRESUMO
The study of e-cigarette aerosol properties can inform public health while longer-term epidemiological investigations are ongoing. The determination of aerosol levels of known toxins, as well as of molecules with unknown inhalation toxicity profiles, affords specific information for estimating the risks of e-cigarettes and for uncovering areas that should be prioritized for further investigation.
Assuntos
Aerossóis/análise , Sistemas Eletrônicos de Liberação de Nicotina , Nicotina/análise , Aerossóis/administração & dosagem , Aerossóis/efeitos adversos , Técnicas de Química Analítica/métodos , Aromatizantes/administração & dosagem , Aromatizantes/efeitos adversos , Aromatizantes/análise , Glicerol/administração & dosagem , Glicerol/efeitos adversos , Glicerol/análise , Humanos , Nicotina/administração & dosagem , Nicotina/efeitos adversos , Propilenoglicol/administração & dosagem , Propilenoglicol/efeitos adversos , Propilenoglicol/análise , Saúde PúblicaRESUMO
PURPOSE: To investigate the novel zein-based non-adhesive precipitating liquid embolic HEIE1_2017. MATERIALS AND METHODS: Zein-based liquid embolics are an own class of embolization material. In this study, HEIE1_2017, a novel zein-based liquid embolic, was investigated. Visibility was assessed in vitro in CT and MRI phantoms, embolization characteristics were assessed in vivo in the kidneys of 12 pigs. Components of HEIE1_2017 were zein as occlusion material, ethanol as solvent, and iodized oil as radiopaque material. HEIE1_2017 was used in pure (HEI-PURE) and manually modified (HEI-MOD) form and compared with 6% ethylene vinyl alcohol copolymer (EVOH). Different radiological methods (CT, MRI, DSA, cone-beam CT, and micro-CT) and histopathologic analyses were applied to compare visibility and vascular occlusion patterns. RESULTS: In CT phantoms, all embolics were definitely visible as hyperdense materials. In MRI phantoms, signal-to-noise ratio was highest for HEI-PURE, followed by HEI-MOD and EVOH. In all kidneys, embolization procedures were technically successful and without complications. In DSA, all embolics were definitely visible during and after embolization. Only EVOH caused substantial artifacts in cone-beam CT and CT. In micro-CT and histopathology, HEI-PURE showed a homogeneous occlusion from segmental arteries to glomerular capillaries. HEI-MOD demonstrated the deepest vascular penetration (up to the level of peritubular capillaries), but with an inhomogeneous distribution. For EVOH, there was inhomogeneous vascular occlusion from segmental arteries to glomerular capillaries. CONCLUSION: HEIE1_2017 is a promising novel zein-based liquid embolic. Further preclinical and clinical studies with higher case numbers and long-term follow-up are needed to further assess the value of this embolic material.
Assuntos
Quimioembolização Terapêutica/métodos , Diatrizoato de Meglumina/administração & dosagem , Etanol/administração & dosagem , Rim/diagnóstico por imagem , Propilenoglicol/administração & dosagem , Zeína/administração & dosagem , Angiografia Digital , Animais , Artefatos , Óleo Iodado , Imageamento por Ressonância Magnética/métodos , Modelos Animais , Imagens de Fantasmas , Radiografia , Suínos , Tomografia Computadorizada por Raios X , Raios XRESUMO
INTRODUCTION: Free radicals and carbonyls produced by electronic cigarettes (e-cigs) have the potential to inflict oxidative stress. Recently, Juul e-cigs have risen drastically in popularity; however, there is no data on nicotine and oxidant yields from this new e-cig design. METHODS: Aerosol generated from four different Juul flavors was analyzed for carbonyls, nicotine, and free radicals. The e-liquids were analyzed for propylene glycol (PG) and glycerol (GLY) concentrations. To determine the effects of e-liquid on oxidant production, Juul pods were refilled with nicotine-free 30:70 or 60:40 PG:GLY with or without citral. RESULTS: No significant differences were found in nicotine (164 ± 41 µg/puff), free radical (5.85 ± 1.20 pmol/puff), formaldehyde (0.20 ± 0.10 µg/puff), and acetone (0.20 ± 0.05 µg/puff) levels between flavors. The PG:GLY ratio in e-liquids was ~30:70 across all flavors with GLY being slightly higher in tobacco and mint flavors. In general, when Juul e-liquids were replaced with nicotine-free 60:40 PG:GLY, oxidant production increased up to 190% and, with addition of citral, increased even further. CONCLUSIONS: Juul devices produce free radicals and carbonyls, albeit, at levels substantially lower than those observed in other e-cig products, an effect only partially because of a low PG:GLY ratio. Nicotine delivery by these devices was as high as or higher than the levels previously reported from cigarettes. IMPLICATIONS: These findings suggest that oxidative stress and/or damage resulting from Juul use may be lower than that from cigarettes or other e-cig devices; however, the high nicotine levels are suggestive of a greater addiction potential.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Radicais Livres/análise , Nicotina/análise , Estresse Oxidativo/fisiologia , Aromatizantes/administração & dosagem , Aromatizantes/análise , Radicais Livres/administração & dosagem , Humanos , Nicotina/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Propilenoglicol/administração & dosagem , Propilenoglicol/análiseRESUMO
Acetaminophen (APAP)-induced liver injury is initiated by metabolism of APAP by the cytochrome P-450 (CYP) system, primarily CYP2E1. We previously demonstrated CYP inhibition following administration of a liquid APAP formulation containing propylene glycol, a CYP2E1 inhibitor, and other excipients. This study was undertaken to determine if propylene glycol specifically inhibits production of CYP-derived metabolites and if propylene glycol reduces the rise in alanine aminotransferase (ALT) seen following prolonged APAP dosing. Human subjects were randomized to receive 4 g of APAP daily in one arm of the study or 4 g of APAP with 5 mL of 99% propylene glycol in the other arm, both for 14 days. After a washout period of at least 14 days, subjects were crossed over between arms. Outcomes were rise of ALT greater than 2 times baseline (responders) and proportion of randomly sampled CYP-derived metabolites relative to total metabolites produced. There was no difference in percentage of responders between treatment groups: 6 of 21 in the APAP group (29%) compared with 8 of 20 in the APAP + propylene glycol group (40%); chi-square, P = .59. For all subjects, the mean percentage of CYP-derived metabolites produced was 5.8% (APAP) versus 4.3% (APAP + propylene glycol); P = .018. This effect was solely attributable to the responders: the mean percentage of CYP metabolites of responders was 7.7% (APAP) versus 4.6% (APAP + propylene glycol), P = .050, whereas there was no difference for the nonresponders. Five subjects were responders in both arms (2% probability of random occurrence). Our data indicates that propylene glycol inhibits CYP2E1 metabolism of APAP in some subjects but does not effect hepatocellular indury at the dose given.
Assuntos
Acetaminofen/administração & dosagem , Analgésicos não Narcóticos/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Inibidores do Citocromo P-450 CYP2E1/administração & dosagem , Citocromo P-450 CYP2E1/metabolismo , Propilenoglicol/administração & dosagem , Acetaminofen/efeitos adversos , Acetaminofen/farmacocinética , Adulto , Alanina Transaminase/sangue , Analgésicos não Narcóticos/farmacocinética , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estudos Cross-Over , Interações Medicamentosas , Feminino , Humanos , Masculino , Adulto JovemRESUMO
Electronic cigarettes (ECIGs) are battery-powered devices that heat and vaporize solutions containing propylene glycol (PG) and/or vegetable glycerin (VG), nicotine and possible trace flavorants to produce an inhalable aerosol. The heating process can lead to the formation of reactive oxygen species (ROS), which are linked to various oxidative damage-initiated diseases. Several studies in the literature have addressed ROS emissions in ECIG aerosols, but the effects of power, ECIG device design and liquid composition on ROS are relatively unknown. In addition, ROS emissions have not been examined in the emerging high power, sub-Ohm device (SOD) category. In this study, an acellular 2',7'-dichlorofluorescin (DCFH) probe technique was optimized to measure ROS in ECIG aerosols. The technique was deployed to measure ROS emissions in SOD and supra-Ohm ECIGs while varying power, heater coil head design and liquid composition (PG/VG ratio and nicotine concentration). Liquids were made from analytical standards of PG, VG and nicotine and contained no flavorants. At high powers, ROS emissions in ECIGs and combustible cigarettes were similar. Across device designs, ROS emissions were uncorrelated with power (R2 = 0.261) but were highly correlated with power per unit area (R2 = 0.78). It was noticed that an increase in the VG percentage in the liquid yielded higher ROS flux, and nicotine did not affect ROS emissions. ROS emissions are a function of device design and liquid composition at a given power. For a given liquid composition, a promising metric for predicting ROS emissions across device designs and operating conditions is power per unit area of the heating coil. Importantly, ROS formation is significant even when the ECIG liquid consists of pure analytical solutions of PG and VG; it can therefore be viewed as intrinsic to ECIG operation and not solely a by-product of particular flavorants, contaminants or additives.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Glicerol/química , Nicotina/química , Agonistas Nicotínicos/química , Propilenoglicol/química , Espécies Reativas de Oxigênio/análise , Vaping , Aerossóis , Qualidade de Produtos para o Consumidor , Composição de Medicamentos , Desenho de Equipamento , Glicerol/administração & dosagem , Glicerol/efeitos adversos , Temperatura Alta , Humanos , Exposição por Inalação , Teste de Materiais , Nicotina/administração & dosagem , Nicotina/efeitos adversos , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/efeitos adversos , Propilenoglicol/administração & dosagem , Propilenoglicol/efeitos adversos , Espécies Reativas de Oxigênio/efeitos adversos , Medição de Risco , Vaping/efeitos adversosRESUMO
Imiquimod (IMQ) is an immunostimulant drug topically used for the treatment of actinic keratosis and basal cell carcinoma. IMQ formulation and skin delivery is difficult because of its very low solubility in the most of pharmaceutical excipients and very poor skin penetration properties. The purpose of this study was to develop a microemulsion to optimize imiquimod skin delivery using dαtocopherol polyethylene glycol-1000 succinate (TPGS) as surfactant (so as to take advantage of its thickening properties) and isostearic acid as oil phase. This fatty acid was selected since it has demonstrated a good solubilizing power for imiquimod and it has also shown to contribute to its therapeutic activity. We have built pseudo-ternary diagrams using two different co-surfactants (Transcutol® and propylene glycol - PG) in a 1:1 ratio with TPGS and then selected microemulsions in the clear and viscous regions of the diagrams. The systems were characterized in terms of rheology and X-ray scattering; additionally, the capability to promote IMQ skin uptake was evaluated ex-vivo on a porcine skin model. All the formulations selected in the gel-microemulsion regions behaved as viscoelastic solids; X-rays scattering experiments revealed in all cases the presence of an ordered lamellar structure, but with differences in terms of interlamellar distance and flexibility between Transcutol® and PG-containing systems. A higher flexibility and a greater hydrophobic volume, possibly interconnected at some point, was associated to the use of Transcutol® and had an impact on the microemulsion capacity to solubilize IMQ as well as on the capability to enhance drug uptake into the skin. The best performing gel-like microemulsion was composed of ≈26% of water, ≈21% of isostearic acid, ≈26% of TPGS and ≈27% of Transcutol® and accumulated, after 6â¯h of contact, 3.0⯱â¯1.1⯵g/cm2 of IMQ. This value is higher than the one reported in the literature for the commercial cream (1.9⯱â¯0.8⯵g/cm2), despite the 4-times lower concentration of the vehicle (13â¯mg/g for the microemulsion vs 50â¯mg/g for the commercial cream).
Assuntos
Adjuvantes Imunológicos/química , Antineoplásicos/química , Imiquimode/química , Tensoativos/química , Vitamina E/química , Adjuvantes Imunológicos/administração & dosagem , Administração Cutânea , Animais , Antineoplásicos/administração & dosagem , Química Farmacêutica , Emulsões , Etilenoglicóis/administração & dosagem , Etilenoglicóis/química , Imiquimode/administração & dosagem , Propilenoglicol/administração & dosagem , Propilenoglicol/química , Pele/metabolismo , Absorção Cutânea , Ácidos Esteáricos/administração & dosagem , Ácidos Esteáricos/química , Tensoativos/administração & dosagem , Suínos , Vitamina E/administração & dosagemRESUMO
Enterally administered riluzole is currently being investigated in a Phase II/III clinical trial for the treatment of acute spinal cord injury (SCI). Many SCI patients suffer from severe motor dysfunction and exhibit swallowing difficulties and cannot swallow riluzole tablets. The purpose of the present study was to develop a liquid solution formulation of riluzole, which can be administered more easily to this patient population with the capability to adjust the dose if needed. Riluzole was solubilized using water miscible organic solvents, namely, polyethylene glycol 400, propylene glycol and glycerin. A Central Composite Design (CCD) approach was used to develop an optimum co-solvent composition that can solubilize the entire 50â¯mg dose of riluzole in 5â¯ml. A three-factor five-level design was employed to investigate the effects of composition of co-solvents on riluzole solubility. The selected optimum formulation consists of 15% v/v PEG 400, 20% v/v propylene glycol and 10% v/v glycerin, with riluzole concentration of 10â¯mg/ml. The optimum composition was assessed for stability at different temperatures. Satisfactory stability was obtained at room temperature and 4⯰C (t90 of 17 and 35â¯months, respectively). The optimum formulation of riluzole was suitable for both oral and intravenous administrations. Single dose pharmacokinetic studies of the optimum formulation by oral and IV routes were evaluated in rats, using commercially available Rilutek® tablets as a reference. The co-solvent formulation was well tolerated both orally and intravenously. In comparison to the commercial tablet, the co-solvent formulation had a faster rate of absorption and more sustained plasma levels with a significantly longer elimination half-life. Higher concentrations of riluzole in brain and spinal cord were achieved from co-solvent formulation as compared to tablet. The riluzole solution formulation is stable and offers advantages of ease of administration, consistent dosing, rapid onset and longer duration of action, better availability at site of action which can be extremely beneficial for the therapy in SCI patients.