RESUMO
Brain injuries, such as ischemic stroke, cause cell death. Although phagocytosis of cellular debris is mainly performed by microglia/macrophages (MGs/MΦs), excessive accumulation beyond their phagocytic capacities results in waste product buildup, delaying brain cell regeneration. Therefore, it is essential to increase the potential for waste product removal from damaged brains. Lipocalin-type prostaglandin D synthase (L-PGDS) is the primary synthase for prostaglandin D2 (PGD2) and has been reported as a scavenger of waste products. However, the mechanism by which the L-PGDS-PGD2 axis exerts such an effect remains unelucidated. In this study, using a mouse model of ischemic stroke, we found that L-PGDS and its downstream signaling pathway components, including PGD2 and PGD2 receptor DP1 (but not DP2), were significantly upregulated in ischemic areas. Immunohistochemistry revealed the predominant expression of L-PGDS in the leptomeninges of ischemic areas and high expression levels of DP1 in CD36+ MGs/MΦs that were specifically present within ischemic areas. Furthermore, PGD2 treatment promoted the conversion of MGs/MΦs into CD36+ scavenger types and increased phagocytic activities of CD36+ MGs/MΦs. Because CD36+ MGs/MΦs specifically appeared within ischemic areas after stroke, our findings suggest that the L-PGDS-PGD2-DP1 axis plays an important role in brain tissue repair by regulating phagocytic activities of CD36+ MGs/MΦs.
Assuntos
Antígenos CD36 , Lipocalinas , Macrófagos , Camundongos Endogâmicos C57BL , Microglia , Fagocitose , Prostaglandina D2 , Acidente Vascular Cerebral , Animais , Prostaglandina D2/metabolismo , Antígenos CD36/metabolismo , Camundongos , Macrófagos/metabolismo , Lipocalinas/metabolismo , Lipocalinas/genética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Microglia/metabolismo , Microglia/patologia , Masculino , Oxirredutases Intramoleculares/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Transdução de Sinais , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Modelos Animais de DoençasRESUMO
Aberrant type 2 inflammatory responses are the underlying cause of the pathophysiology of allergic asthma, allergic rhinitis, and other atopic diseases, with an alarming prevalence in relevant parts of the Western world. A bulk of evidence points out the important role of the DP2 receptor in these inflammation processes. A screening of different polyunsaturated fatty acids at a fluorescence resonance energy transfer-based DP2 receptor conformation sensor expressed in human embryonic kidney (HEK) cells revealed an agonistic effect of the prostaglandin (PG)-D2 precursor arachidonic acid on DP2 receptor activity of about 80% of the effect induced by PGD2 In a combination of experiments at the conformation sensor and using a bioluminescence resonance energy transfer-based G protein activation sensor expressed together with DP2 receptor wild type in HEK cells, we found that arachidonic acid acts as a direct activator of the DP2 receptor, but not the DP1 receptor, in a concentration range considered physiologically relevant. Pharmacological inhibition of cyclooxygenases and lipoxygenases as well as cytochrome P450 did not lead to a diminished arachidonic acid response on the DP2 receptor, confirming a direct action of arachidonic acid on the receptor. SIGNIFICANCE STATEMENT: This study identified the prostaglandin precursor arachidonic acid to directly activate the DP2 receptor, a G protein-coupled receptor that is known to play an important role in type 2 inflammation.
Assuntos
Ácido Araquidônico , Receptores Imunológicos , Receptores de Prostaglandina , Humanos , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Receptores de Prostaglandina/metabolismo , Células HEK293 , Receptores Imunológicos/metabolismo , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacologia , Transferência Ressonante de Energia de FluorescênciaRESUMO
Senescent cells are characterized by multiple features such as increased expression of senescence-associated ß-galactosidase activity (SA ß-gal) and cell cycle inhibitors such as p21 or p16. They accumulate with tissue damage and dysregulate tissue homeostasis. In the context of skeletal muscle, it is known that agents used for chemotherapy such as Doxorubicin (Doxo) cause buildup of senescent cells, leading to the inhibition of tissue regeneration. Senescent cells influence the neighboring cells via numerous secreted factors which form the senescence-associated secreted phenotype (SASP). Lipids are emerging as a key component of SASP that can control tissue homeostasis. Arachidonic acid-derived lipids have been shown to accumulate within senescent cells, specifically 15d-PGJ2, which is an electrophilic lipid produced by the non-enzymatic dehydration of the prostaglandin PGD2. This study shows that 15d-PGJ2 is also released by Doxo-induced senescent cells as an SASP factor. Treatment of skeletal muscle myoblasts with the conditioned medium from these senescent cells inhibits myoblast fusion during differentiation. Inhibition of L-PTGDS, the enzyme that synthesizes PGD2, diminishes the release of 15d-PGJ2 by senescent cells and restores muscle differentiation. We further show that this lipid post-translationally modifies Cys184 of HRas in C2C12 mouse skeletal myoblasts, causing a reduction in the localization of HRas to the Golgi, increased HRas binding to Ras Binding Domain (RBD) of RAF Kinase (RAF-RBD), and activation of cellular Mitogen Activated Protein (MAP) kinase-Extracellular Signal Regulated Kinase (Erk) signaling (but not the Akt signaling). Mutating C184 of HRas prevents the ability of 15d-PGJ2 to inhibit the differentiation of muscle cells and control the activity of HRas. This work shows that 15d-PGJ2 released from senescent cells could be targeted to restore muscle homeostasis after chemotherapy.
Assuntos
Diferenciação Celular , Senescência Celular , Mioblastos , Prostaglandina D2 , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacologia , Senescência Celular/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Diferenciação Celular/efeitos dos fármacos , Fenótipo Secretor Associado à Senescência , Linhagem Celular , Doxorrubicina/farmacologiaRESUMO
Identifying new molecular therapies targeted at the severe hepatic fibrosis associated with the granulomatous immune response to Schistosoma mansoni infection is essential to reduce fibrosis-related morbidity/mortality in schistosomiasis. In vitro cell activation studies suggested the lipid molecule prostaglandin D2 (PGD2) as a potential pro-fibrotic candidate in schistosomal context, although corroboratory in vivo evidence is still lacking. Here, to investigate the role of PGD2 and its cognate receptor DP2 in vivo, impairment of PGD2 synthesis by HQL-79 (an inhibitor of the H-PGD synthase) or DP2 receptor inhibition by CAY10471 (a selective DP2 antagonist) were used against the fibrotic response of hepatic eosinophilic granulomas of S. mansoni infection in mice. Although studies have postulated PGD2 as a fibrogenic molecule, HQL-79 and CAY10471 amplified, rather than attenuated, the fibrotic response within schistosome hepatic granulomas. Both pharmacological strategies increased hepatic deposition of collagen fibers - an unexpected outcome accompanied by further elevation of hepatic levels of the pro-fibrotic cytokines TGF-ß and IL-13 in infected animals. In contrast, infection-induced enhanced LTC4 synthesis in the schistosomal liver was reduced after HQL-79 and CAY10471 treatments, and therefore, inversely correlated with collagen production in granulomatous livers. Like PGD2-directed maneuvers, antagonism of cysteinyl leukotriene receptors CysLT1 by MK571 also promoted enhancement of TGF-ß and IL-13, indicating a key down-regulatory role for endogenous LTC4 in schistosomiasis-induced liver fibrosis. An ample body of data supports the role of S. mansoni-driven DP2-mediated activation of eosinophils as the source of LTC4 during infection, including: (i) HQL-79 and CAY10471 impaired systemic eosinophilia, drastically decreasing eosinophils within peritoneum and hepatic granulomas of infected animals in parallel to a reduction in cysteinyl leukotrienes levels; (ii) peritoneal eosinophils were identified as the only cells producing LTC4 in PGD2-mediated S. mansoni-induced infection; (iii) the magnitude of hepatic granulomatous eosinophilia positively correlates with S. mansoni-elicited hepatic content of cysteinyl leukotrienes, and (iv) isolated eosinophils from S. mansoni-induced hepatic granuloma synthesize LTC4 in vitro in a PGD2/DP2 dependent manner. So, our findings uncover that granulomatous stellate cells-derived PGD2 by activating DP2 receptors on eosinophils does stimulate production of anti-fibrogenic cysLTs, which endogenously down-regulates the hepatic fibrogenic process of S. mansoni granulomatous reaction - an in vivo protective function which demands caution in the future therapeutic attempts in targeting PGD2/DP2 in schistosomiasis.
Assuntos
Granuloma , Cirrose Hepática , Prostaglandina D2 , Receptores Imunológicos , Receptores de Prostaglandina , Schistosoma mansoni , Esquistossomose mansoni , Animais , Prostaglandina D2/metabolismo , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/patologia , Esquistossomose mansoni/parasitologia , Camundongos , Receptores de Prostaglandina/metabolismo , Cirrose Hepática/parasitologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Granuloma/parasitologia , Granuloma/metabolismo , Granuloma/patologia , Receptores Imunológicos/metabolismo , Fígado/parasitologia , Fígado/metabolismo , Fígado/patologia , Masculino , Feminino , Carbazóis , Piperidinas , SulfonamidasRESUMO
BACKGROUND: Altered biosynthesis of eicosanoids is linked to type 2 inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP), but their role in recalcitrant NPs is unclear. OBJECTIVES: We sought to identify endotypes that are linked to recalcitrant CRSwNP, based on eicosanoids, their biosynthetic enzymes, and receptors as well as cytokines and the presence of eosinophils and mast cells in recurrent NPs. METHODS: Mucosal tissue collected at the time of sinus surgery from 54 patients with CRSwNP and 12 non-CRS controls were analysed for leukotriene (LT) E4, prostaglandin (PG) D2, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) and 17 cytokines with ELISAs and Bio-Plex immunoassays. Patient subgroups were identified by cluster analysis and the probability of NP recurrence were tested with logistic regression analyses. Gene expressions were analysed with qPCR. Tryptase and eosinophil-derived neurotoxin (EDN) were measured with ELISAs as indications of the presence of mast cells and eosinophils, respectively. RESULTS: Clustering of patients showed that an inflammatory signature characterised by elevated LTE4, PGD2, 15(S)-HETE and IL-13 was associated with NP recurrence. Previous NP surgery as well as aspirin-exacerbated respiratory disease were significantly more common among these patients. Expression of cyclooxygenase 1 was the only gene associated with NP recurrence. Levels of EDN, but not tryptase, were significantly higher in patients with recurrent NPs. CONCLUSION: Distinguishing endotypes that include LTE4, PGD2, 15HETE and conventional biomarkers of type 2 inflammation could help predict recurrent nasal polyposis and thus identify cases of recalcitrant CRSwNP.
Assuntos
Biomarcadores , Ácidos Hidroxieicosatetraenoicos , Leucotrieno E4 , Pólipos Nasais , Prostaglandina D2 , Recidiva , Rinite , Sinusite , Humanos , Sinusite/metabolismo , Sinusite/patologia , Sinusite/cirurgia , Sinusite/diagnóstico , Pólipos Nasais/metabolismo , Pólipos Nasais/patologia , Pólipos Nasais/cirurgia , Pólipos Nasais/genética , Feminino , Masculino , Leucotrieno E4/metabolismo , Pessoa de Meia-Idade , Doença Crônica , Ácidos Hidroxieicosatetraenoicos/metabolismo , Adulto , Rinite/metabolismo , Rinite/patologia , Rinite/diagnóstico , Rinite/cirurgia , Biomarcadores/metabolismo , Prostaglandina D2/metabolismo , Prognóstico , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Eosinófilos/metabolismo , Eosinófilos/patologia , Mastócitos/metabolismo , Mastócitos/patologia , RinossinusiteRESUMO
Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.
Assuntos
Anafilaxia , Fibroblastos , Lisofosfolipídeos , Mastócitos , Camundongos Knockout , Comunicação Parácrina , Diester Fosfórico Hidrolases , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Animais , Mastócitos/imunologia , Mastócitos/metabolismo , Anafilaxia/imunologia , Anafilaxia/metabolismo , Camundongos , Fibroblastos/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Prostaglandina D2/metabolismo , Vesículas Extracelulares/metabolismo , Interleucina-33/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Diferenciação Celular , Camundongos Endogâmicos C57BL , Proteína 1 Semelhante a Receptor de Interleucina-1 , LipocalinasRESUMO
Increased production of Prostaglandin D2 (PGD2) is linked to development and progression of asthma and allergy. PGD2 is rapidly degraded to its metabolites, which initiate type 2 innate lymphoid cells (ILC2) migration and IL-5/IL-13 cytokine secretion in a PGD2 receptor 2 (DP2)-dependent manner. Blockade of DP2 has shown therapeutic benefit in subsets of asthma patients. Cellular mechanisms of ILC2 activity in response to PGD2 and its metabolites are still unclear. We hypothesized that ILC2 respond non-uniformly to PGD2 metabolites. ILC2s were isolated from peripheral blood of patients with atopic asthma. ILC2s were stimulated with PGD2 and four PGD2 metabolites (Δ12-PGJ2, Δ12-PGD2, 15-deoxyΔ12,14-PGD2, 9α,11ß-PGF2) with or without the selective DP2 antagonist fevipiprant. Total RNA was sequenced, and differentially expressed genes (DEG) were identified by DeSeq2. Differential gene expression analysis revealed an upregulation of pro-inflammatory DEGs in ILC2s stimulated with PGD2 (14 DEGs), Δ12-PGD2 (27 DEGs), 15-deoxyΔ12,14-PGD2 (56 DEGs) and Δ12-PGJ2 (136 DEGs), but not with 9α,11ß-PGF2. Common upregulated DEGs were i.e. ARG2, SLC43A2, LAYN, IGFLR1, or EPHX2. Inhibition of DP2 via fevipiprant mainly resulted in downregulation of pro-inflammatory genes such as DUSP4, SPRED2, DUSP6, ETV1, ASB2, CD38, ADGRG1, DDIT4, TRPM2, or CD69. DEGs were related to migration and various immune response-relevant pathways such as "chemokine (C-C motif) ligand 4 production", "cell migration", "interleukin-13 production", "regulation of receptor signaling pathway via JAK-STAT", or "lymphocyte apoptotic process", underlining the pro-inflammatory effects of PGD2 metabolite-induced immune responses in ILC2s as well as the anti-inflammatory effects of DP2 inhibition via fevipiprant. Furthermore, PGD2 and metabolites showed distinct profiles in ILC2 activation. Overall, these results expand our understanding of DP2 initiated ILC2 activity.
Assuntos
Asma , Imunidade Inata , Linfócitos , Prostaglandina D2 , Receptores Imunológicos , Receptores de Prostaglandina , Transdução de Sinais , Humanos , Asma/imunologia , Asma/metabolismo , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/antagonistas & inibidores , Prostaglandina D2/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos/metabolismo , Linfócitos/imunologia , Linfócitos/efeitos dos fármacos , Feminino , Masculino , Adulto , Ácidos Indolacéticos , PiridinasRESUMO
Studies have shown that the prostaglandin (PG) family acts as an allergic inflammatory mediator in malignant diseases. Furthermore, prostaglandin E2 (PGE2) and its related receptors, as well as the prostaglandin D2 (PGD2)/PGD2 receptor (PTGDR2), play irreplaceable roles in tumorigenesis and anti-tumor therapy. Several experiments have demonstrated that PGD2 signaling through PTGDR2 not only directly inhibits cancer cell survival, proliferation, and migration but also reduces resistance toward conventional chemotherapeutic agents. Recent studies from our and other laboratories have shown that PGD2, its ligands, and related metabolites can significantly alter the tumor microenvironment (TME) by promoting the secretion of chemokines and cytokines, thereby inhibiting tumor progression. Additionally, reduced PGD2 expression has been associated with poor prognosis in patients with gastric, breast, lung, and pancreatic cancers, validating the preclinical findings and their clinical relevance. This review focuses on the current understanding of PGD2/PTGDR2 expression patterns and biological activity in cancer, proposing questions to guide the assessment of PGD2 and its receptors as potential targets for effective cancer therapies.
Assuntos
Neoplasias , Prostaglandina D2 , Receptores de Prostaglandina , Transdução de Sinais , Microambiente Tumoral , Humanos , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Prostaglandina D2/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genéticaRESUMO
BACKGROUND: Postpartum depression (PPD) is a serious psychiatric disorder that has significantly adverse impacts on maternal health. Metabolic abnormalities in the brain are associated with numerous neurological disorders, yet the specific metabolic signaling pathways and brain regions involved in PPD remain unelucidated. METHODS: We performed behavioral test in the virgin and postpartum mice. We used mass spectrometry imaging (MSI) and targeted metabolomics analyses to investigate the metabolic alternation in the brain of GABAAR Delta-subunit-deficient (Gabrd-/-) postpartum mice, a specific preclinical animal model of PPD. Next, we performed mechanism studies including qPCR, Western blot, immunofluorescence staining, electron microscopy and primary astrocyte culture. In the specific knockdown and rescue experiments, we injected the adeno-associated virus into the central amygdala (CeA) of female mice. RESULTS: We identified that prostaglandin D2 (PGD2) downregulation in the CeA was the most outstanding alternation in PPD, and then validated that lipocalin-type prostaglandin D synthase (L-PGDS)/PGD2 downregulation plays a causal role in depressive behaviors derived from PPD in both wild-type and Gabrd-/- mice. Furthermore, we verified that L-PGDS/PGD2 signaling dysfunction-induced astrocytes atrophy is mediated by Src phosphorylation both in vitro and in vivo. LIMITATIONS: L-PGDS/PGD2 signaling dysfunction may be only responsible for the depressive behavior rather than maternal behaviors in the PPD, and it remains to be seen whether this mechanism is applicable to all depression types. CONCLUSION: Our study identified abnormalities in the L-PGDS/PGD2 signaling in the CeA, which inhibited Src phosphorylation and induced astrocyte atrophy, ultimately resulting in the development of PPD in mice.
Assuntos
Astrócitos , Atrofia , Depressão Pós-Parto , Modelos Animais de Doenças , Prostaglandina D2 , Transdução de Sinais , Animais , Astrócitos/patologia , Astrócitos/metabolismo , Feminino , Depressão Pós-Parto/patologia , Depressão Pós-Parto/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Prostaglandina D2/metabolismo , Núcleo Central da Amígdala/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Quinases da Família src/metabolismo , Camundongos KnockoutRESUMO
The DP2 receptor is a G-protein coupled receptor involved in allergic inflammation and is the target of recently developed antagonists already being tested in clinics. To get insights into DP2 receptor dynamics and to study its pharmacology on the level of the receptor, we constructed a fluorescence resonance energy transfer-based conformation sensor. The sensor reflects the selectivity profile of the DP2 receptor-wt and is suited for screening of agonists and antagonists due to its robust response. Furthermore, the sensor enables the direct measurement of DP2 receptor dynamics in real-time and revealed markedly distinct on- and off-rates of prostaglandin D2 between DP2 and DP1 receptors, suggesting a different mechanism of ligand receptor interaction.
Assuntos
Inflamação , Prostaglandina D2 , Humanos , Prostaglandina D2/farmacologia , Receptores de ProstaglandinaRESUMO
BACKGROUND: The function of diverse ruminal microbes is tightly linked to rumen development and host physiology. The system of ruminal microbes is an excellent model to clarify the fundamental ecological relationships among complex nutrient-microbiome-host interactions. Here, neonatal lambs are introduced to different dietary regimes to investigate the influences of early-life crosstalk between nutrients and microbiome on rumen development. RESULTS: We find starchy corn-soybean starter-fed lambs exhibit the thickest ruminal epithelia and fiber-rich alfalfa hay-fed lambs have the thickest rumen muscle. Metabolome and metagenome data reveal that indole-3-carboxaldehyde (3-IAld) and prostaglandin D2 (PGD2) are the top characteristic ruminal metabolites associated with ruminal epithelial and muscular development, which depend on the enhanced ruminal microbial synthesis potential of 3-IAld and PGD2. Moreover, microbial culture experiment first demonstrates that Bifidobacterium pseudolongum is able to convert tryptophan into 3-IAld and Candida albicans is a key producer for PGD2. Transcriptome sequencing of the ruminal epithelia and smooth muscle shows that ruminal epithelial and muscular development is accompanied by Wnt and Ca2+ signaling pathway activation. Primary cell cultures further confirm that 3-IAld promotes ruminal epithelial cell proliferation depending on AhR-wnt/ß-catenin signaling pathway and PGD2 accelerates ruminal smooth muscle cell proliferation via Ca2+ signaling pathway. Furthermore, we find that 3-IAld and PGD2 infusion promote ruminal epithelial and musculature development in lambs. CONCLUSIONS: This study demonstrates that early-life ruminal microbiome-derived 3-IAld and PGD2 are effective promoters of rumen development, which enhances our understanding of nutrient-microbiome-host interactions in early life.
Assuntos
Indóis , Microbiota , Prostaglandina D2 , Ovinos , Animais , Rúmen , MetagenomaRESUMO
Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system (CNS) in need of a curative treatment. MS research has recently focused on the development of pro-remyelinating treatments and neuroprotective therapies. Here, we aimed at favoring remyelination and reducing neuro-inflammation in a cuprizone mouse model of brain demyelination using nanomedicines. We have selected lipid nanocapsules (LNC) coated with the cell-penetrating peptide transactivator of translation (TAT), loaded with either a pro-remyelinating compound, calcitriol (Cal-LNC TAT), or an anti-inflammatory bioactive lipid, prostaglandin D2-glycerol ester (PGD2-G) (PGD2-G-LNC TAT). Following the characterization of these formulations, we showed that Cal-LNC TAT in combination with PGD2-G-LNC TAT increased the mRNA expression of oligodendrocyte differentiation markers both in the CG-4 cell line and in primary mixed glial cell (MGC) cultures. However, while the combination of Cal-LNC TAT and PGD2-G-LNC TAT showed promising results in vitro, no significant impact, in terms of remyelination, astrogliosis, and microgliosis, was observed in vivo in the corpus callosum of cuprizone-treated mice following intranasal administration. Thus, although calcitriol's beneficial effects have been abundantly described in the literature in the context of MS, here, we show that the different doses of calcitriol tested had a negative impact on the mice well-being and showed no beneficial effect in the cuprizone model in terms of remyelination and neuro-inflammation, alone and when combined with PGD2-G-LNC TAT.
Assuntos
Calcitriol , Diferenciação Celular , Cuprizona , Nanocápsulas , Células Precursoras de Oligodendrócitos , Remielinização , Animais , Calcitriol/administração & dosagem , Calcitriol/farmacologia , Diferenciação Celular/efeitos dos fármacos , Nanocápsulas/química , Nanocápsulas/administração & dosagem , Remielinização/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Camundongos , Cuprizona/administração & dosagem , Camundongos Endogâmicos C57BL , Lipídeos/química , Lipídeos/administração & dosagem , Prostaglandina D2/administração & dosagem , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Linhagem Celular , Masculino , Células CultivadasRESUMO
OBJECTIVE: Secreted phospholipase A2 Group IB (sPLA2GIB) regulates the release of arachidonic acid, prostaglandins, and other inflammatory lipid mediators. Although it has been well involved in extensive inflammatory diseases, its specific mechanism in chronic rhinosinusitis with nasal polyps (CRSwNP) remains unclear. In this study, we investigated the role of sPLA2GIB in the pathophysiology of CRSwNP. METHODS: Quantitative PCR, immunofluorescence staining, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to analyze the expression of sPLA2s, phospholipase A2 receptor (PLA2R), and prostaglandin D2 (PGD2) in nasal samples. Human nasal epithelial cells (HNECs) were cultured at an air-liquid interface (ALI) and stimulated with various cytokines. The human mast cell line HMC-1 was stimulated with sPLA2GIB, and the expression of PGD2 and cytokines in the culture supernatant was detected by ELISA. RESULTS: The mRNA and protein levels of sPLA2GIB were significantly higher in eosinophilic CRSwNP than in control tissues. sPLA2GIB was predominantly expressed in the nasal epithelial cells. PLA2R mRNA and protein levels were upregulated in both eosinophilic and non-eosinophilic CRSwNP compared with the control groups. IL-4, IL-13, TNF-α, and IL-1ß upregulated the expression of sPLA2GIB in ALI-cultured HNECs. sPLA2GIB induced PGD2 and IL-13 production in HMC-1 cells in a hydrolytic activity-independent manner. PGD2 protein expression was elevated in tissue homogenates of eosinophilic CRSwNP, and PGD2 upregulated the expression of IL-13 in HMC-1 cells. CONCLUSION: Increased secretion of sPLA2GIB by epithelial cells may promote eosinophilic inflammation in CRSwNP by enhancing PGD2 and IL-13 production in mast cells via binding to PLA2R. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:1107-1117, 2024.
Assuntos
Pólipos Nasais , Rinite , Rinossinusite , Sinusite , Humanos , Pólipos Nasais/complicações , Prostaglandina D2 , Interleucina-13 , Rinite/complicações , Rinite/genética , Sinusite/complicações , Sinusite/genética , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Doença CrônicaRESUMO
Introduction: The intestinal barrier plays a crucial role in distinguishing foods from toxins. Prostaglandin D2 (PGD2) is one of the lipid-derived autacoids synthesized from cell membrane-derived arachidonic acid. We previously reported that pharmacological stimulation of PGD2 receptor, D prostanoid 1 (DP1) attenuated the symptoms of azoxymethane/dextran sodium sulfate-induced colitis and ovalbumin-induced food allergy in mouse models. These observations suggested that DP1 stimulation protects the intestinal barrier. The present study aimed to uncover the effects of DP1 stimulation on intestinal barrier function and elucidate the underlying mechanisms. Materials and methods: Intestinal permeability was assessed in mice by measuring the transfer of orally administered fluorescein isothiocyanate-dextran (40 kDa) into the blood. The DP1 agonist BW245C (1 mg/kg) was administered 10 min prior to dextran administration. The intestinal permeability was confirmed using the ex vivo everted sac method. Tight junction integrity was evaluated in vitro by measuring the transepithelial electrical resistance (TER) in the human intestinal epithelial cell line Caco-2. Mucus secretion was assessed by observing Alcian Blue-stained intestinal sections. Results: Pharmacological DP1 stimulation reduced intestinal permeability both in vivo and ex vivo. Immunohistochemical staining showed that DP1 was strongly expressed on the apical side of the epithelial cells. DP1 stimulation did not affect TER in vitro but induced mucus secretion from goblet cells. Mucus removal by a mucolytic agent N-acetyl-l-cysteine canceled the inhibition of intestinal permeability by DP1 stimulation. Conclusion: These observations suggest that pharmacological DP1 stimulation decreases intestinal permeability by stimulating mucus secretion.
Assuntos
Dextranos , Prostaglandinas , Humanos , Animais , Camundongos , Prostaglandina D2/metabolismo , Células CACO-2 , Muco/metabolismo , PermeabilidadeRESUMO
BACKGROUND: Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS: Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS: Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS: A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.
Assuntos
COVID-19 , Fosfolipases A2 Secretórias , Sepse , Humanos , SARS-CoV-2 , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Lipidômica , Leucócitos Mononucleares , Leucotrieno E4 , Prostaglandina D2 , Ciclo-Oxigenase 2 , EicosanoidesRESUMO
Most animals require sleep, and sleep loss induces serious pathophysiological consequences, including death. Previous experimental approaches for investigating sleep impacts in mice have been unable to persistently deprive animals of both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Here, we report a "curling prevention by water" paradigm wherein mice remain awake 96% of the time. After 4 days of exposure, mice exhibit severe inflammation, and approximately 80% die. Sleep deprivation increases levels of prostaglandin D2 (PGD2) in the brain, and we found that elevated PGD2 efflux across the blood-brain-barrier-mediated by ATP-binding cassette subfamily C4 transporter-induces both accumulation of circulating neutrophils and a cytokine-storm-like syndrome. Experimental disruption of the PGD2/DP1 axis dramatically reduced sleep-deprivation-induced inflammation. Thus, our study reveals that sleep-related changes in PGD2 in the central nervous system drive profound pathological consequences in the peripheral immune system.
Assuntos
Privação do Sono , Animais , Camundongos , Citocinas/metabolismo , Inflamação , Prostaglandina D2 , Sono/fisiologia , Privação do Sono/genética , Privação do Sono/metabolismo , Síndrome , Humanos , Ratos , Linhagem Celular , Tempestades Ciclônicas , Neutrófilos/metabolismoRESUMO
OBJECTIVE: To explore the mechanism of moxibustion in the treatment of asthmatic inflammation from the point of short-chain fatty acids (SCFAs) in rats with asthma. METHODS: A total of 48 SD rats (half male and half female) were randomly divided into 4 groupsï¼ normal, model, lung treatment and joint-treatment of lung and intestine (joint-treatment), with 12 rats in each group. The asthma model was made by subcutaneous (bilateral back and inguinal regions) and intraperitoneal injection of mixture solution of ovalbumin and aluminium hydroxide gel (on day 1 and 8) and followed by inhalation of atomized 1% ovalbumin (20 min from day 15, once daily for one week). Moxibustion was applied to bilateral "Feishu" (BL13) for rats of the lung treatment group or bilateral "Feishu" (BL13) and "Tianshu" (ST25) for rats of the joint treatment group. One hour after the intervention, the rats in the later three groups were separately given atomized 1% ovalbumin solution inhalation for 20 min. The treatment was conducted for 30 min, once daily for 14 consecutive days. At the end of the intervention, the percentage of inflammatory cells in blood was detected by biochemical method and histopathological changes of the lung were observed after H.E. staining. The inflammatory cells in the bronchoalveolar lavage fluid (BALF) were counted after Wright-Giemsa staining. The mRNA expressions of interleukin (IL)-4, IL-5, IL-13, IL-17, IL-33, leukotriene (LT), thymic stromal lymphopoietin (TSLP) and prostaglandin D2 (PGD2) were detected by real-time PCR, and the contents of SCFAs in rats' feces were detected by gas chromatography-mass spectrometry. RESULTS: Relevant to the normal group, the model group had an obvious increase in the percentages of neutrophils, lymphocytes and eosinophils in the blood, the percentages of neutrophils and eosinophils in the BALF, and in the expression levels of PGD2, TSLP, LT, IL-4, IL-5, IL-13, IL-17 and IL-33 mRNAs in the lung tissues (P<0.01, P<0.05), and a marked decrease in the contents of acetic acid, propionic acid, isobutyric acid, butyric acid and valeric acid in feces (P<0.05, P<0.01). After the treatment, the percentages of neutrophils and lymphocytes in the peripheral blood, eosinophils in the BALF, and the expression levels of PGD2, TSLP, LT, IL-4, IL-17, IL-33 mRNAs in the lung tissues in both the lung treatment and joint treatment groups, as well as neutrophils of BALF, and expression of IL-5 and IL-13 mRNAs in the joint treatment group were significantly down-regulated (P<0.01, P<0.05), while the contents of acetic acid, propionic acid and valerate in the lung treatment group, and acetic acid, propionic acid, isobutyric acid, butyric acid and valeric acid in the joint treatment group were all strikingly increased (P<0.05, P<0.01). The effect of the joint treatment was superior to that of lung treatment in down-regulating the expressions of LT and IL-5 mRNAs (P<0.05, P<0.01) and up-requlating the content of propionic acid (P<0.05). Results of H.E. staining showed thickened alveolar wall, infiltration of a large number of inflammatory cells and interstitial fibrous tissue hyperplasia around the bronchus and scattered arrangement of cells of the lung tissue in the model group, which was relatively milder in both lung treatment and joint treatment groups, particularly the later. CONCLUSION: Joint treatment of asthma from the lung and intestine can better regulate the contents of intestinal SCFAs and alleviate the inflammatory response of asthmatic model rats, thus, intestinal SCFAs may be involved in the process of moxibustion in improving inflammatory response.
Assuntos
Asma , Moxibustão , Pneumonia , Animais , Feminino , Masculino , Ratos , Pontos de Acupuntura , Asma/genética , Asma/terapia , Ácidos Graxos Voláteis , Interleucina-13 , Interleucina-17 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Intestinos , Isobutiratos , Pulmão , Ovalbumina , Propionatos , Prostaglandina D2 , Ratos Sprague-DawleyRESUMO
Prostaglandin (PG) D2, a commonly considered vasodilator through D prostanoid receptor-1 (DP1), might also evoke vasoconstriction via acting on the thromboxane (Tx)-prostanoid receptor (the original receptor of TxA2; TP) and/or E prostanoid receptor-3 (one of the vasoconstrictor receptors of PGE2; EP3). This study aimed to test the above hypothesis in the mouse renal vascular bed (main renal arteries and perfused kidneys) and/or mesenteric resistance arteries and determine how the vasoconstrictor mechanism influences the overall PGD2 effect on systemic blood pressure under in vivo conditions. Experiments were performed on control wild-type (WT) mice and mice with deficiencies in TP (TP-/-) and/or EP3 (EP3-/-). Here we show that PGD2 indeed evoked vasoconstrictor responses in the above-mentioned tissues of WT mice, which were however not only reduced by TP-/- or EP3-/-, but also reversed by TP-/-/EP3-/- in some of the above tissues (mesenteric resistance arteries or perfused kidneys) to dilator reactions that were reduced by non-selective DP antagonism. A slight or mild pressor response was also observed with PGD2 under in vivo conditions, and this was again reversed to a depressor response in TP-/- or TP-/-/EP3-/- mice. Non-selective DP antagonism reduced the PGD2-evoked depressor response in TP-/-/EP3-/- mice as well. These results thus demonstrate that like other PGs, PGD2 activates TP and/or EP3 to evoke vasoconstrictor activities, which can outweigh its concurrent vasodepressor activity mediated mainly through DP1, and hence result in a pressor response, although the response might only be of a slight or mild extent.
Assuntos
Prostaglandinas , Vasoconstritores , Camundongos , Animais , Tromboxanos , Receptores de Tromboxanos , Receptores de Prostaglandina E Subtipo EP3 , Receptores de Prostaglandina , Prostaglandina D2/farmacologiaRESUMO
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) exhibited potential to alleviate liver inflammation in chronic injury but was less studied in acute injury. Acute liver injury was associated with elevated macrophage migration inhibitory factor (MIF) levels in damaged hepatocytes. This study aimed to investigate the regulatory mechanism of hepatocyte-derived MIF by 15d-PGJ2 and its subsequent impact on acute liver injury. In vivo, mouse models were established by carbon tetrachloride (CCl4) intraperitoneal injection, with or without 15d-PGJ2 administration. 15d-PGJ2 treatment reduced the necrotic areas induced by CCl4. In the same mouse model constructed using enhanced green fluorescent protein (EGFP)-labeled bone marrow (BM) chimeric mice, 15d-PGJ2 reduced CCl4 induced BM-derived macrophage (BMM, EGFP+F4/80+) infiltration and inflammatory cytokine expression. Additionally, 15d-PGJ2 down-regulated liver and serum MIF levels; liver MIF expression was positively correlated with BMM percentage and inflammatory cytokine expression. In vitro, 15d-PGJ2 inhibited Mif expression in hepatocytes. In primary hepatocytes, reactive oxygen species inhibitor (NAC) showed no effect on MIF inhibition by 15d-PGJ2; PPARγ inhibitor (GW9662) abolished 15d-PGJ2 suppressed MIF expression and antagonists (troglitazone, ciglitazone) mimicked its function. In Pparg silenced AML12 cells, the suppression of MIF by 15d-PGJ2 was weakened; 15d-PGJ2 promoted PPARγ activation in AML 12 cells and primary hepatocytes. Furthermore, the conditioned medium of recombinant MIF- and lipopolysaccharide-treated AML12 respectively promoted BMM migration and inflammatory cytokine expression. Conditioned medium of 15d-PGJ2- or siMif-treated injured AML12 suppressed these effects. Collectively, 15d-PGJ2 activated PPARγ to suppress MIF expression in injured hepatocytes, reducing BMM infiltration and pro-inflammatory activation, ultimately alleviating acute liver injury.