Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Parasites Hosts Dis ; 62(2): 205-216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38835261

RESUMO

Sigma-class glutathione transferase (GST) proteins with dual GST and prostaglandin synthase (PGS) activities play a crucial role in the establishment of Clonorchis sinensis infection. Herein, we analyzed the structural and enzymatic properties of sigma-class GST (CsGST-σ) proteins to obtain insight into their antioxidant and immunomodulatory functions in comparison with mu-class GST (CsGST-µ) proteins. CsGST-σ proteins conserved characteristic structures, which had been described in mammalian hematopoietic prostaglandin D2 synthases. Recombinant forms of these CsGST-σ and CsGST-µ proteins expressed in Escherichia coli exhibited considerable degrees of GST and PGS activities with substantially different specific activities. All recombinant proteins displayed higher affinities toward prostaglandin H2 (PGS substrate; average Km of 30.7 and 3.0 µm for prostaglandin D2 [PGDS] and E2 synthase [PGES], respectively) than those toward CDNB (GST substrate; average Km of 1,205.1 µm). Furthermore, the catalytic efficiency (Kcat/Km) of the PGDS/PGES activity was higher than that of GST activity (average Kcat/Km of 3.1, 0.7, and 7.0×10-3 s-1µm-1 for PGDS, PGES, and GST, respectively). Our data strongly suggest that the C. sinensis sigma- and mu-class GST proteins are deeply involved in regulating host immune responses by generating PGD2 and PGE2 in addition to their roles in general detoxification.


Assuntos
Clonorchis sinensis , Glutationa Transferase , Oxirredutases Intramoleculares , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Glutationa Transferase/genética , Clonorchis sinensis/enzimologia , Clonorchis sinensis/genética , Animais , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Lipocalinas/metabolismo , Lipocalinas/genética , Lipocalinas/química , Lipocalinas/imunologia , Escherichia coli/genética , Prostaglandina H2/metabolismo , Prostaglandina H2/química , Cinética
2.
Inflammation ; 46(3): 893-911, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36598592

RESUMO

Inflammation is a hallmark in severe diseases such as atherosclerosis and non-alcohol-induced steatohepatitis (NASH). In the development of inflammation, prostaglandins, especially prostaglandin E2 (PGE2), are major players alongside with chemo- and cytokines, like tumor-necrosis-factor alpha (TNFα) and interleukin-1 beta (IL-1ß). During inflammation, PGE2 synthesis can be increased by the transcriptional induction of the two key enzymes: cyclooxygenase 2 (COX-2), which converts arachidonic acid to PGH2, and microsomal prostaglandin E2 synthase 1 (mPGES-1), which synthesizes PGE2 from PGH2. Both COX-2 and mPGES-2 were induced by a dietary intervention where mice were fed a fatty acid-rich and, more importantly, cholesterol-rich diet, leading to the development of NASH. Since macrophages are the main source of PGE2 synthesis and cholesterol is predominantly transported as LDL, the regulation of COX-2 and mPGES-1 expression by native LDL was analyzed in human macrophage cell lines. THP-1 and U937 monocytes were differentiated into macrophages, through which TNFα and PGE-2 induced COX-2 and mPGES-1 expression by LDL could be analyzed on both mRNA and protein levels. In addition, the interaction of LDL- and EP receptor signal chains in COX-2/mPGES-1 expression and PGE2-synthesis were analyzed in more detail using EP receptor specific agonists. Furthermore, the LDL-mediated signal transduction in THP-1 macrophages was analyzed by measuring ERK and Akt phosphorylation as well as transcriptional regulation of transcription factor Egr-1. COX-2 and mPGES-1 were induced in both THP-1 and U937 macrophages by the combination of TNFα and PGE2. Surprisingly, LDL dose-dependently increased the expression of mPGES-1 but repressed the expression of COX-2 on mRNA and protein levels in both cell lines. The interaction of LDL and PGE2 signal chains in mPGES-1 induction as well as PGE2-synthesis could be mimicked by through simultaneous stimulation with EP2 and EP4 agonists. In THP-1 macrophages, LDL induced Akt-phosphorylation, which could be blocked by a PI3 kinase inhibitor. Alongside blocking Akt-phosphorylation, the PI3K inhibitor inhibited LDL-mediated mPGES-1 induction; however, it did not attenuate the repression of COX-2 expression. LDL repressed basal ERK phosphorylation and expression of downstream transcription factor Egr-1, which might lead to inhibition of COX-2 expression. These findings suggest that simultaneous stimulation with a combination of TNFα, PGE2, and native LDL-activated signal chains in macrophage cell lines leads to maximal mPGES-1 activity, as well repression of COX-2 expression, by activating PI3K as well as repression of ERK/Egr-1 signal chains.


Assuntos
Dinoprostona , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos/metabolismo , Linhagem Celular , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Ciclo-Oxigenase 1/metabolismo , Prostaglandina H2/metabolismo , Fatores de Transcrição/metabolismo , RNA Mensageiro/metabolismo
3.
EMBO J ; 41(19): e108536, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35924455

RESUMO

During development, hematopoietic stem cells (HSCs) are produced from the hemogenic endothelium and will expand in a transient hematopoietic niche. Prostaglandin E2 (PGE2) is essential during vertebrate development and HSC specification, but its precise source in the embryo remains elusive. Here, we show that in the zebrafish embryo, PGE2 synthesis genes are expressed by distinct stromal cell populations, myeloid (neutrophils, macrophages), and endothelial cells of the caudal hematopoietic tissue. Ablation of myeloid cells, which produce the PGE2 precursor prostaglandin H2 (PGH2), results in loss of HSCs in the caudal hematopoietic tissue, which could be rescued by exogeneous PGE2 or PGH2 supplementation. Endothelial cells contribute by expressing the PGH2 import transporter slco2b1 and ptges3, the enzyme converting PGH2 into PGE2. Of note, differential niche cell expression of PGE2 biosynthesis enzymes is also observed in the mouse fetal liver. Taken altogether, our data suggest that the triad composed of neutrophils, macrophages, and endothelial cells sequentially and synergistically contributes to blood stem cell expansion during vertebrate development.


Assuntos
Hemangioblastos , Peixe-Zebra , Animais , Dinoprostona/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Prostaglandina H2/metabolismo
4.
Biomol NMR Assign ; 16(2): 225-229, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35445291

RESUMO

Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) catalyzes the isomerization of PGH2 to produce PGD2, an endogenous somenogen, in the brains of various mammalians. We recently reported that various other PGs also bind to L-PGDS, suggesting that it could serve as an extracellular carrier for PGs. Although the solution and crystal structure of L-PGDS has been determined, as has the structure of L-PGDS complexed PGH2 analog, a structural analysis of L-PGDS complexed with other PGs is needed in order to understand the mechanism responsible for the PG trapping. Here, we report the nearly complete 1H, 13C, and 15N backbone and side chain resonance assignments of the L-PGDS/PGJ2 complex and the binding site for PGJ2 on L-PGDS.


Assuntos
Oxirredutases Intramoleculares , Lipocalinas , Animais , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Mamíferos/metabolismo , Camundongos , Ressonância Magnética Nuclear Biomolecular , Prostaglandina H2/metabolismo
5.
Biochem Biophys Res Commun ; 569: 66-71, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34237429

RESUMO

Prostaglandin D2 (PGD2), an endogenous somnogen, is a unique PG that is secreted into the cerebrospinal fluid. PGD2 is a relatively fragile molecule and should be transported to receptors localized in the basal forebrain without degradation. However, it remains unclear how PGD2 is stably carried to such remote receptors. Here, we demonstrate that the PGD2-synthesizing enzyme, Lipocalin-type prostaglandin D synthase (L-PGDS), binds not only its substrate PGH2 but also its product PGD2 at two distinct binding sites for both ligands. This behaviour implys its PGD2 carrier function. Nevertheless, since the high affinity (Kd = âˆ¼0.6 µM) of PGD2 in the catalytic binding site is comparable to that of PGH2, it may act as a competitive inhibitor, while our binding assay exhibits only weak inhibition (Ki = 189 µM) of the catalytic reaction. To clarify this enigmatic behavior, we determined the solution structure of L-PGDS bound to one substrate analog by NMR and compared it with the two structures: one in the apo form and the other in substrate analogue complex with 1:2 stoichiometry. The structural comparisons showed clearly that open or closed forms of loops at the entrance of ligand binding cavity are regulated by substrate binding to two sites, and that the binding to a second non-catalytic binding site, which apparently substrate concentration dependent, induces opening of the cavity that releases the product. From these results, we propose that L-PGDS is a unique enzyme having a carrier function and a substrate-induced product-release mechanism.


Assuntos
Domínio Catalítico , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Prostaglandina D2/metabolismo , Prostaglandina H2/metabolismo , Animais , Sítios de Ligação , Biocatálise , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Cinética , Lipocalinas/química , Lipocalinas/genética , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Mutação , Prostaglandina D2/química , Prostaglandina H2/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
6.
J Cell Mol Med ; 23(12): 8343-8354, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31628732

RESUMO

Uncontrollable bleeding is still a worldwide killer. In this study, we aimed to investigate a novel approach to exhibit effective haemostatic properties, which could possibly save lives in various bleeding emergencies. According to the structure-based enzymatic design, we have engineered a novel single-chain hybrid enzyme complex (SCHEC), COX-1-10aa-TXAS. We linked the C-terminus of cyclooxygenase-1 (COX-1) to the N-terminus of the thromboxane A2 (TXA2 ) synthase (TXAS), through a 10-amino acid residue linker. This recombinant COX-1-10aa-TXAS can effectively pass COX-1-derived intermediate prostaglandin (PG) H2 (PGH2 ) to the active site of TXAS, resulting in an effective chain reaction property to produce the haemostatic prostanoid, TXA2 , rapidly. Advantageously, COX-1-10aa-TXAS constrains the production of other pro-bleeding prostanoids, such as prostacyclin (PGI2 ) and prostaglandin E2 (PGE2 ), through reducing the common substrate, PGH2 being passed to synthases which produce aforementioned prostanoids. Therefore, based on these multiple properties, this novel COX-1-10aa-TXAS indicated a powerful anti-bleeding ability, which could be used to treat a variety of bleeding situations and could even be useful for bleeding prone situations, including nonsteroidal anti-inflammatory drugs (NSAIDs)-resulted TXA2 -deficient and PGI2 -mediated bleeding disorders. This novel SCHEC has a great potential to be developed into a biological haemostatic agent to treat severe haemorrhage emergencies, which will prevent the complications of blood loss and save lives.


Assuntos
Aminoácidos/metabolismo , Ciclo-Oxigenase 1/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Tromboxano-A Sintase/metabolismo , Aminoácidos/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 1/genética , Dinoprostona/metabolismo , Epoprostenol/metabolismo , Células HEK293 , Hemorragia/prevenção & controle , Hemostáticos/metabolismo , Hemostáticos/farmacologia , Humanos , Camundongos Transgênicos , Agregação Plaquetária/efeitos dos fármacos , Prostaglandina H2/metabolismo , Proteínas Recombinantes de Fusão/genética , Tromboxano A2/metabolismo , Tromboxano-A Sintase/genética
7.
J Biol Chem ; 294(6): 1779-1793, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737317

RESUMO

Omega-6 polyunsaturated fatty acids were identified as essential nutrients in 1930. Their essentiality is largely due to their function as prostaglandin (PG) precursors. I spent most of my career in biochemistry determining how PG biosynthesis is regulated. PGs are lipid mediators formed in response to certain circulating hormones and cytokines. PGs act near their sites of synthesis to signal neighboring cells to coordinate their responses (e.g. when platelets interact with blood vessels). The committed step in PG synthesis is the conversion of a 20-carbon omega-6 fatty acid called arachidonic acid to prostaglandin endoperoxide H2 (PGH2). Depending on the tissue and the hormone or cytokine stimulus, this reaction is catalyzed by either cyclooxygenase-1 or cyclooxygenase-2 (COX-1 or COX-2). Once formed, PGH2 is converted, again depending on the context, to one of several downstream PG subtypes that act via specific G protein-coupled receptors. Nonsteroidal anti-inflammatory drugs (e.g. aspirin, ibuprofen, and naproxen) block PG synthesis by inhibiting COX-1 and COX-2. COX-2 is also inhibited by COX-2-selective inhibitors. Inhibition of COX-1 by low-dose aspirin prevents thrombosis. COX-2 inhibition reduces inflammation and pain. Investigating the mysteries of COXs anchored my scientific career. I attribute my successes to the great good fortune of having been surrounded by people who helped me make the most of my talents. I have written this reflection in a light-hearted fashion as a self-help essay, while highlighting the people and factors that most impacted me during my upbringing and then during my maturation and evolution as a biochemist.


Assuntos
Anti-Inflamatórios não Esteroides , Bioquímica/história , Ciclo-Oxigenase 1 , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/história , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 1/história , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/história , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/história , Inibidores de Ciclo-Oxigenase 2/farmacologia , História do Século XX , História do Século XXI , Humanos , Prostaglandina H2/história , Prostaglandina H2/metabolismo
8.
Life Sci ; 176: 26-34, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341178

RESUMO

AIMS: To determine the role of reactive oxygen species (ROS) on sodium nitroprusside (SNP)-induced tolerance. Additionally, we evaluated the role of ROS on NF-κB activation and pro-inflammatory cytokines production during SNP-induced tolerance. MAIN METHODS: To induce in vitro tolerance, endothelium-intact or -denuded aortic rings isolated from male Balb-c mice were incubated for 15, 30, 45 or 60min with SNP (10nmol/L). KEY FINDINGS: Tolerance to SNP was observed after incubation of endothelium-denuded, but not endothelium-intact aortas for 60min with this inorganic nitrate. Pre-incubation of denuded rings with tiron (superoxide anion (O2-) scavenger), and the NADPH oxidase inhibitors apocynin and atorvastatin reversed SNP-induced tolerance. l-NAME (non-selective NOS inhibitor) and l-arginine (NOS substrate) also prevented SNP-induced tolerance. Similarly, ibuprofen (non-selective cyclooxygenase (COX) inhibitor), nimesulide (selective COX-2 inhibitor), AH6809 (prostaglandin PGF2α receptor antagonist) or SQ29584 [PGH2/thromboxane TXA2 receptor antagonist] reversed SNP-induced tolerance. Increased ROS generation was detected in tolerant arteries and both tiron and atorvastatin reversed this response. Tiron prevented tolerance-induced increase on O2- and hydrogen peroxide (H2O2) levels. The increase onp65/NF-κB expression and TNF-α production in tolerant arteries was prevented by tiron. The major new finding of our study is that SNP-induced tolerance is mediated by NADPH-oxidase derived ROS and vasoconstrictor prostanoids derived from COX-2, which are capable of reducing the vasorelaxation induced by SNP. Additionally, we found that ROS mediate the activation of NF-κB and the production of TNF-α in tolerant arteries. SIGNIFICANCE: These findings identify putative molecular mechanisms whereby SNP induces tolerance in the vasculature.


Assuntos
Aorta/metabolismo , Ciclo-Oxigenase 2/metabolismo , Nitroprussiato/farmacologia , Prostaglandina H2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vasodilatação/efeitos dos fármacos
9.
Anal Biochem ; 511: 17-23, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27485270

RESUMO

Prostaglandin D2 synthase (PGDS) catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2). PGD2 produced by hematopoietic prostaglandin D2 synthase (H-PGDS) in mast cells and Th2 cells is proposed to be a mediator of allergic and inflammatory responses. Consequently, inhibitors of H-PGDS represent potential therapeutic agents for the treatment of inflammatory diseases such as asthma. Due to the instability of the PGDS substrate PGH2, an in-vitro enzymatic assay is not feasible for large-scale screening of H-PGDS inhibitors. Herein, we report the development of a competition binding assay amenable to high-throughput screening (HTS) in a scintillation proximity assay (SPA) format. This assay was used to screen an in-house compound library of approximately 280,000 compounds for novel H-PGDS inhibitors. The hit rate of the H-PGDS primary screen was found to be 4%. This high hit rate suggests that the active site of H-PGDS can accommodate a large diversity of chemical scaffolds. For hit prioritization, these initial hits were rescreened at a lower concentration in SPA and tested in the LAD2 cell assay. 116 compounds were active in both assays with IC50s ranging from 6 to 807 nM in SPA and 82 nM to 10 µM in the LAD2 cell assay.


Assuntos
Inibidores Enzimáticos/química , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/química , Lipocalinas/antagonistas & inibidores , Lipocalinas/química , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Prostaglandina D2/biossíntese , Prostaglandina D2/sangue , Prostaglandina H2/química , Prostaglandina H2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Arch Biochem Biophys ; 603: 29-37, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27177970

RESUMO

Through linking inducible cyclooxygenase (COX)-2 with microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1), a Single-Chain Enzyme Complex (SCEC, COX-2-10aa-mPGES-1) was engineered to mimic a specific inflammatory PGE2 biosynthesis from omega-6 fatty acid, arachidonic acid (AA), by eliminating involvements of non-inducible COX-1 and other PGE2 synthases. Using the SCEC, we characterized coupling reactions between COX-2 and mPGES-1 at 1:1 ratio of inflammatory PGE2 production. AA demonstrated two phase activities to regulate inflammatory PGE2 production. In the first phase (<2 µM), AA was a COX-2 substrate and converted to increasing production of PGE2. In the second phase with a further increased AA level (2-10 µM), AA bound to mPGES-1 and inhibited the PGE2 production. The SCEC study was identical to the co-expression of COX-2 and mPGES-1. This was further confirmed by using mPGES-1 and PGH2 as a direct enzyme target and substrate, respectively. Furthermore, the carboxylic acid group of AA binding to R67 and R70 of mPGES-1 was identified by X-ray structure-based docking and mutagenesis. mPGES-1 mutants, R70A, R70K, R67A and R67K, lost 40-100% binding to [(14)C]-AA. To conclude, a cellular model, in which AA is involved in self-controlling initial initiating and later resolving inflammation by its two phase activities, was discussed.


Assuntos
Ácido Araquidônico/química , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Prostaglandina H2/metabolismo , Prostaglandina-E Sintases/metabolismo , Anti-Inflamatórios não Esteroides/uso terapêutico , Domínio Catalítico , Cristalografia por Raios X , Ciclo-Oxigenase 2/genética , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Inflamação , Mutagênese Sítio-Dirigida , Prostaglandina-E Sintases/genética , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA