Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Pediatr Neurol ; 157: 5-13, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833907

RESUMO

BACKGROUND: Congenital myasthenic syndromes (CMS) are a group of inherited neuromuscular junction (NMJ) disorders arising from gene variants encoding diverse NMJ proteins. Recently, the VAMP1 gene, responsible for encoding the vesicle-associated membrane protein 1 (VAMP1), has been associated with CMS. METHODS: This study presents a characterization of five new individuals with VAMP1-related CMS, providing insights into the phenotype. RESULTS: The individuals with VAMP1-related CMS exhibited early disease onset, presenting symptoms prenatally or during the neonatal period, alongside severe respiratory involvement and feeding difficulties. Generalized weakness at birth was a common feature, and none of the individuals achieved independent walking ability. Notably, all cases exhibited scoliosis. The clinical course remained stable, without typical exacerbations seen in other CMS types. The response to anticholinesterase inhibitors and salbutamol was only partial, but the addition of 3,4-diaminopyridine (3,4-DAP) led to significant and substantial improvements, suggesting therapeutic benefits of 3,4-DAP for managing VAMP1-related CMS symptoms. Noteworthy is the identification of the VAMP1 (NM_014231.5): c.340delA; p.Ile114SerfsTer72 as a founder variant in the Iberian Peninsula and Latin America. CONCLUSIONS: This study contributes valuable insights into VAMP1-related CMS, emphasizing their early onset, arthrogryposis, facial and generalized weakness, respiratory involvement, and feeding difficulties. Furthermore, the potential efficacy of 3,4-DAP as a useful therapeutic option warrants further exploration. The findings have implications for clinical management and genetic counseling in affected individuals. Additional research is necessary to elucidate the long-term outcomes of VAMP1-related CMS.


Assuntos
Amifampridina , Síndromes Miastênicas Congênitas , Fenótipo , Proteína 1 Associada à Membrana da Vesícula , Humanos , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , Feminino , Masculino , Amifampridina/farmacologia , Proteína 1 Associada à Membrana da Vesícula/genética , Criança , Adolescente , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/farmacologia , 4-Aminopiridina/uso terapêutico , Pré-Escolar , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Lactente
2.
Neuropediatrics ; 55(3): 200-204, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38531369

RESUMO

Congenital myasthenic syndrome-25 (CMS-25) is an autosomal recessive neuromuscular disorder caused by a homozygous mutation in VAMP1 gene. To date, only eight types of allelic variants in VAMP1 gene have been reported in 12 cases of CMS-25. Here, we report on an 8-year-old boy with motor developmental delay, axial hypotonia, myopathic face, muscle weakness, strabismus, ptosis, pectus carinatum, kyphoscoliosis, joint contractures, joint laxity, seizures, and recurrent nephrolithiasis. He also had feeding difficulties and recurrent aspiration pneumonia. Brain magnetic resonance imaging at 20 months of age showed left focal cerebellar hypoplasia. Genetic analysis revealed a homozygous missense variant of c.202C > T (p.Arg68Ter) in the VAMP1 gene. Treatment with oral pyridostigmine was started, which resulted in mild improvement in muscle strength. Salbutamol syrup was added a few months later, but no significant improvement was observed. This case report presents novel findings such as focal cerebellar hypoplasia and nephrolithiasis in VAMP1-related CMS-25. Consequently, this case report extends the clinical spectrum. Further studies are needed to expand the genotype-phenotype correlations in VAMP1-related CMS-25.


Assuntos
Síndromes Miastênicas Congênitas , Proteína 1 Associada à Membrana da Vesícula , Humanos , Masculino , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/fisiopatologia , Síndromes Miastênicas Congênitas/diagnóstico , Criança , Proteína 1 Associada à Membrana da Vesícula/genética , Mutação de Sentido Incorreto
3.
J Hum Genet ; 69(5): 187-196, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38355957

RESUMO

We report the cases of two Spanish pediatric patients with hypotonia, muscle weakness and feeding difficulties at birth. Whole-exome sequencing (WES) uncovered two new homozygous VAMP1 (Vesicle Associated Membrane Protein 1) splicing variants, NM_014231.5:c.129+5 G > A in the boy patient (P1) and c.341-24_341-16delinsAGAAAA in the girl patient (P2). This gene encodes the vesicle-associated membrane protein 1 (VAMP1) that is a component of a protein complex involved in the fusion of synaptic vesicles with the presynaptic membrane. VAMP1 has a highly variable C-terminus generated by alternative splicing that gives rise to three main isoforms (A, B and D), being VAMP1A the only isoform expressed in the nervous system. In order to assess the pathogenicity of these variants, expression experiments of RNA for VAMP1 were carried out. The c.129+5 G > A and c.341-24_341-16delinsAGAAAA variants induced aberrant splicing events resulting in the deletion of exon 2 (r.5_131del; p.Ser2TrpfsTer7) in the three isoforms in the first case, and the retention of the last 14 nucleotides of the 3' of intron 4 (r.340_341ins341-14_341-1; p.Ile114AsnfsTer77) in the VAMP1A isoform in the second case. Pathogenic VAMP1 variants have been associated with autosomal dominant spastic ataxia 1 (SPAX1) and with autosomal recessive presynaptic congenital myasthenic syndrome (CMS). Our patients share the clinical manifestations of CMS patients with two important differences: they do not show the typical electrophysiological pattern that suggests pathology of pre-synaptic neuromuscular junction, and their muscular biopsies present hypertrophic fibers type 1. In conclusion, our data expand both genetic and phenotypic spectrum associated with VAMP1 variants.


Assuntos
Homozigoto , Síndromes Miastênicas Congênitas , Fenótipo , Proteína 1 Associada à Membrana da Vesícula , Feminino , Humanos , Masculino , Processamento Alternativo/genética , Sequenciamento do Exoma , Mutação , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Isoformas de Proteínas/genética , Splicing de RNA/genética , Proteína 1 Associada à Membrana da Vesícula/genética , Lactente , Pré-Escolar
4.
Mol Psychiatry ; 29(5): 1382-1391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38273110

RESUMO

Deficient gamma oscillations in prefrontal cortex (PFC) of individuals with schizophrenia appear to involve impaired inhibitory drive from parvalbumin-expressing interneurons (PVIs). Inhibitory drive from PVIs is regulated, in part, by RNA binding fox-1 homolog 1 (Rbfox1). Rbfox1 is spliced into nuclear or cytoplasmic isoforms, which regulate alternative splicing or stability of their target transcripts, respectively. One major target of cytoplasmic Rbfox1 is vesicle associated membrane protein 1 (Vamp1). Vamp1 mediates GABA release probability from PVIs, and the loss of Rbfox1 reduces Vamp1 levels which in turn impairs cortical inhibition. In this study, we investigated if the Rbfox1-Vamp1 pathway is altered in PVIs in PFC of individuals with schizophrenia by utilizing a novel strategy that combines multi-label in situ hybridization and immunohistochemistry. In the PFC of 20 matched pairs of schizophrenia and comparison subjects, cytoplasmic Rbfox1 protein levels were significantly lower in PVIs in schizophrenia and this deficit was not attributable to potential methodological confounds or schizophrenia-associated co-occurring factors. In a subset of this cohort, Vamp1 mRNA levels in PVIs were also significantly lower in schizophrenia and were predicted by lower cytoplasmic Rbfox1 protein levels across individual PVIs. To investigate the functional impact of Rbfox1-Vamp1 alterations in schizophrenia, we simulated the effect of lower GABA release probability from PVIs on gamma power in a computational model network of pyramidal neurons and PVIs. Our simulations showed that lower GABA release probability reduces gamma power by disrupting network synchrony while minimally affecting network activity. Finally, lower GABA release probability synergistically interacted with lower strength of inhibition from PVIs in schizophrenia to reduce gamma power non-linearly. Together, our findings suggest that the Rbfox1-Vamp1 pathway in PVIs is impaired in schizophrenia and that this alteration likely contributes to deficient PFC gamma power in the illness.


Assuntos
Interneurônios , Córtex Pré-Frontal , Fatores de Processamento de RNA , Esquizofrenia , Proteína 1 Associada à Membrana da Vesícula , Córtex Pré-Frontal/metabolismo , Humanos , Esquizofrenia/metabolismo , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Masculino , Feminino , Adulto , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteína 1 Associada à Membrana da Vesícula/genética , Pessoa de Meia-Idade , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Transdução de Sinais/fisiologia , Ritmo Gama/fisiologia , RNA Mensageiro/metabolismo
5.
J Affect Disord ; 349: 132-144, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211741

RESUMO

BACKGROUND: Synaptic plasticity changes in presynaptic terminals or postsynaptic membranes play a critical role in cognitive impairments and emotional disorders, but the underlying molecular mechanisms in depression remain largely unknown. METHODS: The regulation effects of F-box and leucine-rich repeat protein 20 (FBXL20), vesicular glutamate transporter 1 (VGLUT1) and vesicle-associated membrane protein 1 (VAMP1) on synaptic plasticity and depressive-like behaviors examined by proteomics analysis, viral stereotaxic injection, transmission electron microscope and biochemical methods. The glutamate release detected by fluorescent probe in cultured primary pyramidal neurons. RESULTS: We found that chronic unpredictable mild stress (CUMS) induced significant synaptic deficits within hippocampus of depressed rats, accompanied with the decreased expression of VGLUT1 and VAMP1. Moreover, knockdown of VGLUT1 or VAMP1 in hippocampal pyramidal neurons resulted in abnormal glutamatergic neurotransmitter release. In addition, we found that the E3 ubiquitin ligase FBXL20 was increased within hippocampus, which may promote ubiquitination and degradation of VGLUT1 and VAMP1, and thus resulted in the reduction of glutamatergic neurotransmitter release, the disruptions of synaptic transmission and the induction of depression-like behaviors in rats. In contrast, shRNA knockdown of FBXL20 within the hippocampus of depressed rats significantly ameliorated synaptic damage and depression-like behaviors. LIMITATION: Only one type of depression model was used in the present study, while other animal models should be used in the future to confirm the underlying mechanisms reported here. CONCLUSIONS: This study provides new insights that inhibiting FBXL20 pathway in depressed rats may be an effective strategy to rescue synaptic transmission and depression-like behaviors.


Assuntos
Depressão , Proteína 1 Associada à Membrana da Vesícula , Animais , Ratos , Depressão/metabolismo , Hipocampo/metabolismo , Neurotransmissores , Transmissão Sináptica , Proteína 1 Associada à Membrana da Vesícula/metabolismo
6.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674850

RESUMO

The trafficking of transient receptor potential (TRP) channels to the plasma membrane and the release of calcitonin gene-related peptide (CGRP) from trigeminal ganglion neurons (TGNs) are implicated in some aspects of chronic migraines. These exocytotic processes are inhibited by cleavage of SNAREs with botulinum neurotoxins (BoNTs); moreover, type A toxin (/A) clinically reduces the frequency and severity of migraine attacks but not in all patients for unknown reasons. Herein, neonatal rat TGNs were stimulated with allyl isothiocyanate (AITC), a TRPA1 agonist, and dose relationships were established to link the resultant exocytosis of CGRP with Ca2+ influx. The CGRP release, quantified by ELISA, was best fit by a two-site model (EC50 of 6 and 93 µM) that correlates with elevations in intracellular Ca2+ [Ca2+]i revealed by time-lapse confocal microscopy of fluo-4-acetoxymethyl ester (Fluo-4 AM) loaded cells. These signals were all blocked by two TRPA1 antagonists, HC-030031 and A967079. At low [AITC], [Ca2+]i was limited because of desensitisation to the agonist but rose for concentrations > 0.1 mM due to a deduced non-desensitising second phase of Ca2+ influx. A recombinant BoNT chimera (/DA), which cleaves VAMP1/2/3, inhibited AITC-elicited CGRP release to a greater extent than SNAP-25-cleaving BoNT/A. /DA also proved more efficacious against CGRP efflux evoked by a TRPV1 agonist, capsaicin. Nerve growth factor (NGF), a pain-inducing sensitiser of TGNs, enhanced the CGRP exocytosis induced by low [AITC] only. Both toxins blocked NGF-induced neuropeptide secretion and its enhancement of the response to AITC. In conclusion, NGF sensitisation of sensory neurons involves TRPA1, elevated Ca2+ influx, and CGRP exocytosis, mediated by VAMP1/2/3 and SNAP-25 which can be attenuated by the BoNTs.


Assuntos
Toxinas Botulínicas , Canais de Potencial de Receptor Transitório , Ratos , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Toxinas Botulínicas/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/metabolismo
7.
FEBS J ; 290(9): 2320-2337, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36047592

RESUMO

Signal peptide peptidase (SPP) and SPP-like (SPPL) aspartyl intramembrane proteases are known to contribute to sequential processing of type II-oriented membrane proteins referred to as regulated intramembrane proteolysis. The ER-resident family members SPP and SPPL2c were shown to also cleave tail-anchored proteins, including selected SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins facilitating membrane fusion events. Here, we analysed whether the related SPPL2a and SPPL2b proteases, which localise to the endocytic or late secretory pathway, are also able to process SNARE proteins. Therefore, we screened 18 SNARE proteins for cleavage by SPPL2a and SPPL2b based on cellular co-expression assays, of which the proteins VAMP1, VAMP2, VAMP3 and VAMP4 were processed by SPPL2a/b demonstrating the capability of these two proteases to proteolyse tail-anchored proteins. Cleavage of the four SNARE proteins was scrutinised at the endogenous level upon SPPL2a/b inhibition in different cell lines as well as by analysing VAMP1-4 levels in tissues and primary cells of SPPL2a/b double-deficient (dKO) mice. Loss of SPPL2a/b activity resulted in an accumulation of VAMP1-4 in a cell type- and tissue-dependent manner, identifying these proteins as SPPL2a/b substrates validated in vivo. Therefore, we propose that SPPL2a/b control cellular levels of VAMP1-4 by initiating the degradation of these proteins, which might impact cellular trafficking.


Assuntos
Ácido Aspártico Endopeptidases , Proteínas de Membrana , Animais , Camundongos , Ácido Aspártico Endopeptidases/metabolismo , Homeostase , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Proteína 1 Associada à Membrana da Vesícula/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(33): e2203632119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35951651

RESUMO

Epilepsy is a common neurological disorder, which has been linked to mutations or deletions of RNA binding protein, fox-1 homolog (Caenorhabditis elegans) 3 (RBFOX3)/NeuN, a neuronal splicing regulator. However, the mechanism of seizure mediation by RBFOX3 remains unknown. Here, we show that mice with deletion of Rbfox3 in gamma-aminobutyric acid (GABA) ergic neurons exhibit spontaneous seizures and high premature mortality due to increased presynaptic release, postsynaptic potential, neuronal excitability, and synaptic transmission in hippocampal dentate gyrus granule cells (DGGCs). Attenuating early excitatory gamma-aminobutyric acid (GABA) action by administering bumetanide, an inhibitor of early GABA depolarization, rescued premature mortality. Rbfox3 deletion reduced hippocampal expression of vesicle-associated membrane protein 1 (VAMP1), a GABAergic neuron-specific presynaptic protein. Postnatal restoration of VAMP1 rescued premature mortality and neuronal excitability in DGGCs. Furthermore, Rbfox3 deletion in GABAergic neurons showed fewer neuropeptide Y (NPY)-expressing GABAergic neurons. In addition, deletion of Rbfox3 in NPY-expressing GABAergic neurons lowered intrinsic excitability and increased seizure susceptibility. Our results establish RBFOX3 as a critical regulator and possible treatment path for epilepsy.


Assuntos
Proteínas de Ligação a DNA , Neurônios GABAérgicos , Proteínas do Tecido Nervoso , Neuropeptídeo Y , Convulsões , Proteína 1 Associada à Membrana da Vesícula , Animais , Bumetanida/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Giro Denteado/metabolismo , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/metabolismo , Deleção de Genes , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/metabolismo , Convulsões/genética , Convulsões/metabolismo , Proteína 1 Associada à Membrana da Vesícula/genética , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
Neural Plast ; 2022: 1353778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494481

RESUMO

Surgery-induced microglial activation is critical in mediating postoperative cognitive dysfunction (POCD) in elderly patients, where the important protective effect of dexmedetomidine has been indicated. However, the mechanisms of action of dexmedetomidine during the neuroinflammatory response that underlies POCD remain largely unknown. We found that lipopolysaccharide (LPS) induced substantial inflammatory responses in primary and BV2 microglial cells. The screening of differentially expressed miRNAs revealed that miR-103a-3p was downregulated in these cell culture models. Overexpression of miR-103a-3p mimics and inhibitors suppressed and enhanced the release of inflammatory factors, respectively. VAMP1 expression was upregulated in LPS-treated primary and BV-2 microglial cells, and it was validated as a downstream target of miR-103-3p. VAMP1-knockdown significantly inhibited the LPS-induced inflammatory response. Dexmedetomidine treatment markedly inhibited LPS-induced inflammation and the expression of VAMP1, and miR-103a-3p expression reversed this inhibition. Moreover, dexmedetomidine mitigated microglial activation and the associated inflammatory response in a rat model of surgical trauma that mimicked POCD. In this model, dexmedetomidine reversed miR-103a-3p and VAMP1 expression; this effect was abolished by miR-103a-3p overexpression. Taken together, the data show that miR-103a-3p/VAMP1 is critical for surgery-induced microglial activation of POCD.


Assuntos
Dexmedetomidina , MicroRNAs , Complicações Cognitivas Pós-Operatórias , Idoso , Animais , Dexmedetomidina/metabolismo , Dexmedetomidina/farmacologia , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Ratos , Proteína 1 Associada à Membrana da Vesícula/metabolismo
10.
Cancer Biother Radiopharm ; 37(7): 560-568, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34009009

RESUMO

Background: This study intended to investigate the mechanisms underlying the epidermal growth factor receptor (EGFR) mutations in nonsmall cell lung cancer (NSCLC). Materials and Methods: Lung cancer tissue samples were collected from 20 patients with NSCLC (6 EGFR mutation types assigned into 2 categories and 14 EGFR wild types assigned to 4 categories). The samples were subjected to transcriptome sequencing, followed by identification of the differentially expressed mRNAs (DEMs), differentially expressed lncRNAs (DELs), and differentially expressed circRNAs (DECs) between the mutation and nonmutation groups. Function analysis and microRNA (miRNA) prediction for DEMs were performed. The correlations between long noncoding RNA (lncRNA)/circular RNA (circRNA) and messenger RNA (mRNA) were analyzed. In addition, the targeting lncRNA and circRNA of miRNA were predicted. Finally, competing endogenous RNA (ceRNA) network was constructed, and survival analysis for the mRNAs involved in the network was performed. Results: In total, 323 DEMs, 284 DELs, and 224 DECs were identified between EGFR mutation and nonmutation groups. The DEMs were significantly involved in gene ontology functions related to cilium morphogenesis and assembly. ceRNA networks were constructed based on the DEMs, DELs, DECs, and predicted miRNAs. Survival analysis showed that four genes in the ceRNA network, including ABCA3, ATL2, VAMP1, and APLN, were significantly associated with prognosis. The four genes were involved in several ceRNA pathways, including RP1-191J18/circ_000373/miR-520a-5p/ABCA3, RP5-1014D13/let-7i-5p/ATL2, circ_000373/miR-1293/VAMP1, and RP1-191J18/circ_000373/miR-378a-5p/APLN. Conclusion: EGFR mutations in NSCLC may be associated with cilium dysfunction and complex ceRNA regulatory mechanisms. The key RNAs in the ceRNA network may be used as promising biomarkers for predicting EGFR mutations in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Proteína 1 Associada à Membrana da Vesícula/genética
11.
Neurobiol Learn Mem ; 185: 107509, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454100

RESUMO

During development, genetic and environmental factors interact to modify specific phenotypes. Both in humans and in animal models, early adversities influence cognitive flexibility, an important brain function related to behavioral adaptation to variations in the environment. Abnormalities in cognitive functions are related to changes in synaptic connectivity in the prefrontal cortex (PFC), and altered levels of synaptic proteins. We investigated if individual variations in the expression of a network of genes co-expressed with the synaptic protein VAMP1 in the prefrontal cortex moderate the effect of early environmental quality on the performance of children in cognitive flexibility tasks. Genes overexpressed in early childhood and co-expressed with the VAMP1 gene in the PFC were selected for study. SNPs from these genes (post-clumping) were compiled in an expression-based polygenic score (PFC-ePRS-VAMP1). We evaluated cognitive performance of the 4 years-old children in two cohorts using similar cognitive flexibility tasks. In the first cohort (MAVAN) we utilized two CANTAB tasks: (a) the Intra-/Extra-dimensional Set Shift (IED) task, and (b) the Spatial Working Memory (SWM) task. In the second cohort, GUSTO, we used the Dimensional Change Card Sort (DCCS) task. The results show that in 4 years-old children, the PFC-ePRS-VAMP1 network moderates responsiveness to the effects of early adversities on the performance in attentional flexibility tests. The same result was observed for a spatial working memory task. Compared to attentional flexibility, reversal learning showed opposite effects of the environment, as moderated by the ePRS. A parallel ICA analysis was performed to identify relationships between whole-brain voxel based gray matter density and SNPs that comprise the PFC-ePRS-VAMP1. The early environment predicts differences in gray matter content in regions such as prefrontal and temporal cortices, significantly associated with a genetic component related to Wnt signaling pathways. Our data suggest that a network of genes co-expressed with VAMP1 in the PFC moderates the influence of early environment on cognitive function in children.


Assuntos
Cognição/fisiologia , Redes Reguladoras de Genes/fisiologia , Córtex Pré-Frontal/metabolismo , Proteína 1 Associada à Membrana da Vesícula/fisiologia , Atenção/fisiologia , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Neuroimagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Reversão de Aprendizagem/fisiologia , Meio Social , Memória Espacial/fisiologia , Proteína 1 Associada à Membrana da Vesícula/metabolismo
12.
Pharmacol Res ; 170: 105722, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116208

RESUMO

A progressive increase in drug craving following drug exposure is an important trigger of relapse. CircularRNAs (CircRNAs), key regulators of gene expression, play an important role in neurological diseases. However, the role of circRNAs in drug craving is unclear. In the present study, we trained mice to morphine conditioned place preference (CPP) and collected the nucleus accumbens (NAc) sections on abstinence day 1 (AD1) and day 14 (AD14) for RNA-sequencing. CircTmeff-1, which was highly expressed in the NAc core, was associated with incubation of context-induced morphine craving. The gain- and loss- of function showed that circTmeff-1 was a positive regulator of incubation. Simultaneously, the expression of miR-541-5p and miR-6934-3p were down-regulated in the NAc core during the incubation period. The dual luciferase reporter, RNA pulldown, and fluorescence insitu hybridization assays confirmed that miR-541-5p and miR-6934-3p bind to circTmeff-1 selectively. Furthermore, bioinformatics and western blot analysis suggested that vesicle-associated membrane protein 1 (VAMP1) and neurofascin (NFASC), both overlapping targets of miR-541-5p and miR-6934-3p, were highly expressed during incubation. Lastly, AAV-induced down-regulation of circTmeff-1 decreased VAMP1 and NFASC expression and incubation of morphine craving. These findings suggested that circTmeff-1, a novel circRNA, promotes incubation of context-induced morphine craving by sponging miR-541/miR-6934 in the NAc core. Thus, circTmeff-1 represents a potential therapeutic target for context-induced opioid craving, following prolonged abstinence.


Assuntos
Comportamento Animal , Fissura , Comportamento de Procura de Droga , Dependência de Morfina/metabolismo , Núcleo Accumbens/metabolismo , RNA Circular/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Sinais (Psicologia) , Modelos Animais de Doenças , Regulação da Expressão Gênica , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Dependência de Morfina/genética , Dependência de Morfina/fisiopatologia , Dependência de Morfina/psicologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Núcleo Accumbens/fisiopatologia , RNA Circular/genética , Proteína 1 Associada à Membrana da Vesícula/genética , Proteína 1 Associada à Membrana da Vesícula/metabolismo
13.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809359

RESUMO

In response to cardiac ischemia/reperfusion, proteolysis mediated by extracellular matrix metalloproteinase inducer (EMMPRIN) and its secreted ligand cyclophilin-A (CyPA) significantly contributes to cardiac injury and necrosis. Here, we aimed to investigate if, in addition to the effect on the funny current (I(f)), Ivabradine may also play a role against cardiac necrosis by reducing EMMPRIN/CyPA-mediated cardiac inflammation. In a porcine model of cardiac ischemia/reperfusion (IR), we found that administration of 0.3 mg/kg Ivabradine significantly improved cardiac function and reduced cardiac necrosis by day 7 after IR, detecting a significant increase in cardiac CyPA in the necrotic compared to the risk areas, which was inversely correlated with the levels of circulating CyPA detected in plasma samples from the same subjects. In testing whether Ivabradine may regulate the levels of CyPA, no changes in tissue CyPA were found in healthy pigs treated with 0.3 mg/kg Ivabradine, but interestingly, when analyzing the complex EMMPRIN/CyPA, rather high glycosylated EMMPRIN, which is required for EMMPRIN-mediated matrix metalloproteinase (MMP) activation and increased CyPA bonding to low-glycosylated forms of EMMPRIN were detected by day 7 after IR in pigs treated with Ivabradine. To study the mechanism by which Ivabradine may prevent secretion of CyPA, we first found that Ivabradine was time-dependent in inhibiting co-localization of CyPA with the granule exocytosis marker vesicle-associated membrane protein 1 (VAMP1). However, Ivabradine had no effect on mRNA expression nor in the proteasome and lysosome degradation of CyPA. In conclusion, our results point toward CyPA, its ligand EMMPRIN, and the complex CyPA/EMMPRIN as important targets of Ivabradine in cardiac protection against IR.


Assuntos
Basigina/genética , Ciclofilina A/genética , Infarto do Miocárdio/tratamento farmacológico , Proteína 1 Associada à Membrana da Vesícula/genética , Animais , Biomarcadores/metabolismo , Cardiotônicos/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Ivabradina/farmacologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Suínos
14.
Eur J Paediatr Neurol ; 31: 54-60, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33631708

RESUMO

Three unrelated girls, all born to consanguineous parents had respiratory distress, severe hypotonia at birth along with prominent fatigable muscle weakness and characteristic myopathic facies. In addition, patient 1 had fatigable ptosis, ophthalmoparesis and profound bulbar weakness and required nasogastric feeding from birth. A feeding gastrostomy was inserted at 9 months of age. She continued to have severe bulbar and limb weakness with dropped head at 5 years of age. Patient 2 and 3 did not have ocular signs at the time of initial presentation during infancy and at 2 years of age respectively. None of the patients attained independent walking. Patient 3, currently aged 16 years continues to be wheelchair bound and has only mild non-progressive bulbar weakness with normal cognitive development. Muscle biopsy in patient 1 and 3 showed predominant myopathic features admixed with small sized (atrophic/hypoplastic) fibres. Next generation sequencing confirmed the presence of a homozygous loss of function VAMP1 mutations in all three patients: A single nucleotide deletion resulting in frameshift: c.66delT (p.Gly23AlafsTer6) in patient 1 and nonsense mutations c.202C>T (pArg68Ter) and c.97C>T (p.Arg33Ter) in patient 2 and 3 respectively. Minimal but definite improvement in muscle power with pyridostigmine was reported in patients 1 and 2. This is the first report of VAMP1 mutations causing CMS from the Indian subcontinent, describing a clinically recognizable severe form of VAMP1-related CMS and highlighting the need for a strong index of suspicion for early genetic diagnosis of potentially treatable CMS phenotypes.


Assuntos
Síndromes Miastênicas Congênitas/genética , Proteína 1 Associada à Membrana da Vesícula/genética , Adolescente , Criança , Pré-Escolar , Consanguinidade , Feminino , Homozigoto , Humanos , Índia , Lactente , Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Linhagem , Fenótipo
15.
Neuromuscul Disord ; 30(7): 611-615, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32616363

RESUMO

Congenital myasthenic syndrome comprises several genetic disorders that impair neuromuscular junction transmission. Causative mutations occur in at least 30 genes, approximately 6-8% of which are presynaptic. One such gene, VAMP1, encodes vesicle-associated membrane protein-1, which is crucial in the formation and fusion of synaptic vesicles with the presynaptic membrane at the neuromuscular junction. VAMP1 mutations are associated with two main phenotypes: a) autosomal recessive congenital myasthenic syndrome and b) autosomal dominant spastic ataxia 1. We report a girl from a consanguineous Saudi family presenting with hypotonia, developmental delay, feeding difficulties and floppiness since birth. Comprehensive genetic testing revealed a homozygous splicing mutation in VAMP1. RT-PCR confirmed the presence of an aberrant transcript causing skipping of exon 2 in the gene.


Assuntos
Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Brometo de Piridostigmina/uso terapêutico , Proteína 1 Associada à Membrana da Vesícula/genética , Pré-Escolar , Feminino , Humanos , Hipotonia Muscular/etiologia , Mutação/genética
16.
J Biol Chem ; 295(20): 6831-6848, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32209659

RESUMO

Major depression is a prevalent affective disorder characterized by recurrent low mood. It presumably results from stress-induced deteriorations of molecular networks and synaptic functions in brain reward circuits of genetically-susceptible individuals through epigenetic processes. Epigenetic regulator microRNA-15b inhibits neuronal progenitor proliferation and is up-regulated in the medial prefrontal cortex of mice that demonstrate depression-like behavior, indicating the contribution of microRNA-15 to major depression. Using a mouse model of major depression induced by chronic unpredictable mild stress (CUMS), here we examined the effects of microRNA-15b on synapses and synaptic proteins in the nucleus accumbens of these mice. The application of a microRNA-15b antagomir into the nucleus accumbens significantly reduced the incidence of CUMS-induced depression and reversed the attenuations of excitatory synapse and syntaxin-binding protein 3 (STXBP3A)/vesicle-associated protein 1 (VAMP1) expression. In contrast, the injection of a microRNA-15b analog into the nucleus accumbens induced depression-like behavior as well as attenuated excitatory synapses and STXBP3A/VAMP1 expression similar to the down-regulation of these processes induced by the CUMS. We conclude that microRNA-15b-5p may play a critical role in chronic stress-induced depression by decreasing synaptic proteins, innervations, and activities in the nucleus accumbens. We propose that the treatment of anti-microRNA-15b-5p may convert stress-induced depression into resilience.


Assuntos
Depressão/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Proteínas Munc18/biossíntese , Núcleo Accumbens/metabolismo , Sinapses/metabolismo , Proteína 1 Associada à Membrana da Vesícula/biossíntese , Animais , Depressão/genética , Depressão/patologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Proteínas Munc18/genética , Núcleo Accumbens/patologia , Sinapses/genética , Sinapses/patologia , Proteína 1 Associada à Membrana da Vesícula/genética
17.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31906003

RESUMO

Targeted delivery of potent inhibitor of cytokine/pain-mediator into inflammatory or pain-sensing cells is a promising avenue for treating chronic pain, a world-wide major healthcare burden. An unmet need exists for a specific and effective delivery strategy. Herein, we describe a new approach using sortase to site-specifically ligate a non-toxic botulinum neurotoxin D (BoNT/D) core-therapeutic (synaptobrevin-cleaving protease and translocation domains) to cell-specific targeting ligands. An engineered core-therapeutic was efficiently ligated to IL-1ß ligand within minutes. The resultant conjugate specifically entered into cultured murine primary macrophages, cleaved synaptobrevin 3 and inhibited LPS/IFN-γ evoked IL-6 release. Likewise, a CGRP receptor antagonist ligand delivered BoNT/D protease into sensory neurons and inhibited K+-evoked substance P release. As cytokines and neuropeptides are major regulators of inflammation and pain, blocking their release by novel engineered inhibitors highlights their therapeutic potential. Our report describes a new and widely-applicable strategy for the production of targeted bio-therapeutics for numerous chronic diseases.


Assuntos
Toxinas Botulínicas/farmacologia , Dor Crônica/tratamento farmacológico , Engenharia de Proteínas/métodos , Animais , Toxinas Botulínicas/genética , Sobrevivência Celular/efeitos dos fármacos , Citocinas , Macrófagos , Camundongos , Neuropeptídeos , Peptídeo Hidrolases/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Substância P/efeitos dos fármacos , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteína 3 Associada à Membrana da Vesícula
18.
Neuromolecular Med ; 20(2): 205-214, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29696584

RESUMO

Congenital myasthenic syndromes (CMS) are heterogeneous genetic diseases in which neuromuscular transmission is compromised. CMS resembling the Lambert-Eaton myasthenic syndrome (CMS-LEMS) are emerging as a rare group of distinct presynaptic CMS that share the same electrophysiological features. They have low compound muscular action potential amplitude that increment after brief exercise (facilitation) or high-frequency repetitive nerve stimulation. Although clinical signs similar to LEMS can be present, the main hallmark is the electrophysiological findings, which are identical to autoimmune LEMS. CMS-LEMS occurs due to deficits in acetylcholine vesicle release caused by dysfunction of different components in its pathway. To date, the genes that have been associated with CMS-LEMS are AGRN, SYT2, MUNC13-1, VAMP1, and LAMA5. Clinicians should keep in mind these newest subtypes of CMS-LEMS to achieve the correct diagnosis and therapy. We believe that CMS-LEMS must be included as an important diagnostic clue to genetic investigation in the diagnostic algorithms to CMS. We briefly review the main features of CMS-LEMS.


Assuntos
Síndrome Miastênica de Lambert-Eaton/diagnóstico , Síndromes Miastênicas Congênitas/diagnóstico , Acetilcolina/fisiologia , Agrina/genética , Autoimunidade , Sinalização do Cálcio , Eletrofisiologia , Exercício Físico , Exocitose , Humanos , Laminina/genética , Síndromes Miastênicas Congênitas/genética , Proteínas do Tecido Nervoso/genética , Condução Nervosa , Junção Neuromuscular/fisiopatologia , Proteínas SNARE/fisiologia , Transmissão Sináptica , Sinaptotagmina II/genética , Proteína 1 Associada à Membrana da Vesícula/genética
19.
Neuron ; 98(1): 127-141.e7, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29621484

RESUMO

Dysfunction of the neuronal RNA binding protein RBFOX1 has been linked to epilepsy and autism spectrum disorders. Rbfox1 loss in mice leads to neuronal hyper-excitability and seizures, but the physiological basis for this is unknown. We identify the vSNARE protein Vamp1 as a major Rbfox1 target. Vamp1 is strongly downregulated in Rbfox1 Nes-cKO mice due to loss of 3' UTR binding by RBFOX1. Cytoplasmic Rbfox1 stimulates Vamp1 expression in part by blocking microRNA-9. We find that Vamp1 is specifically expressed in inhibitory neurons, and that both Vamp1 knockdown and Rbfox1 loss lead to decreased inhibitory synaptic transmission and E/I imbalance. Re-expression of Vamp1 selectively within interneurons rescues the electrophysiological changes in the Rbfox1 cKO, indicating that Vamp1 loss is a major contributor to the Rbfox1 Nes-cKO phenotype. The regulation of interneuron-specific Vamp1 by Rbfox1 provides a paradigm for broadly expressed RNA-binding proteins performing specialized functions in defined neuronal subtypes.


Assuntos
Inibição Neural/fisiologia , Neurônios/metabolismo , Fatores de Processamento de RNA/fisiologia , Transmissão Sináptica/fisiologia , Proteína 1 Associada à Membrana da Vesícula/biossíntese , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/química , Fatores de Processamento de RNA/análise , Fatores de Processamento de RNA/deficiência , Proteínas SNARE/análise , Proteínas SNARE/biossíntese , Proteína 1 Associada à Membrana da Vesícula/análise
20.
Neuron ; 98(1): 3-5, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29621488

RESUMO

Cell-specific regulation of gene expression is important for maintaining cortical excitatory/inhibitory balance. In this issue of Neuron, Vuong et al. (2018) reveal an unlikely role for a broadly expressed RNA binding protein, Rbfox1, in protecting inhibitory transmission in the hippocampus.


Assuntos
Proteína 1 Associada à Membrana da Vesícula , Animais , Neurônios , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA