Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
FASEB J ; 35(9): e21788, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34425031

RESUMO

Hypoxia increases fetal hepatic insulin-like growth factor binding protein-1 (IGFBP-1) phosphorylation mediated by mechanistic target of rapamycin (mTOR) inhibition. Whether maternal nutrient restriction (MNR) causes fetal hypoxia remains unclear. We used fetal liver from a baboon (Papio sp.) model of intrauterine growth restriction due to MNR (70% global diet of Control) and liver hepatocellular carcinoma (HepG2) cells as a model for human fetal hepatocytes and tested the hypothesis that mTOR-mediated IGFBP-1 hyperphosphorylation in response to hypoxia requires hypoxia-inducible factor-1α (HIF-1α) and regulated in development and DNA-damage responses-1 (REDD-1) signaling. Western blotting (n = 6) and immunohistochemistry (n = 3) using fetal liver indicated greater expression of HIF-1α, REDD-1 as well as erythropoietin and its receptor, and vascular endothelial growth factor at GD120 (GD185 term) in MNR versus Control. Moreover, treatment of HepG2 cells with hypoxia (1% pO2 ) (n = 3) induced REDD-1, inhibited mTOR complex-1 (mTORC1) activity and increased IGFBP-1 secretion/phosphorylation (Ser101/Ser119/Ser169). HIF-1α inhibition by echinomycin or small interfering RNA silencing prevented the hypoxia-mediated inhibition of mTORC1 and induction of IGFBP-1 secretion/phosphorylation. dimethyloxaloylglycine (DMOG) induced HIF-1α and also REDD-1 expression, inhibited mTORC1 and increased IGFBP-1 secretion/phosphorylation. Induction of HIF-1α (DMOG) and REDD-1 by Compound 3 inhibited mTORC1, increased IGFBP-1 secretion/ phosphorylation and protein kinase PKCα expression. Together, our data demonstrate that HIF-1α induction, increased REDD-1 expression and mTORC1 inhibition represent the mechanistic link between hypoxia and increased IGFBP-1 secretion/phosphorylation. We propose that maternal undernutrition limits fetal oxygen delivery, as demonstrated by increased fetal liver expression of hypoxia-responsive proteins in baboon MNR. These findings have important implications for our understanding of the pathophysiology of restricted fetal growth.


Assuntos
Técnicas de Cultura de Células , Modelos Animais de Doenças , Retardo do Crescimento Fetal/metabolismo , Feto/metabolismo , Hipóxia/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Animais , Eritropoetina/metabolismo , Peso Fetal , Feto/química , Células Hep G2 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Técnicas In Vitro , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Microscopia de Fluorescência , Tamanho do Órgão , Papio , Fosforilação , Proteína Quinase C-alfa/metabolismo , Receptores da Eritropoetina/metabolismo , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Gen Comp Endocrinol ; 281: 137-144, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176753

RESUMO

The insulin-like growth factor (IGF) system plays a pivotal role in the regulation of growth, and IGF binding proteins (IGFBPs) are important regulatory factors in the IGF system. Generally, IGFBPs inhibit IGF actions by preventing its binding to receptors. Under some conditions, the IGFBPs can also enhance IGF actions. IGFBP1 is generally inhibitory to IGFI. In this study, the grouper (Epinephelus coioides) igfbp1 (MK621003) gene was cloned from the liver. The sequence of igfbp1 cDNA was 1055 bp and contained a 5'UTR of 127 bp and a 3'UTR of 247 bp, and the ORF of grouper igfbp1 was 741 bp, encoding 246 amino acids. The tissue distribution results showed that igfbp1 has a higher expression in the liver. In the nutritional status experiment, igfbp1 expression was significantly increased in the liver after 7 days of fasting and was markedly decreased after refeeding. In in vitro experiments, igfbp1 expression in grouper primary hepatocytes was significantly inhibited by recombinant grouper Gh (growth hormone) in a dose-dependent manner. Additionally, igfbp1 expression decreased in grouper primary hepatocytes upon incubation with insulin. This is the first report describing grouper igfbp1, and these findings contribute to understanding the roles of IGFBP1 in metabolism and growth in grouper.


Assuntos
Bass/genética , Hormônio do Crescimento/farmacologia , Hepatócitos/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Insulina/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , DNA Complementar/genética , Feminino , Hepatócitos/efeitos dos fármacos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual
3.
Mol Endocrinol ; 30(2): 201-16, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26714229

RESUMO

In fetal growth restriction (FGR), fetal growth is limited by reduced nutrient and oxygen supply. Insulin-like growth factor I (IGF-I) is a key regulator of fetal growth and IGF binding protein -1(IGFBP-1) is the principal regulator of fetal IGF-I bioavailability. Phosphorylation enhances IGFBP-1's affinity for IGF-I. Hypoxia induces IGFBP-1 hyperphosphorylation, markedly decreasing IGF-I bioavailability. We recently reported that fetal liver IGFBP-1 hyperphosphorylation is associated with inhibition of the mechanistic target of rapamycin (mTOR) in a nonhuman primate model of FGR. Here, we test the hypothesis that IGFBP-1 hyperphosphorylation in response to hypoxia is mediated by mTOR inhibition. We inhibited mTOR either by rapamycin or small interfering RNA (siRNA) targeting raptor (mTOR complex [mTORC]1) and/or rictor (mTORC2) in HepG2 cells cultured under hypoxia (1% O2) or basal (20% O2) conditions. Conversely, we activated mTORC1 or mTORC1+mTORC2 by silencing endogenous mTOR inhibitors (tuberous sclerosis complex 2/DEP-domain-containing and mTOR-interacting protein). Immunoblot analysis demonstrated that both hypoxia and inhibition of mTORC1 and/or mTORC2 induced similar degrees of IGFBP-1 phosphorylation at Ser101/119/169 and reduced IGF-I receptor autophosphorylation. Activation of mTORC1+mTORC2 or mTORC1 alone prevented IGFBP-1 hyperphosphorylation in response to hypoxia. Multiple reaction monitoring-mass spectrometry showed that rapamycin and/or hypoxia increased phosphorylation also at Ser98 and at a novel site Ser174. In silico structural analysis indicated that Ser174 was in close proximity to the IGF-binding site. Together, we demonstrate that signaling through the mTORC1 or mTORC2 pathway is sufficient to induce IGFBP-1 hyperphosphorylation in response to hypoxia. This study provides novel understanding of the cellular mechanism that controls fetal IGFBP-1 phosphorylation in hypoxia, and we propose that mTOR inhibition constitutes a mechanistic link between hypoxia, reduced IGF-I bioavailability and FGR.


Assuntos
Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Hipóxia Celular/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Fator de Crescimento Insulin-Like I/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espectrometria de Massas , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Papio , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Receptor IGF Tipo 1/metabolismo , Proteína Regulatória Associada a mTOR , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
4.
Best Pract Res Clin Endocrinol Metab ; 29(5): 685-700, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26522454

RESUMO

IGFBP-1 and IGFBP-2 are suppressed by growth hormone and therefore represent less prominent members of the IGFBP family when compared to IGFBP-3 that carries most of the IGFs during circulation under normal conditions in humans in vivo. As soon as the GH signal is decreased expression of IGF-I and IGFBP-3 is reduced. Under conditions of lowered suppression by GH the time seems come for IGFBP-1 and IGFBP-2. Both IGFBPs are potent effectors of growth and metabolism. Secretion of IGFBP-1 and IGFBP-2 is further suppressed by insulin and diminished with increasing obesity. Both IGFBP family members share the RGD sequence motif that mediates binding to integrins and is linked to PTEN/PI3K signalling. In mice, IGFBP-2 prevents age- and diet-dependent glucose insensitivity and blocks differentiation of preadipocytes. The latter function is modulated by two distinct heparin-binding domains of IGFBP-2 which are lacking in IGFBP-1. IGFBP-2 is further regulated by leptin and has been demonstrated to affect insulin sensitivity and glucose tolerance, further supporting a particular role of IGFBP-2 in glucose and fat metabolism. Since IGFBP-2 is controlled by sex steroids as well, we devised a scheme to compare IGFBP effects in breast, ovarian and prostate cancer. While a positive association does not seem to exist with IGFBP-1 and risk of cancers within these reproductive tissues, a relationship between IGFBP-2 and breast cancer, ovarian cancer and prostate cancer does indeed appear to be present. To date, the specific roles of IGFBP-2 in estrogen signalling are unclear, though there is accumulating evidence for an effect of IGFBP-2 on PI3K signalling via PTEN, particularly in breast cancer.


Assuntos
Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Doenças Metabólicas/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Doenças Metabólicas/genética , Neoplasias/genética , Transdução de Sinais , Somatomedinas/metabolismo
5.
Pediatr Endocrinol Rev ; 13(2): 521-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26841640

RESUMO

The insulin-like growth factor (IGF) system is essential for normal growth and development, and its perturbation is implicated in a number of diseases. IGF activity is finely regulated by a family of six high-affinity IGF binding proteins (IGFBPs). 1GFBPs usually inhibit IGF actions but may enhance them under certain conditions. Additionally, IGFBPs bind non-IGF ligands in the extracellular space, cell membrane, cytoplasm and nucleus, thereby modulating cell proliferation, survival and migration in an IGF-independent manner. IGFBP activity is regulated by transcriptional mechanisms as well as by post-translational modifications and proteolysis. Understanding the balance between the various actions of IGFBPs in vivo may lead to novel insights into disease processes and possible IGFBP-based therapeutics.


Assuntos
Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Animais , Fenômenos Fisiológicos Celulares/fisiologia , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/química , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/fisiologia , Estrutura Molecular , Somatomedinas/fisiologia
6.
Placenta ; 35(7): 520-2, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24856042

RESUMO

BACKGROUND: Insulin-like growth factors (IGF) regulate fetal growth through their effects on placenta. Their actions are influenced by IGF binding protein-1. Phosphorylated IGFBP-1 (pIGFBP-1) has high affinity for IGF-I and usually inhibits IGF-I activity but during pregnancy, it is de-phosphorylated to generate lower affinity isoforms and consequently, increased IGF bioavailability. Here we investigate the role of placenta in this process. RESULTS: Our data show that term human placental explants, but not their conditioned medium, can de-phosphorylate IGFBP-1 through the action of placental alkaline phosphatase (PLAP). DISCUSSION: PLAP-mediated de-phosphorylation of IGFBP-1 may provide a mechanism for controlling IGF-I bioavailability and action at the maternal/fetal interface.


Assuntos
Fosfatase Alcalina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Isoenzimas/metabolismo , Placenta/metabolismo , Feminino , Desenvolvimento Fetal , Proteínas Ligadas por GPI/metabolismo , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Fator de Crescimento Insulin-Like I/metabolismo , Troca Materno-Fetal , Fosforilação , Gravidez , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
7.
Clin Chim Acta ; 431: 23-32, 2014 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-24513543

RESUMO

Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) belongs to the IGFBP family whose members have a conserved structural homology. It has a low affinity for IGFs and a high affinity for insulin, suggesting that IGFBP-rP1 may have a biological function distinct from other members of the family. IGFBP-rP1 is ubiquitously expressed in normal human tissues and has diverse biological functions, regulating cell proliferation, apoptosis and senescence; it may also have a key role in vascular biology. Increasing evidence suggests that IGFBP-rP1 acts as a tumor suppressor. It elicits its biological effects by both insulin/IGF-dependent and -independent mechanisms. This paper provides a brief overview of the structure and regulation of IGFBP-rP1 and its various biological functions in cancer, as well as the underlying molecular mechanisms.


Assuntos
Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Neoplasias/metabolismo , Animais , Fibrose/patologia , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/biossíntese , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia
8.
J Egypt Soc Parasitol ; 44(2): 525-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25597167

RESUMO

This study evaluated the predictive value of phosphorylated insulin like growth factor binding protein-1 in cervical secretion as bedside test for prediction of preterm labor in symptomatic women. A total of 57 patients with singleton pregnancy at 24-34 weeks gestation, with symptoms suggestive of preterm labor were included in this study. A rapid cervical sample for PIGFBP-1 determination (Actim partus test, Medix Biochemical, and Kaunianen, Finland) was taken by means of a polyester-tipped swab during a speculum examination of the cervix, and extracted with specimen- extraction solution. We analyzed the prevalence of preterm labor in these patients within seven days upon admission. And calculate sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for PIGFBP-1. This study was done at Kuwait Oil Company hospital (KOC) and Taiba hospital (Kuwait) during the period between April 2011 and June 2012. The test was positive in 50.9% of patients and negative in 49.1%, among those tests was positive 64% delivered less than a week, and among those tests was negative 35.7 delivered less than one week, with 74.3% sensitivity, 61% spesivity, 76.3% PPV and 73.6% NPV.


Assuntos
Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Nascimento Prematuro/diagnóstico , Feminino , Regulação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Muco/química , Valor Preditivo dos Testes , Gravidez , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade
9.
Endocrinology ; 154(3): 1130-43, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23354097

RESUMO

We previously demonstrated that hypoxia and leucine deprivation cause hyperphosphorylation of IGF-binding protein-1 (IGFBP-1) at discrete sites that markedly enhanced IGF-I affinity and inhibited IGF-I-stimulated cell growth. In this study we investigated the functional role of these phosphorylation sites using mutagenesis. We created three IGFBP-1 mutants in which individual serine (S119/S169/S98) residues were substituted with alanine and S101A was recreated for comparison. The wild-type (WT) and mutant IGFBP-1 were expressed in Chinese hamster ovary cells and IGFBP-1 in cell media was isolated using isoelectric-focusing-free-flow electrophoresis. BIACore analysis indicated that the changes in IGF-I affinity for S98A and S169A were moderate, whereas S119A greatly reduced the affinity of IGFBP-1 for IGF-I (100-fold, P < .0001). Similar results were obtained with S101A. The IGF-I affinity changes of the mutants were reflected in their ability to inhibit IGF-I-induced receptor autophosphorylation. Employing receptor-stimulation assay using IGF-IR-overexpressing P6 cells, we found that WT-IGFBP-1 inhibited IGF-IRß autophosphorylation (~2-fold, P < .001), possibly attributable to sequestration of IGF-I. Relative to WT, S98A and S169A mutants did not inhibit receptor autophosphorylation. S119A, on the other hand, greatly stimulated the receptor (2.3-fold, P < .05). The data with S101A matched S119A. In summary, we show that phosphorylation at S98 and S169 resulted in milder changes in IGF-I action; nonetheless most dramatic inhibitory effects on the biological activity of IGF-I were due to IGFBP-1 phosphorylation at S119. Our results provide novel demonstration that IGFBP-1 phosphorylation at S119 can enhance affinity for IGF-I possibly through stabilization of the IGF-IGFBP-1 complex. These data also propose that the synergistic interaction of distinct phosphorylation sites may be important in eliciting more pronounced effects on IGF-I affinity that needs further investigation.


Assuntos
Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Substituição de Aminoácidos , Animais , Células 3T3 BALB , Sítios de Ligação/genética , Células CHO , Cricetinae , Cricetulus , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Cinética , Camundongos , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
J Perinat Med ; 41(3): 241-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23183724

RESUMO

The insulin-like growth factors and their binding proteins are important for placental and foetal growth. In this study, we have investigated the presence of proteolytic activity directed against insulin-like growth factor binding protein-1 (IGFBP-1) in pregnancy. In addition, the effect of protease activity on IGFBP-1 immunoreactivity and IGF binding was characterised. 125I-IGFBP-1 was incubated with maternal and foetal serum, amniotic fluid and placental extracts. Breakdown of 125I-IGFBP-1 was determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography. The size distribution of endogenous IGFBP-1 was determined by Western immunoblotting. Protease inhibitor studies characterised the proteolytic activity, and Western ligand blotting with 125I-IGF-I was used to determine IGF binding capacity of proteolysed IGFBP-1. Amniotic fluid samples collected after labour onset contained proteolytic activity that generated 12- and 19-kDa IGFBP-1 fragments that did not bind to 125I-IGF-I. This activity was not detected in amniotic fluid collected prior to labour onset or in other tissues. Activity was blocked by aprotinin, leupeptin, phenyl methyl sulphonyl fluoride, and Kunitz soybean trypsin inhibitor but not by ethylene diamine tetraacetic acid or pepstatin. Incubation of IGFBP-1 with trypsin generated fragments of a similar size to the amniotic fluid protease. In conclusion, we have demonstrated the presence in vivo of a trypsin-like proteolytic activity that alters the IGF-binding function of IGFBP-1 in pregnancy.


Assuntos
Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Gravidez/metabolismo , Sequência de Aminoácidos , Líquido Amniótico/metabolismo , Feminino , Sangue Fetal/metabolismo , Humanos , Recém-Nascido , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Início do Trabalho de Parto/metabolismo , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Placenta/metabolismo , Gravidez/sangue , Proteólise , Tripsina/metabolismo
11.
PLoS One ; 6(10): e26217, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028835

RESUMO

The regulation of gene transcription is fundamental to the existence of complex multicellular organisms such as humans. Although it is widely recognized that much of gene regulation is controlled by gene-specific protein-DNA interactions, there presently exists little in the way of tools to identify proteins that interact with the genome at locations of interest. We have developed a novel strategy to address this problem, which we refer to as GENECAPP, for Global ExoNuclease-based Enrichment of Chromatin-Associated Proteins for Proteomics. In this approach, formaldehyde cross-linking is employed to covalently link DNA to its associated proteins; subsequent fragmentation of the DNA, followed by exonuclease digestion, produces a single-stranded region of the DNA that enables sequence-specific hybridization capture of the protein-DNA complex on a solid support. Mass spectrometric (MS) analysis of the captured proteins is then used for their identification and/or quantification. We show here the development and optimization of GENECAPP for an in vitro model system, comprised of the murine insulin-like growth factor-binding protein 1 (IGFBP1) promoter region and FoxO1, a member of the forkhead rhabdomyosarcoma (FoxO) subfamily of transcription factors, which binds specifically to the IGFBP1 promoter. This novel strategy provides a powerful tool for studies of protein-DNA and protein-protein interactions.


Assuntos
DNA/genética , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Espectrometria de Massas , Proteômica/métodos , Animais , Sequência de Bases , Cromatina/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , DNA/metabolismo , Escherichia coli/enzimologia , Exodesoxirribonucleases/metabolismo , Proteína Forkhead Box O1 , Formaldeído/farmacologia , Camundongos , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Especificidade por Substrato
12.
Exp Clin Endocrinol Diabetes ; 119(5): 306-13, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21104586

RESUMO

Little is known on the possible association between impaired glucose/insulin metabolism, the pattern of IGFBP-1 phosphorylation and the complex formation with other serum proteins. In this study, the concentration, isoform, multimer and complex pattern of IGFBP-1 was compared in healthy persons and patients with type 2 diabetes mellitus or with hypoglycemia. Concentrations of insulin and IGFBP-1 were determined by radioimmunoassay. Metal affinity and immunoaffinity chromatography were used for the separation of molecular forms of IGFBP-1, which were detected by immunoblotting and SELDI. The counter directional change in insulin and IGFBP-1 concentrations, expressed as a factor that takes into consideration the rate of insulin increase and IGFBP-1 decrease after glucose intake was approximately twice more pronounced in patients with diabetes than in healthy and hypoglycemic persons. The alteration in the phosphorylation pattern of IGFBP-1 due to diabetes or hypoglycemia was not observed. IGFBP-1 multimers found in the circulation of patients with diabetes type 2 differed from those detected in the circulation of others: there were 3 molecular forms between 90 and 100 kDa (compared to one in patients with hypoglycemia or 2 in healthy persons), 2 of which were α (2)M-reactive and one not. These results suggest a possible greater involvement of IGF system in glucose regulation in patients with diabetes type 2.


Assuntos
Glicemia/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Insulina/metabolismo , Adulto , Estudos de Casos e Controles , Complicações do Diabetes/sangue , Complicações do Diabetes/diagnóstico , Complicações do Diabetes/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Saúde , Humanos , Hipoglicemia/sangue , Hipoglicemia/complicações , Hipoglicemia/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/análise , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Peso Molecular , Concentração Osmolar , Multimerização Proteica
13.
J Cell Physiol ; 226(2): 434-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20672288

RESUMO

Insulin-like growth factor (IGF)-binding protein-1 (IGFBP-1), the main secretory protein of decidua that binds to IGFs and has been shown to inhibit or stimulate IGFs' bioactivities. Polymerization, one of the posttranslational modifications of IGFBP-1, has been shown to lead to loss of inhibiting effect of IGFBP-1 on IGF-I actions. The current studies were undertaken to elucidate the effects of steroid hormones on IGFBP-1 polymerization in trophoblast cell cultures. Placental tissues were obtained during legal, elective procedures of termination of pregnancy performed between 7 and 10 weeks of gestation, and primary trophoblast cells were separated. IGFBP-1 polymerization was analyzed by SDS-PAGE and immunoblotting. IGFBP-1 was polymerized when IGFBP-1 was added to trophoblast cell cultures. Polymerization of IGFBP-1 was inhibited by the addition of anti-tissue transglutaminase antibody into the culture media. There was an increase in the intensity of polymerized IGFBP-1 bands with the addition of medroxyprogesterone acetate (MPA), while no such difference was observed upon treatment with estradiol. MPA also increased the expression of tissue transglutaminase on trophoblast cell membranes. IGF-I stimulated trophoblast cell migration, while IGFBP-1 inhibited this IGF-I-induced trophoblast response. Addition of MPA attenuated the inhibitory effects of IGFBP-1 on IGF-I-induced trophoblast cell migration. IGFBP-1 was polymerized by tissue transglutaminase on the cell surface of trophoblasts, and MPA increased tissue transglutaminase expression on the cell surface and facilitated IGFBP-1 polymerization. These results suggest that progesterone might facilitate polymerization of decidua-secreted IGFBP-1 and increase IGF-I actions at feto-maternal interface, thereby stimulating trophoblast invasion of maternal uterus.


Assuntos
Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Fator de Crescimento Insulin-Like I/farmacologia , Placenta/efeitos dos fármacos , Animais , Antineoplásicos Hormonais/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Decídua/fisiologia , Feminino , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Acetato de Medroxiprogesterona/farmacologia , Placenta/fisiologia , Gravidez , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Transglutaminases/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/fisiologia
14.
Pharmacol Rev ; 62(2): 199-236, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20392809

RESUMO

This topically limited review explores the relationship between the immune system and insulin-like growth factors (IGF-I and IGF-II) and the proteins through which they act, including IGF-I receptor (IGF-IR) and the IGF-I binding proteins. The IGF/IGF-IR pathway plays important and diverse roles in tissue development and function. It regulates cell cycle progression, apoptosis, and the translation of proteins. Many of the consequences ascribed to IGF-IR activation result from its association with several accessory proteins that are either identical or closely related to those involved in insulin receptor signaling. Relatively recent awareness that IGF-I and IGF-IR regulate immune function has cast this pathway in an unexpected light; it may represent an important switch governing the quality and amplitude of immune responses. IGF-I/IGF-IR signaling may also participate in the pathogenesis of autoimmune diseases, although its relationship with these processes seems complex and relatively unexplored. On the one hand, IGF-I seems to protect experimental animals from developing insulin-deficient diabetes mellitus. In contrast, activating antibodies directed at IGF-IR have been detected in patients with Graves' disease, where the receptor is overexpressed by multiple cell types. The frequency of IGF-IR+ B and T cells is substantially increased in patients with that disease. Potential involvement of IGF-I and IGF-IR in the pathogenesis of autoimmune diseases suggests that this pathway might constitute an attractive therapeutic target. IGF-IR has been targeted in efforts directed toward drug development for cancer, employing both small-molecule and monoclonal antibody approaches. These have been generally well-tolerated. Recognizing the broader role of IGF-IR in regulating both normal and pathological immune responses may offer important opportunities for therapeutic intervention in several allied diseases that have proven particularly difficult to treat.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Fator de Crescimento Insulin-Like I/fisiologia , Doenças Autoimunes/metabolismo , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/química , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/metabolismo
15.
FEBS J ; 276(20): 6033-46, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19765076

RESUMO

Insulin-like growth factor binding protein-1 (IGFBP-1) is the major secreted protein of human decidual cells during gestation and, as a modulator of insulin-like growth factors or by independent mechanisms, regulates embryonic implantation and growth. The protein is phosphorylated and this post-translational modification is regulated in pregnancy and represents an important determinant of its biological activity. We have isolated, from human normal amniotic fluid collected in the weeks 16-18, the intact nonphosphorylated IGFBP-1 and five electrophoretically distinct phosphoisoforms and have determined their in vivo phosphorylation state. The unmodified protein was the most abundant component and mono-, bi-, tri- and tetraphosphorylated forms were present in decreasing amounts. The phosphorylation sites of IGFBP-1 were identified by liquid chromatography-tandem mass spectrometry analysis of the peptides generated with trypsin, chymotrypsin and Staphylococcus aureus V8 protease. Five serines were found to be phosphorylated and, of these, four are localized in the central, weakly conserved, region, at positions 95, 98, 101 and 119, whereas one, Ser169, is in the C-terminal domain. The post-translational modification predominantly involves the hydrophilic stretch of amino acids representing a potential PEST sequence (proline, glutamic acid, serine, threonine) and our results show that the phosphorylation state influences the propensity of IGFBP-1 to proteolysis.


Assuntos
Líquido Amniótico/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Isoformas de Proteínas/metabolismo , Sítios de Ligação , Western Blotting , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Cromatografia Líquida , Feminino , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Fosforilação , Gravidez , Isoformas de Proteínas/genética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
16.
J Proteome Res ; 8(11): 5325-35, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19731965

RESUMO

Fetal growth restriction (FGR) is a leading cause of fetal and neonatal morbidity and mortality. Insulin-like growth factor binding protein-1 (IGFBP-1) is one of the major insulin-like growth factor (IGF) binding proteins involved in fetal growth and development. Our recent data shows that phosphorylation of IGFBP-1 carries both functional and biological relevance in FGR. Considering that IGFBP-1 phosphorylation can be valuable in diagnostics, we examined strategies to enrich IGFBP-1 so that its phosphorylation sites could be assessed by mass spectrometry (MS). Using <1 mL of human amniotic fluid, widely employed immunoprecipitation with IGFBP-1 monoclonal antibody (Mab 6303) coenriched IgGs that interfered with MS. Covalent coupling of Mab 6303 with Seize immunoprecipitation resin (Pierce) mitigated this drawback. However, LC-MS/MS analysis with the titanium dioxide (TiO(2)) enriched IGFBP-1 phosphopeptides in the immunoprecipitated samples revealed pSer101 and pSer119, but not pSer169 nor pSer98 of the previously identified phosphorylation sites. The alternative, ZOOM isoelectric focusing (IEF) (Invitrogen) rendered low-IGFBP-1 recovery with overlapping albumin. Subsequently, depletion of albumin using Affi-GelBlue gel (Bio-Rad) maximized IGFBP-1 yield. ELISA estimation showed approximately 8.5% residual albumin (3.73 x 10(5) +/- 2.35 x 10(5) ng/mL), whereas up to approximately 68% IGFBP-1 was recovered (1.36 x 10(3) +/- 0.174 x 10(3) microg/L, IEMA). LC-MS/MS analysis with the albumin depleted samples detected all four expected phosphorylation sites. Additionally, LC-MS analysis semiquantitatively indicated much reduced phosphopeptide peak intensities, approximately 20-fold with pSer169 and approximately 10-fold lower with pSer98 sites as compared to pSer101. With the use of our depletion strategy, this study offers a novel simple proteomic approach to enrich IGFBP-1 for identification of site-specific changes in IGFBP-1 phosphorylation. This strategy will be vital in performing differential IGFBP-1 phosphorylation profiling clinically, to help establish its link with FGR and develop diagnostic assays, as well as elucidating novel mechanisms potentially involved in regulation of fetal growth.


Assuntos
Retardo do Crescimento Fetal , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Cromatografia Líquida/métodos , Feminino , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/metabolismo , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação , Gravidez , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Espectrometria de Massas em Tandem/métodos
17.
Domest Anim Endocrinol ; 37(2): 74-83, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19446983

RESUMO

The effects of fasting on insulin-like growth factor (IGF)-I, IGF-II, and IGF-binding protein (IGFBPs) mRNA in channel catfish were examined. Fed control fish (Fed) were compared to fish that had been fasted for 30 d followed by 15 d of additional feeding (Restricted). Sequence alignment and similarity to orthologous proteins in other vertebrates provided structural evidence that the 3 catfish sequences identified in the present research were IGFBP-1, -2, and -3. Prolonged fasting (30 d) reduced body weight approximately 60% (P<0.001) and decreased IGF-I mRNA in the liver and muscle (P<0.01). Fifteen days of re-feeding restored concentrations of hepatic and muscle IGF-I mRNA. Liver IGF-II mRNA was not affected by fasting but was increased 2.2-fold after 15 d of re-feeding (P<0.05). Abundance of muscle IGF-II mRNA was similar between the fed control group and the restricted group throughout the experimental period. Fasting also increased liver IGFBP-1 mRNA (P<0.05) and decreased IGFBP-3 mRNA (P<0.01), whereas abundance of IGFBP-2 mRNA was not significantly affected. Interestingly, re-feeding for 15 d did not restore concentrations of IGFBP-1 and IGFBP-3 mRNA relative to fed control concentrations. The IGF results suggest that IGF-I and IGF-II are differently regulated by nutritional status and probably have a differential effect in promoting muscle growth during recovery from fasting. Similar to mammals, IGFBP-1 mRNA in catfish is increased during catabolism, whereas IGFBP-3 mRNA is decreased during inhibited somatic growth. The IGFBP results provide additional evidence of the conserved nature of the IGF-IGFBP-growth axis in catfish.


Assuntos
Jejum/fisiologia , Ictaluridae/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like I/genética , RNA Mensageiro/análise , Sequência de Aminoácidos , Animais , Alimentos , Regulação da Expressão Gênica/fisiologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fígado/química , Dados de Sequência Molecular , Músculos/química , Estado Nutricional
18.
J Sep Sci ; 32(8): 1120-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19301325

RESUMO

The development of a new mixed bioreactor for proteomic studies based on trypsin and chymotrypsin is described. Trypsin and chymotrypsin were simultaneously bonded to an epoxy monolithic silica column (100 mmx4.6 mm id) in a one-step reaction via epoxy-groups. In order to compare the catalytic properties of the two enzymes in the isolated and in the multi-enzymatic approach, two other single enzyme bioreactors based on trypsin and chymotrypsin were prepared following the same immobilization protocol. The kinetic parameters of the multi-enzymatic bioreactor were derived and it was demonstrated that it retains the individual catalytic activity of the two enzymes. To prove the power of this experimental approach the new mixed bioreactor was integrated in an LC-ESI-MS/MS system for digestion, enrichment, separation and identification of the test protein insulin-like growth factor binding-protein 1 (IGFBP-1). The peptide map and protein sequence coverage obtained with the three bioreactors were compared. The results clearly indicate that the proposed multi-enzyme approach can reduce both digestion and analysis time, accelerate data interpretation and increase the confidence degree in protein identification.


Assuntos
Reatores Biológicos , Quimotripsina/metabolismo , Peptídeos , Proteínas/química , Proteínas/metabolismo , Tripsina/metabolismo , Sequência de Aminoácidos , Cromatografia/métodos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Proteínas/genética , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
19.
J Chromatogr A ; 1183(1-2): 65-75, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18255078

RESUMO

The development of an integrated chromatographic system for complete phosphoprotein analysis is described. The digestion of phosphoproteins with trypsin- or pronase-based monolithic bioreactors is carried out on-line with selective enrichment on a TiO(2) trap and separation of the produced phosphopeptides by reversed-phase liquid chromatography-multiple mass spectrometry (RPLC/MS(n)). A detailed study on the selective extraction of peptides with different degrees of phosphorylation on TiO(2) cartridges is discussed. This analytical strategy has been optimized using beta-casein as a standard phosphoprotein, and then applied to the identification of phosphorylation sites in insulin-like grow factor-binding protein 1 (IGFBP-1) isolated from amniotic fluid.


Assuntos
Sistemas On-Line/instrumentação , Fosfoproteínas/química , Líquido Amniótico/química , Reatores Biológicos , Caseínas/química , Cromatografia Líquida/métodos , Feminino , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Fosfopeptídeos/isolamento & purificação , Fosfoproteínas/metabolismo , Gravidez , Espectrometria de Massas em Tandem , Tripsina/metabolismo
20.
J Biol Chem ; 281(51): 39607-19, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17062566

RESUMO

Insulin-like growth factor-binding protein 1 (IGFBP-1) is a biomarker for metabolic and hyperproliferative diseases. At the same time, the nuclear receptors peroxisome proliferator-activated receptors (PPARs) are known for their critical role in the development of both the metabolic syndrome and various cancers. Here we demonstrate, in human hepatocellular carcinoma cells and in normal mouse liver, that IGFBP-1 mRNA expression is under the primary control of PPAR ligands. We applied an improved in silico screening approach for PPAR response elements (PPREs) and identified five candidate PPREs located within 10 kb of the transcription start site (TSS) of the IGFBP-1 gene. Chromatin immunoprecipitation assays showed that, in living cells, the genomic region containing the most proximal PPRE, at position -1200 (relative to the TSS), preferentially associates with multiple PPAR subtypes and various other components of the transcriptional apparatus, which include their heterodimerizing partner, retinoid X receptor, as well as phosphorylated RNA polymerase II, co-repressor, co-activator, and mediator proteins. Moreover, further chromatin immunoprecipitation assays demonstrated that the TSS regions of the IGFBP-1 gene and those of the related IGFBP-2, -5, and -6, but not of IGFBP-3 and -4 genes, bind PPARs as well. We also show that these additional PPAR binding genes contain a number of candidate PPREs and that their mRNA levels respond quickly to the presence of PPAR ligands, indicating that they are also primary PPAR target genes.


Assuntos
Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Ligantes , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Modelos Genéticos , Ligação Proteica , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA