Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Environ Microbiol ; 20(4): 1452-1463, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393562

RESUMO

In many eukaryotes, transcription factor MCM1 gene plays crucial roles in regulating mating processes and pathogenesis by interacting with other co-factors. However, little is known about the role of MCM1 in rust fungi. Here, we identified two MCM1 orthologs, PstMCM1-1 and PstMCM1-2, in the stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst). Sequence analysis indicated that both PstMCM1-1 and PstMCM1-2 contain conserved MADS domains and that PstMCM1-1 belongs to a group of SRF-like proteins that are evolutionarily specific to rust fungi. Yeast two-hybrid assays indicated that PstMCM1-1 interacts with transcription factors PstSTE12 and PstbE1. PstMCM1-1 was found to be highly induced during early infection stages in wheat and during pycniospore formation on the alternate host barberry (Berberis shensiana). PstMCM1-1 could complement the lethal phenotype and mating defects in a mcm1 mutant of Saccharomyces cerevisiae. In addition, it partially complemented the defects in appressorium formation and plant infection in a Magnaporthe oryzae Momcm1 mutant. Knock down of PstMCM1-1 resulted in a significant reduction of hyphal extension and haustorium formation and the virulence of Pst on wheat. Our results suggest that PstMCM1-1 plays important roles in the regulation of mating and pathogenesis of Pst most likely by interacting with co-factors.


Assuntos
Basidiomycota/genética , Basidiomycota/patogenicidade , Proteína 1 de Manutenção de Minicromossomo/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Magnaporthe/genética , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Fenótipo , Domínios Proteicos/genética , Saccharomyces cerevisiae/genética , Virulência/genética
2.
Nat Commun ; 8(1): 56, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676626

RESUMO

Upon environmental changes, proliferating cells delay cell cycle to prevent further damage accumulation. Yeast Cip1 is a Cdk1 and Cln2-associated protein. However, the function and regulation of Cip1 are still poorly understood. Here we report that Cip1 expression is co-regulated by the cell-cycle-mediated factor Mcm1 and the stress-mediated factors Msn2/4. Overexpression of Cip1 arrests cell cycle through inhibition of Cdk1-G1 cyclin complexes at G1 stage and the stress-activated protein kinase-dependent Cip1 T65, T69, and T73 phosphorylation may strengthen the Cip1and Cdk1-G1 cyclin interaction. Cip1 accumulation mainly targets Cdk1-Cln3 complex to prevent Whi5 phosphorylation and inhibit early G1 progression. Under osmotic stress, Cip1 expression triggers transient G1 delay which plays a functionally redundant role with another hyperosmolar activated CKI, Sic1. These findings indicate that Cip1 functions similarly to mammalian p21 as a stress-induced CDK inhibitor to decelerate cell cycle through G1 cyclins to cope with environmental stresses.A G1 cell cycle regulatory kinase Cip1 has been identified in budding yeast but how this is regulated is unclear. Here the authors identify cell cycle (Mcm1) and stress-mediated (Msn 2/4) transcription factors as regulating Cip1, causing stress induced CDK inhibition and delay in cell cycle progression.


Assuntos
Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclinas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pressão Osmótica , Saccharomyces cerevisiae , Estresse Fisiológico , Fatores de Transcrição/metabolismo
3.
Adv Biol Regul ; 64: 9-19, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28342784

RESUMO

Production of lipid-derived inositol phosphates including IP4 and IP5 is an evolutionarily conserved process essential for cellular adaptive responses that is dependent on both phospholipase C and the inositol phosphate multikinase Ipk2 (also known as Arg82 and IPMK). Studies of Ipk2, along with Arg82 prior to demonstrating its IP kinase activity, have provided an important link between control of gene expression and IP metabolism as both kinase dependent and independent functions are required for proper transcriptional complex function that enables cellular adaptation in response to extracellular queues such as nutrient availability. Here we define a promoter sequence cis-element, 5'-CCCTAAAAGG-3', that mediates both kinase-dependent and independent functions of Ipk2. Using a synthetic biological strategy, we show that proper gene expression in cells lacking Ipk2 may be restored through add-back of two components: IP4/IP5 production and overproduction of the MADS box DNA binding protein, Mcm1. Our results are consistent with a mechanism by which Ipk2 harbors a dual functionality that stabilizes transcription factor levels and enzymatically produces a small molecule code, which together coordinate control of biological processes and gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Fosfatos de Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Fosfolipases Tipo C/genética , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteína 1 de Manutenção de Minicromossomo/genética , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
4.
Biochem J ; 473(21): 3855-3869, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27555611

RESUMO

Forkhead transcription factors play a key role in embryonic patterning during development. In Saccharomyces cerevisiae, two forkhead transcription factors, Fkh1 and Fkh2, regulate the transcription of CLB2 cluster genes important for mitosis. Fkh1 reduces, whereas Fkh2 elevates, the transcription of CLB2 cluster genes. However, the mechanism for this observation remains unclear. Fkh1 and Fkh2 each contain a forkhead domain (DNA-binding domain, DBD) and a forkhead-associated domain (FHAD), whereas Fkh2 possesses an extra C' domain containing six consensus cyclin-dependent kinase phosphorylation sites. In the present study, roles of these domains in protein complexes, the regulation of cell growth and CLB2 cluster genes and protein interactions were investigated using various domain mutants. The result showed that the DBD was vital for ternary complex formation with Mcm1, whereas the FHAD was central for the regulation of cell growth and CLB2 cluster transcription and for interactions with Ndd1 and Clb2. However, the Fkh2 C' domain was dispensable for the above functions. Both DBDs and FHADs had functional divergences in the cell, and Ndd1 functioned via its phosphorylated form. These data provide important insights into the functional mechanism of Fkh1 and Fkh2 in cell cycle control.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Northern Blotting , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Ciclina B/genética , Ciclina B/metabolismo , Fatores de Transcrição Forkhead/genética , Imunoprecipitação , Proteína 1 de Manutenção de Minicromossomo/genética , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Plasmídeos , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Mol Biol Cell ; 26(19): 3401-12, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26246605

RESUMO

The yeast transcription factor MATα2 (α2) is a short-lived protein known to be ubiquitylated by two distinct pathways, one involving the ubiquitin-conjugating enzymes (E2s) Ubc6 and Ubc7 and the ubiquitin ligase (E3) Doa10 and the other operating with the E2 Ubc4 and the heterodimeric E3 Slx5/Slx8. Although Slx5/Slx8 is a small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligase (STUbL), it does not require SUMO to target α2 but instead directly recognizes α2. Little is known about the α2 determinants required for its Ubc4- and STUbL-mediated degradation or how these determinants substitute for SUMO in recognition by the STUbL pathway. We describe two distinct degradation elements within α2, both of which are necessary for α2 recognition specifically by the Ubc4 pathway. Slx5/Slx8 can directly ubiquitylate a C-terminal fragment of α2, and mutating one of the degradation elements impairs this ubiquitylation. Surprisingly, both degradation elements identified here overlap specific interaction sites for α2 corepressors: the Mcm1 interaction site in the central α2 linker and the Ssn6 (Cyc8) binding site in the α2 homeodomain. We propose that competitive binding to α2 by the ubiquitylation machinery and α2 cofactors is balanced so that α2 can function in transcription repression yet be short lived enough to allow cell-type switching.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sítios de Ligação , Ligação Competitiva , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sumoilação , Ubiquitinação
6.
Nucleic Acids Res ; 43(15): 7292-305, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26082499

RESUMO

Divergent gene pairs (DGPs) are abundant in eukaryotic genomes. Since two genes in a DGP potentially share the same regulatory sequence, one might expect that they should be co-regulated. However, an inspection of yeast DGPs containing cell-cycle or stress response genes revealed that most DGPs are differentially-regulated. The mechanism underlying DGP differential regulation is not understood. Here, we showed that co- versus differential regulation cannot be explained by genetic features including promoter length, binding site orientation, TATA elements, nucleosome distribution, or presence of non-coding RNAs. Using time-lapse fluorescence microscopy, we carried out an in-depth study of a differentially regulated DGP, PFK26-MOB1. We found that their differential regulation is mainly achieved through two DNA-binding factors, Tbf1 and Mcm1. Similar to 'enhancer-blocking insulators' in higher eukaryotes, these factors shield the proximal promoter from the action of more distant transcription regulators. We confirmed the blockage function of Tbf1 using synthetic promoters. We further presented evidence that the blockage mechanism is widely used among genome-wide DGPs. Besides elucidating the DGP regulatory mechanism, our work revealed a novel class of insulators in yeast.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Genoma Fúngico , Nucleossomos/metabolismo , Fosfoproteínas/genética , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Elementos Reguladores de Transcrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , TATA Box
7.
Biochem Biophys Res Commun ; 463(3): 351-6, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26022127

RESUMO

Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. (1)H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Proteína 1 de Manutenção de Minicromossomo/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Fúngicos , Metaboloma , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo
8.
Environ Microbiol ; 17(8): 2762-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25627073

RESUMO

In eukaryotic cells, MADS-box genes are known to play major regulatory roles in various biological processes by combinatorial interactions with other transcription factors. In this study, we functionally characterized the FgMCM1 MADS-box gene in Fusarium graminearum, the causal agent of wheat and barley head blight. Deletion of FgMCM1 resulted in the loss of perithecium production and phialide formation. The Fgmcm1 mutant was significantly reduced in virulence, deoxynivalenol biosynthesis and conidiation. In yeast two-hybrid assays, FgMcm1 interacted with Mat1-1-1 and Fst12, two transcription factors important for sexual reproduction. Whereas Fgmcm1 mutants were unstable and produced stunted subcultures, Fgmcm1 mat1-1-1 but not Fgmcm1 fst12 double mutants were stable. Furthermore, spontaneous suppressor mutations occurred frequently in stunted subcultures to recover growth rate. Ribonucleic acid sequencing analysis indicated that a number of sexual reproduction-related genes were upregulated in stunted subcultures compared with the Fgmcm1 mutant, which was downregulated in the expression of genes involved in pathogenesis, secondary metabolism and conidiation. We also showed that culture instability was not observed in the Fvmcm1 mutants of the heterothallic Fusarium verticillioides. Overall, our data indicate that FgMcm1 plays a critical role in the regulation of cell identity, sexual and asexual reproduction, secondary metabolism and pathogenesis in F. graminearum.


Assuntos
Fusarium/crescimento & desenvolvimento , Fusarium/genética , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Metabolismo Secundário/genética , Esporos Fúngicos/genética , Sequência de Bases , Fusarium/patogenicidade , Hordeum/microbiologia , Proteína 1 de Manutenção de Minicromossomo/genética , RNA Fúngico/genética , Análise de Sequência de RNA , Tricotecenos/biossíntese , Triticum/microbiologia , Técnicas do Sistema de Duplo-Híbrido , Virulência
9.
Genes Dev ; 28(12): 1272-7, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24874988

RESUMO

The duplication of transcription regulators can elicit major regulatory network rearrangements over evolutionary timescales. However, few examples of duplications resulting in gene network expansions are understood in molecular detail. Here we show that four Candida albicans transcription regulators that arose by successive duplications have differentiated from one another by acquiring different intrinsic DNA-binding specificities, different preferences for half-site spacing, and different associations with cofactors. The combination of these three mechanisms resulted in each of the four regulators controlling a distinct set of target genes, which likely contributed to the adaption of this fungus to its human host. Our results illustrate how successive duplications and diversification of an ancestral transcription regulator can underlie major changes in an organism's regulatory circuitry.


Assuntos
Candida albicans/genética , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica/genética , Genes Fúngicos/genética , Fatores de Transcrição/genética , Animais , Candida albicans/classificação , Interações Hospedeiro-Patógeno/genética , Humanos , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Filogenia , Ligação Proteica , Fatores de Transcrição/metabolismo
10.
PLoS Genet ; 9(5): e1003507, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23675312

RESUMO

The Bck2 protein is a potent genetic regulator of cell-cycle-dependent gene expression in budding yeast. To date, most experiments have focused on assessing a potential role for Bck2 in activation of the G1/S-specific transcription factors SBF (Swi4, Swi6) and MBF (Mbp1, Swi6), yet the mechanism of gene activation by Bck2 has remained obscure. We performed a yeast two-hybrid screen using a truncated version of Bck2 and discovered six novel Bck2-binding partners including Mcm1, an essential protein that binds to and activates M/G1 promoters through Early Cell cycle Box (ECB) elements as well as to G2/M promoters. At M/G1 promoters Mcm1 is inhibited by association with two repressors, Yox1 or Yhp1, and gene activation ensues once repression is relieved by an unknown activating signal. Here, we show that Bck2 interacts physically with Mcm1 to activate genes during G1 phase. We used chromatin immunoprecipitation (ChIP) experiments to show that Bck2 localizes to the promoters of M/G1-specific genes, in a manner dependent on functional ECB elements, as well as to the promoters of G1/S and G2/M genes. The Bck2-Mcm1 interaction requires valine 69 on Mcm1, a residue known to be required for interaction with Yox1. Overexpression of BCK2 decreases Yox1 localization to the early G1-specific CLN3 promoter and rescues the lethality caused by overexpression of YOX1. Our data suggest that Yox1 and Bck2 may compete for access to the Mcm1-ECB scaffold to ensure appropriate activation of the initial suite of genes required for cell cycle commitment.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteína 1 de Manutenção de Minicromossomo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 de Manutenção de Minicromossomo/genética , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Biol Chem ; 288(7): 4625-36, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23264620

RESUMO

Proliferation of vascular smooth muscle cells (VSMCs) in response to vascular injury plays a critical role in vascular lesion formation. Emerging data suggest that peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) is a key regulator of energy metabolism and other biological processes. However, the physiological role of PGC-1ß in VSMCs remains unknown. A decrease in PGC-1ß expression was observed in balloon-injured rat carotid arteries. PGC-1ß overexpression substantially inhibited neointima formation in vivo and markedly inhibited VSMC proliferation and induced cell cycle arrest at the G(1)/S transition phase in vitro. Accordingly, overexpression of PGC-1ß decreased the expression of minichromosome maintenance 4 (MCM4), which leads to a decreased loading of the MCM complex onto chromatin at the replication origins and decreased cyclin D1 levels, whereas PGC-1ß loss of function by adenovirus containing PGC-1ß shRNA resulted in the opposite effect. The transcription factor AP-1 was involved in the down-regulation of MCM4 expression. Furthermore, PGC-1ß is up-regulated by metformin, and metformin-associated anti-proliferative activity in VSMCs is at least partially dependent on PGC-1ß. Our data show that PGC-1ß is a critical component in regulating DNA replication, VSMC proliferation, and vascular lesion formation, suggesting that PGC-1ß may emerge as a novel therapeutic target for control of proliferative vascular diseases.


Assuntos
Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Miócitos de Músculo Liso/citologia , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Artérias Carótidas/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Diabetes Mellitus/metabolismo , Técnicas de Transferência de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos
12.
Mol Cell Biol ; 32(22): 4651-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22966207

RESUMO

The control of the cell cycle in eukaryotes is exerted in part by the coordinated action of a series of transcription factor complexes. This is exemplified by the Mcm1p-Fkh2p-Ndd1p complex in Saccharomyces cerevisiae, which controls the cyclical expression of the CLB2 cluster of genes at the G(2)/M phase transition. The activity of this complex is positively controlled by cyclin-dependent kinase (CDK) and polo kinases. Here, we demonstrate that the protein kinase Pkc1p works in the opposite manner to inhibit the activity of the Mcm1p-Fkh2p-Ndd1p complex and the expression of its target genes. In particular, Pkc1p causes phosphorylation of the coactivator protein Ndd1p. Reductions in Pkc1p activity and the presence of Pkc1p-insensitive Ndd1p mutant proteins lead to changes in the timing of CLB2 cluster expression and result in associated late cell cycle defects. This study therefore identifies an important role for Pkc1p in controlling the correct temporal expression of genes in the cell cycle.


Assuntos
Ciclo Celular/genética , Ciclina B/genética , Regulação Fúngica da Expressão Gênica , Proteína Quinase C/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Proteína 1 de Manutenção de Minicromossomo/genética , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Cell Cycle ; 11(7): 1325-39, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22421151

RESUMO

Several replication-initiation proteins are assembled stepwise onto replicators to form pre-replicative complexes (pre-RCs) to license eukaryotic DNA replication. We performed a yeast functional proteomic screen and identified the Rix1 complex members (Ipi1p-Ipi2p/Rix1-Ipi3p) as pre-RC components and critical determinants of replication licensing and replication-initiation frequency. Ipi3p interacts with pre-RC proteins, binds chromatin predominantly at ARS sequences in a cell cycle-regulated and ORC- and Noc3p-dependent manner and is required for loading Cdc6p, Cdt1p and MCM onto chromatin to form pre-RC during the M-to-G1 transition and for pre-RC maintenance in G1 phase-independent of its role in ribosome biogenesis. Moreover, Ipi1p and Ipi2p, but not other ribosome biogenesis proteins Rea1p and Utp1p, are also required for pre-RC formation and maintenance, and Ipi1p, -2p and -3p are interdependent for their chromatin association and function in pre-RC formation. These results establish a new framework for the hierarchy of pre-RC proteins, where the Ipi1p-2p-3p complex provides a critical link between ORC-Noc3p and Cdc6p-Cdt1p-MCM in replication licensing.


Assuntos
Replicação do DNA , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fase G1/fisiologia , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Proteoma , Origem de Replicação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Transativadores/metabolismo
14.
Biochem J ; 436(2): 409-14, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21361871

RESUMO

The MCM (minichromosome maintenance) proteins of archaea are widely believed to be the replicative DNA helicase of these organisms. Most archaea possess a single MCM orthologue that forms homo-multimeric assemblies with a single hexamer believed to be the active form. In the present study we characterize the roles of highly conserved residues in the ATPase domain of the MCM of the hyperthermophilic archaeon Sulfolobus solfataricus. Our results identify a potential conduit for communicating DNA-binding information to the ATPase active site.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Domínio MADS/metabolismo , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Trifosfato de Adenosina/genética , Proteínas Arqueais/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Ativação Enzimática/fisiologia , Hidrólise , Proteínas de Domínio MADS/genética , Proteína 1 de Manutenção de Minicromossomo/genética , Ligação Proteica/fisiologia , Sulfolobus solfataricus
15.
Antimicrob Agents Chemother ; 55(5): 2061-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21343453

RESUMO

Overexpression of the multidrug efflux pump Mdr1 causes increased fluconazole resistance in the pathogenic yeast Candida albicans. The transcription factors Mrr1 and Cap1 mediate MDR1 upregulation in response to inducing stimuli, and gain-of-function mutations in Mrr1 or Cap1, which render the transcription factors hyperactive, result in constitutive MDR1 overexpression. The essential MADS box transcription factor Mcm1 also binds to the MDR1 promoter, but its role in inducible or constitutive MDR1 upregulation is unknown. Using a conditional mutant in which Mcm1 can be depleted from the cells, we investigated the importance of Mcm1 for MDR1 expression. We found that Mcm1 was dispensable for MDR1 upregulation by H2O2 but was required for full MDR1 induction by benomyl. A C-terminally truncated, hyperactive Cap1 could upregulate MDR1 expression both in the presence and in the absence of Mcm1. In contrast, a hyperactive Mrr1 containing a gain-of-function mutation depended on Mcm1 to cause MDR1 overexpression. These results demonstrate a differential requirement for the coregulator Mcm1 for Cap1- and Mrr1-mediated MDR1 upregulation. When activated by oxidative stress or a gain-of-function mutation, Cap1 can induce MDR1 expression independently of Mcm1, whereas Mrr1 requires either Mcm1 or an active Cap1 to cause overexpression of the MDR1 efflux pump. Our findings provide more detailed insight into the molecular mechanisms of drug resistance in this important human fungal pathogen.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Candida albicans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Fatores de Transcrição de Zíper de Leucina Básica , Western Blotting , Candida albicans/genética , Proteínas de Ciclo Celular/genética , Citometria de Fluxo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Proteína 1 de Manutenção de Minicromossomo/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Postepy Hig Med Dosw (Online) ; 64: 627-35, 2010 Nov 30.
Artigo em Polonês | MEDLINE | ID: mdl-21160097

RESUMO

The MCM (minichromosome maintenance protein) protein family was identified for the first time in budding yeast, Saccharomyces cerevisiae. The subgroup consists of MCM proteins 2-9, that possess the characteristic ATPase domain (MCM box). There are also MCM1 and MCM10, which are important in DNA replication, but they do not possess the specific MCM box. The main function of MCM proteins is cooperation with other factors in molecular mechanisms that form the replication fork and in regulation of DNA synthesis. MCM proteins form a ring-shaped complex, which is activated when other factors are bound. MCM 2-7 complex is one of the pre-replication factors. Association of MCM 2-7 complex is a crucial moment initiating the replication fork. MCM proteins play a role in maintaining genome integrity and prevent re-replication once per cell cycle. Proliferating cells have high levels of MCM, whereas they are not detected in quiescent, differentiated or senescent cells. They are also potential useful markers of cell proliferation. Recent studies suggested that MCMs are good markers of proliferation activity degree, because they are highly expressed in a variety of tumors. The aim of this work is to summarize current knowledge about the role of MCM proteins in DNA replication and potential diagnostic markers of proliferating cancer cells.


Assuntos
Replicação do DNA , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Neoplasias/metabolismo , Proliferação de Células , Humanos
17.
Histopathology ; 57(5): 716-24, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21083601

RESUMO

AIMS: Chromatin assembly factor-1 (CAF-1), whose function is critical for maintaining chromatin stability during DNA replication and repair, has been identified as a proliferation marker in breast cancer. The aim was to investigate CAF-1 as a proliferation marker in a wide variety of solid tumours, and to assess its potential value in predicting clinical outcome. METHODS AND RESULTS: Using immunocytochemistry on paraffin-embedded tissue sections, the CAF-1 labelling index was compared with known proliferation markers Ki-67 and minichromosome maintenance (MCM), and its association with clinicopathological data and patients' outcome analysed. CAF-1 expression showed a strong positive correlation with Ki-67, used routinely to detect proliferating cells, while it generally displayed weaker correlations with MCM markers, known to label cells with replicative potential. CAF-1 expression was associated significantly with histological grade in breast, cervical, endometrial and renal cell carcinomas, and with disease stage in endometrial and renal carcinomas. Furthermore, high expression of CAF-1 was an independent predictor of adverse clinical outcome in renal, endometrial and cervical carcinomas. CONCLUSIONS: CAF-1 is a proliferation marker in various malignant tumours with prognostic value in renal, endometrial and cervical carcinomas, which supports the value of CAF-1 as a clinical marker of cancer progression.


Assuntos
Biomarcadores Tumorais/metabolismo , Fator 1 de Modelagem da Cromatina/metabolismo , Idoso , Proliferação de Células , Fator 1 de Modelagem da Cromatina/genética , Replicação do DNA , Feminino , Humanos , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico
18.
Cell Cycle ; 9(22): 4487-91, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21088489

RESUMO

Genome replication is the most fundamental element of the continuity of life. In eukaryotes, DNA replication is regulated by an elegant network of many different protein factors to ensure the timely and accurate copying of their entire genome once per cell cycle. The replication factors include the maintenance (MCM) proteins, Cdt1, Cdc6, Cdc7, Cdc45, and geminin. All of these proteins are involved in the regulation of DNA replication at the initiation step. Interestingly, recent studies have shown that some of these replication proteins also localize to the centrosome, often throughout the entire cell cycle. These centrosomally localized replication proteins appear to play essential roles in the regulation of centrosome biogenesis, suggesting that genome replication and segregation are regulated interdependently. In this review, we summarize and discuss the inter-dependent regulation played by some of the replication proteins.


Assuntos
Centrossomo/fisiologia , Replicação do DNA , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Centrossomo/metabolismo , Proteína 1 de Manutenção de Minicromossomo/genética , Proteína 1 de Manutenção de Minicromossomo/fisiologia , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/fisiologia , Interferência de RNA
19.
Cell Cycle ; 9(21): 4351-63, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20980834

RESUMO

The efficiency of metazoan origins of DNA replication is known to be enhanced by histone acetylation near origins. Although this correlates with increased MCM recruitment, the mechanism by which such acetylation regulates MCM loading is unknown. We show here that Cdt1 induces large-scale chromatin decondensation that is required for MCM recruitment. This process occurs in G1, is suppressed by Geminin, and requires HBO1 HAT activity and histone H4 modifications. HDAC11, which binds Cdt1 and replication origins during S-phase, potently inhibits Cdt1-induced chromatin unfolding and re-replication, suppresses MCM loading and binds Cdt1 more efficiently in the presence of Geminin. We also demonstrate that chromatin at endogenous origins is more accessible in G1 relative to S-phase. These results provide evidence that histone acetylation promotes MCM loading via enhanced chromatin accessibility. This process is regulated positively by Cdt1 and HBO1 in G1 and repressed by Geminin-HDAC11 association with Cdt1 in S-phase, and represents a novel form of replication licensing control.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/fisiologia , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Acetilação , Proteínas de Ciclo Celular/fisiologia , Cromatina/química , Fase G1 , Geminina , Células HeLa , Histona Acetiltransferases/fisiologia , Histona Desacetilases/fisiologia , Histonas/metabolismo , Humanos , Fase S
20.
Crit Rev Biochem Mol Biol ; 45(3): 243-56, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20441442

RESUMO

The helicase function of the minichromosome maintenance protein (MCM) is essential for genomic DNA replication in archaea and eukaryotes. There has been rapid progress in studies of the structure and function of MCM proteins from different organisms, leading to better understanding of the MCM helicase mechanism. Because there are a number of excellent reviews on this topic, we will use this review to summarize some of the recent progress, with particular focus on the structural aspects of MCM and their implications for helicase function. Given the hexameric and double hexameric architecture observed by X-ray crystallography and electron microscopy of MCMs from archaeal and eukaryotic cells, we summarize and discuss possible unwinding modes by either a hexameric or a double hexameric helicase. Additionally, our recent crystal structure of a full length archaeal MCM has provided structural information on an intact, multi-domain MCM protein, which includes the salient features of four unusual beta-hairpins from each monomer, and the side channels of a hexamer/double hexamer. These new structural data enable a closer examination of the structural basis of the unwinding mechanisms by MCM.


Assuntos
Archaea/genética , Archaea/metabolismo , DNA Arqueal , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Sequência de Aminoácidos , Proteína 1 de Manutenção de Minicromossomo/química , Modelos Moleculares , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA