Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cells ; 9(11)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153033

RESUMO

Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.


Assuntos
Aminoácidos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilação , Fosfosserina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteólise , Relação Estrutura-Atividade
2.
RNA Biol ; 16(10): 1364-1376, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31213135

RESUMO

Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.


Assuntos
Processamento Alternativo , Éxons , Mutação , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Linhagem Celular , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Simulação de Dinâmica Molecular , Mutagênese , Conformação de Ácido Nucleico , Ligação Proteica , Sítios de Splice de RNA , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
3.
Nucleic Acids Res ; 46(20): 10983-11001, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30165668

RESUMO

The Survival Motor Neuron (SMN) protein is essential for survival of all animal cells. SMN harbors a nucleic acid-binding domain and plays an important role in RNA metabolism. However, the RNA-binding property of SMN is poorly understood. Here we employ iterative in vitro selection and chemical structure probing to identify sequence and structural motif(s) critical for RNA-SMN interactions. Our results reveal that motifs that drive RNA-SMN interactions are diverse and suggest that tight RNA-SMN interaction requires presence of multiple contact sites on the RNA molecule. We performed UV crosslinking and immunoprecipitation coupled with high-throughput sequencing (HITS-CLIP) to identify cellular RNA targets of SMN in neuronal SH-SY5Y cells. Results of HITS-CLIP identified a wide variety of targets, including mRNAs coding for ribosome biogenesis and cytoskeleton dynamics. We show critical determinants of ANXA2 mRNA for a direct SMN interaction in vitro. Our data confirms the ability of SMN to discriminate among close RNA sequences, and represent the first validation of a direct interaction of SMN with a cellular RNA target. Our findings suggest direct RNA-SMN interaction as a novel mechanism to initiate the cascade of events leading to the execution of SMN-specific functions.


Assuntos
Motivos de Nucleotídeos , Domínios Proteicos , RNA/química , Proteína 1 de Sobrevivência do Neurônio Motor/química , Animais , Sequência de Bases , Sítios de Ligação/genética , Ligação Competitiva , Linhagem Celular Tumoral , Humanos , Neurônios/metabolismo , Ligação Proteica , RNA/genética , RNA/metabolismo , Homologia de Sequência do Ácido Nucleico , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/química , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
5.
JCI Insight ; 1(19): e88427, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27882347

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease and one of the leading inherited causes of infant mortality. SMA results from insufficient levels of the survival motor neuron (SMN) protein, and studies in animal models of the disease have shown that increasing SMN protein levels ameliorates the disease phenotype. Our group previously identified and optimized a new series of small molecules, with good potency and toxicity profiles and reasonable pharmacokinetics, that were able to increase SMN protein levels in SMA patient-derived cells. We show here that ML372, a representative of this series, almost doubles the half-life of residual SMN protein expressed from the SMN2 locus by blocking its ubiquitination and subsequent degradation by the proteasome. ML372 increased SMN protein levels in muscle, spinal cord, and brain tissue of SMA mice. Importantly, ML372 treatment improved the righting reflex and extended survival of a severe mouse model of SMA. These results demonstrate that slowing SMN degradation by selectively inhibiting its ubiquitination can improve the motor phenotype and lifespan of SMA model mice.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Proteína 1 de Sobrevivência do Neurônio Motor/química , Ubiquitinação , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos
6.
Sci Rep ; 6: 30778, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27481219

RESUMO

Spinal muscular atrophy (SMA), a leading genetic disease of children and infants, is caused by mutations or deletions of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of SMN1 due to skipping of exon 7. SMN2 predominantly produces SMNΔ7, an unstable protein. Here we report exon 6B, a novel exon, generated by exonization of an intronic Alu-like sequence of SMN. We validate the expression of exon 6B-containing transcripts SMN6B and SMN6BΔ7 in human tissues and cell lines. We confirm generation of SMN6B transcripts from both SMN1 and SMN2. We detect expression of SMN6B protein using antibodies raised against a unique polypeptide encoded by exon 6B. We analyze RNA-Seq data to show that hnRNP C is a potential regulator of SMN6B expression and demonstrate that SMN6B is a substrate of nonsense-mediated decay. We show interaction of SMN6B with Gemin2, a critical SMN-interacting protein. We demonstrate that SMN6B is more stable than SMNΔ7 and localizes to both the nucleus and the cytoplasm. Our finding expands the diversity of transcripts generated from human SMN genes and reveals a novel protein isoform predicted to be stably expressed during conditions of stress.


Assuntos
Análise de Sequência de RNA/métodos , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Processamento Alternativo , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Éxons , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Humanos , Camundongos , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteínas de Ligação a RNA/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/química , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
7.
J Pept Sci ; 22(8): 533-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27443979

RESUMO

Human osteoclast-stimulating factor (hOSF) is an intracellular protein produced by osteoclasts that induces osteoclast formation and bone resorption. The protein contains a modular Src homology 3 (SH3) domain that mediates the intermolecular recognition and interaction of hOSF with its biological partners. Here, we proposed targeting the hOSF SH3 domain to disrupt hOSF-partner interactions for bone disease therapy by using SH3 inhibitors. In the procedure, the primary sequences of three known hOSF-interacting proteins (c-Src, SMN and Sam68) were parsed, from which totally 31 octapeptide segments that contain the core SH3-binding motif PXXP were extracted, and their binding behavior to hOSF SH3 domain was investigated at structural level using a biomolecular modeling protocol. Several SH3-binding candidates were identified theoretically and then determined to have high or moderate affinity for the domain using fluorescence spectroscopy assays. One potent peptide (425) APPARPVK(432) (Kd = 3.2 µM), which corresponds to the residues 425-432 of Sam68 protein, was used as template to derive N substitution of peptides (peptoids). Considering that proline is the only endogenous N-substituted amino acid that plays a critical role in SH3-peptide binding, the substitution was addressed at the two key proline residues (Pro427 and Pro430) of the template peptide with nine N-substituted amino acid types. By systematically evaluating the structural and energetic effects of different N-substituted amino acids presenting at the two proline sites on peptide binding, we rationally designed five peptoid inhibitors and then determined in vitro their binding affinity to hOSF SH3 domain. Consequently, two designed peptoids APPAR(N-Clp)VK and APPAR(N-Ffa)VK with Pro430 replaced by N-Clp and N-Ffa were confirmed to have increased (Kd = 0.87 µM) and comparable (Kd = 2.9 µM) affinities relative to the template, respectively. In addition, we also found that the Pro427 residue plays an essential role in restricting peptide/peptoid conformations to polyproline II (PPII) helix as the basic requirement of SH3 binding so that the residue cannot be modified. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Conservadores da Densidade Óssea/química , Desenho de Fármacos , Peptídeos/química , Peptoides/química , Prolina/química , Proteínas/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Conservadores da Densidade Óssea/síntese química , Proteína Tirosina Quinase CSK , Proteínas de Ligação a DNA/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Ligantes , Modelos Moleculares , Peptoides/síntese química , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/química , Proteínas de Ligação a RNA/química , Relação Estrutura-Atividade , Proteína 1 de Sobrevivência do Neurônio Motor/química , Termodinâmica , Domínios de Homologia de src , Quinases da Família src/química
8.
Hum Mol Genet ; 25(7): 1392-405, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908624

RESUMO

Low levels of the survival motor neuron (SMN) protein cause spinal muscular atrophy, the leading genetic disorder for infant mortality. SMN is ubiquitously expressed in various cell types and localizes in both the cytoplasm and the nucleus, where it concentrates in two subnuclear structures termed Cajal body (CB) and gems. In addition, SMN can also be detected in the nucleolus of neurons. Mechanisms that control SMN sorting in the cell remain largely unknown. Here, we report that the ubiquitin (Ub) ligase Itch directly interacts with and monoubiquitinates SMN. Monoubiquitination of SMN has a mild effect on promoting proteasomal degradation of SMN. We generated two SMN mutants, SMN(K0), in which all lysines are mutated to arginines and thereby abolishing SMN ubiquitination, and Ub-SMN(K0), in which a single Ub moiety is fused at the N-terminus of SMN(K0) and thereby mimicking SMN monoubiquitination. Immunostaining assays showed that SMN(K0) mainly localizes in the nucleus, whereas Ub-SMN(K0) localizes in both the cytoplasm and the nucleolus in neuronal SH-SY5Y cells. Interestingly, canonical CB foci and coilin/small nuclear ribonucleoprotein (snRNP) co-localization are significantly impaired in SH-SY5Y cells stably expressing SMN(K0) or Ub-SMN(K0). Thus, our studies discover that Itch monoubiquitinates SMN and monoubiquitination of SMN plays an important role in regulating its cellular localization. Moreover, mislocalization of SMN disrupts CB integrity and likely impairs snRNP maturation.


Assuntos
Corpos Enovelados/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Camundongos , Atrofia Muscular Espinal/metabolismo , Transporte Proteico , Proteína 1 de Sobrevivência do Neurônio Motor/química , Ubiquitinação
9.
J Biol Chem ; 290(33): 20185-99, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26092730

RESUMO

The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex required for the assembly of spliceosomal small nuclear ribonucleoproteins. Deletions and mutations in the SMN1 gene are associated with spinal muscular atrophy (SMA), a devastating neurodegenerative disease that is the leading heritable cause of infant mortality. Oligomerization of SMN is required for its function, and some SMA patient mutations disrupt the ability of SMN to self-associate. Here, we investigate the oligomeric nature of the SMN·Gemin2 complexes from humans and fission yeast (hSMN·Gemin2 and ySMN·Gemin2). We find that hSMN·Gemin2 forms oligomers spanning the dimer to octamer range. The YG box oligomerization domain of SMN is both necessary and sufficient to form these oligomers. ySMN·Gemin2 exists as a dimer-tetramer equilibrium with Kd = 1.0 ± 0.9 µM. A 1.9 Å crystal structure of the ySMN YG box confirms a high level of structural conservation with the human ortholog in this important region of SMN. Disulfide cross-linking experiments indicate that SMN tetramers are formed by self-association of stable, non-dissociating dimers. Thus, SMN tetramers do not form symmetric helical bundles such as those found in glycine zipper transmembrane oligomers. The dimer-tetramer nature of SMN complexes and the dimer of dimers organization of the SMN tetramer provide an important foundation for ongoing studies to understand the mechanism of SMN-assisted small nuclear ribonucleoprotein assembly and the underlying causes of SMA.


Assuntos
Biopolímeros/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Sequência de Aminoácidos , Biopolímeros/química , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Polimerização , Proteínas de Ligação a RNA/química , Homologia de Sequência de Aminoácidos , Proteína 1 de Sobrevivência do Neurônio Motor/química
10.
Biochem Biophys Res Commun ; 452(3): 600-7, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25173930

RESUMO

Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusion of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.


Assuntos
Grânulos Citoplasmáticos/química , Neurônios/química , Agregação Patológica de Proteínas/metabolismo , RNA Mensageiro/química , Proteína FUS de Ligação a RNA/química , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Citoplasma/metabolismo , Citoplasma/patologia , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/patologia , Expressão Gênica , Células HEK293 , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Agregados Proteicos , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-23831553

RESUMO

The spinal muscular atrophy (SMA) associated protein survival of motor neuron (SMN) is known to be a moonlighting protein: having one primary, ancestral function (presumed to be involvement in U snRNP assembly) along with one or more secondary functions. One hypothesis for the evolution of moonlighting proteins is that regions of a structure under relatively weak negative selection could gain new functions without interfering with the primary function. To test this hypothesis, we investigated sequence conservation and dN/dS, which reflects the selection acting on a coding sequence, in SMN and a related protein, splicing factor 30 (SPF30), which is not currently known to be multifunctional. We found very different patterns of evolution in the two genes, with SPF30 characterized by strong sequence conservation and negative selection in most animal taxa investigated, and SMN with much lower sequence conservation, and much weaker negative selection at many sites. Evidence was found of positive selection acting on some sites in primate genes for SMN. SMN was also found to have been duplicated in a number of species, and with patterns that indicate reduced negative selection following some of these duplications. There were also several animal species lacking an SMN gene.


Assuntos
Evolução Molecular , Proteínas do Complexo SMN/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Sequência de Aminoácidos , Animais , Teorema de Bayes , Sítios de Ligação , Biologia Computacional , Sequência Conservada , Modelos Genéticos , Filogenia , Proteína 1 de Sobrevivência do Neurônio Motor/química
12.
Hum Mol Genet ; 22(20): 4043-52, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23727837

RESUMO

Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder that stems from low levels of survival of motor neuron (SMN) protein. The processes that cause motor neurons and muscle cells to become dysfunctional are incompletely understood. We are interested in neuromuscular homeostasis and the stresses put upon that system by loss of SMN. We recently reported that α-COP, a member of the coatomer complex of coat protein I (COPI) vesicles, is an SMN-binding partner, implicating this protein complex in normal SMN function. To investigate the functional significance of the interaction between α-COP and SMN, we constructed an inducible NSC-34 cell culture system to model the consequences of SMN depletion and find that depletion of SMN protein results in shortened neurites. Heterologous expression of human SMN, and interestingly over-expression of α-COP, restores normal neurite length and morphology. Mutagenesis of the canonical COPI dilysine motifs in exon 2b results in failure to bind to α-COP and abrogates the ability of human SMN to restore neurite outgrowth in SMN-depleted motor neuron-like NSC-34 cells. We conclude that the interaction between SMN and α-COP serves an important function in the growth and maintenance of motor neuron processes and may play a significant role in the pathogenesis of SMA.


Assuntos
Proteína Coatomer/metabolismo , Dipeptídeos/metabolismo , Éxons , Modelos Biológicos , Atrofia Muscular Espinal/patologia , Neuritos/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Sequência de Aminoácidos , Técnicas de Cultura de Células/métodos , Linhagem Celular , Complexo I de Proteína do Envoltório/metabolismo , Dipeptídeos/química , Dipeptídeos/genética , Humanos , Dados de Sequência Molecular , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Mutação , Neuritos/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética
13.
Hum Mol Genet ; 22(18): 3690-704, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23681068

RESUMO

Mutations in the RNA binding protein fused in sarcoma/translated in liposarcoma (FUS/TLS) cause amyotrophic lateral sclerosis (ALS). Although ALS-linked mutations in FUS often lead to a cytosolic mislocalization of the protein, the pathogenic mechanisms underlying these mutations remain poorly understood. To gain insight into these mechanisms, we examined the biochemical, cell biological and functional properties of mutant FUS in neurons. Expression of different FUS mutants (R521C, R521H, P525L) in neurons caused axonal defects. A protein interaction screen performed to explain these phenotypes identified numerous FUS interactors including the spinal muscular atrophy (SMA) causing protein survival motor neuron (SMN). Biochemical experiments showed that FUS and SMN interact directly and endogenously, and that this interaction can be regulated by FUS mutations. Immunostaining revealed co-localization of mutant FUS aggregates and SMN in primary neurons. This redistribution of SMN to cytosolic FUS accumulations led to a decrease in axonal SMN. Finally, cell biological experiments showed that overexpression of SMN rescued the axonal defects induced by mutant FUS, suggesting that FUS mutations cause axonal defects through SMN. This study shows that neuronal aggregates formed by mutant FUS protein may aberrantly sequester SMN and concomitantly cause a reduction of SMN levels in the axon, leading to axonal defects. These data provide a functional link between ALS-linked FUS mutations, SMN and neuronal connectivity and support the idea that different motor neuron disorders such as SMA and ALS may be caused, in part, by defects in shared molecular pathways.


Assuntos
Axônios/metabolismo , Neurônios Motores/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Axônios/ultraestrutura , Linhagem Celular Tumoral , Expressão Gênica , Cones de Crescimento/ultraestrutura , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/ultraestrutura , Mutação , Fenótipo , Proteína FUS de Ligação a RNA/química , Proteína 1 de Sobrevivência do Neurônio Motor/química , Transfecção
14.
Structure ; 20(11): 1929-39, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23022347

RESUMO

The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex that functions in spliceosomal snRNP biogenesis. Loss of function mutations in the SMN gene cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Nearly half of the known SMA patient missense mutations map to the SMN YG-box, a highly conserved oligomerization domain of unknown structure that contains a (YxxG)3 motif. Here, we report that the SMN YG-box forms helical oligomers similar to the glycine zippers found in transmembrane channel proteins. A network of tyrosine-glycine packing between helices drives formation of soluble YG-box oligomers, providing a structural basis for understanding SMN oligomerization and for relating defects in oligomerization to the mutations found in SMA patients. These results have important implications for advancing our understanding of SMN function and glycine zipper-mediated helix-helix interactions.


Assuntos
Biopolímeros/química , Proteína 1 de Sobrevivência do Neurônio Motor/química , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Solubilidade
15.
Biochem J ; 445(3): 361-70, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22607171

RESUMO

In humans, assembly of spliceosomal snRNPs (small nuclear ribonucleoproteins) begins in the cytoplasm where the multi-protein SMN (survival of motor neuron) complex mediates the formation of a seven-membered ring of Sm proteins on to a conserved site of the snRNA (small nuclear RNA). The SMN complex contains the SMN protein Gemin2 and several additional Gemins that participate in snRNP biosynthesis. SMN was first identified as the product of a gene found to be deleted or mutated in patients with the neurodegenerative disease SMA (spinal muscular atrophy), the leading genetic cause of infant mortality. In the present study, we report the solution structure of Gemin2 bound to the Gemin2-binding domain of SMN determined by NMR spectroscopy. This complex reveals the structure of Gemin2, how Gemin2 binds to SMN and the roles of conserved SMN residues near the binding interface. Surprisingly, several conserved SMN residues, including the sites of two SMA patient mutations, are not required for binding to Gemin2. Instead, they form a conserved SMN/Gemin2 surface that may be functionally important for snRNP assembly. The SMN-Gemin2 structure explains how Gemin2 is stabilized by SMN and establishes a framework for structure-function studies to investigate snRNP biogenesis as well as biological processes involving Gemin2 that do not involve snRNP assembly.


Assuntos
Proteínas do Complexo SMN/química , Proteína 1 de Sobrevivência do Neurônio Motor/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas do Complexo SMN/genética , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/química , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Difração de Raios X
16.
Histochem Cell Biol ; 137(5): 657-67, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22302308

RESUMO

Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by loss or mutations of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to degeneration and death of motor neurons. In this study, we have analyzed the nuclear reorganization of Cajal bodies, PML bodies and nucleoli in type I SMA motor neurons with homozygous deletion of exons 7 and 8 of the SMN1 gene. Western blot analysis is is revealed a marked reduction of SMN levels compared to the control sample. Using a neuronal dissociation procedure to perform a careful immunocytochemical and quantitative analysis of nuclear bodies, we demonstrated a severe decrease in the mean number of Cajal bodies per neuron and in the proportion of motor neurons containing these structures in type I SMA. Moreover, most Cajal bodies fail to recruit SMN and spliceosomal snRNPs, but contain the proteasome activator PA28, a molecular marker associated with the cellular stress response. Neuronal stress in SMA motor neurons also increases PML body number. The existence of chromatolysis and eccentric nuclei in SMA motor neurons correlates with Cajal body disruption and nucleolar relocalization of coil in, a Cajal body marker. Our results indicate that the Cajal body is a pathophysiological target in type I SMA motor neurons. They also suggest the Cajal body-dependent dysfunction of snRNP biogenesis and, therefore, pre-mRNA splicing in these neurons seems to be an essential component for SMA pathogenesis.


Assuntos
Nucléolo Celular/metabolismo , Corpos Enovelados/metabolismo , Neurônios Motores/metabolismo , Proteínas Nucleares/metabolismo , Atrofias Musculares Espinais da Infância/metabolismo , Atrofias Musculares Espinais da Infância/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Nucléolo Celular/química , Corpos Enovelados/química , Humanos , Atrofias Musculares Espinais da Infância/genética , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteína 1 de Sobrevivência do Neurônio Motor/genética
17.
Nat Struct Mol Biol ; 18(12): 1414-20, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101937

RESUMO

Arginine dimethylation plays critical roles in the assembly of ribonucleoprotein complexes in pre-mRNA splicing and piRNA pathways. We report solution structures of SMN and SPF30 Tudor domains bound to symmetric and asymmetric dimethylated arginine (DMA) that is inherent in the RNP complexes. An aromatic cage in the Tudor domain mediates dimethylarginine recognition by electrostatic stabilization through cation-π interactions. Distinct from extended Tudor domains, dimethylarginine binding by the SMN and SPF30 Tudor domains is independent of proximal residues in the ligand. Yet, enhanced micromolar affinities are obtained by external cooperativity when multiple methylation marks are presented in arginine- and glycine-rich peptide ligands. A hydrogen bond network in the SMN Tudor domain, including Glu134 and a tyrosine hydroxyl of the aromatic cage, enhances cation-π interactions and is impaired by a mutation causing an E134K substitution associated with spinal muscular atrophy. Our structural analysis enables the design of an optimized binding pocket and the prediction of DMA binding properties of Tudor domains.


Assuntos
Arginina/análogos & derivados , Proteínas do Complexo SMN/química , Proteína 1 de Sobrevivência do Neurônio Motor/química , Sequência de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Fatores de Processamento de RNA , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Alinhamento de Sequência , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Termodinâmica
18.
Wiley Interdiscip Rev RNA ; 2(4): 546-64, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21957043

RESUMO

Ribonucleoprotein (RNP) complexes function in nearly every facet of cellular activity. The spliceosome is an essential RNP that accurately identifies introns and catalytically removes the intervening sequences, providing exquisite control of spatial, temporal, and developmental gene expressions. U-snRNPs are the building blocks for the spliceosome. A significant amount of insight into the molecular assembly of these essential particles has recently come from a seemingly unexpected area of research: neurodegeneration. Survival motor neuron (SMN) performs an essential role in the maturation of snRNPs, while the homozygous loss of SMN1 results in the development of spinal muscular atrophy (SMA), a devastating neurodegenerative disease. In this review, the function of SMN is examined within the context of snRNP biogenesis and evidence is examined which suggests that the SMN functional defects in snRNP biogenesis may account for the motor neuron pathology observed in SMA.


Assuntos
Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequenas/biossíntese , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Processamento Alternativo , Axônios/metabolismo , Humanos , Modelos Neurológicos , Atrofia Muscular Espinal/classificação , Atrofia Muscular Espinal/etiologia , Estrutura Terciária de Proteína , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
19.
Cell Stress Chaperones ; 15(5): 567-82, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20157854

RESUMO

A number of missense mutations in the two related small heat shock proteins HspB8 (Hsp22) and HspB1 (Hsp27) have been associated with the inherited motor neuron diseases (MND) distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. HspB8 and HspB1 interact with each other, suggesting that these two etiologic factors may act through a common biochemical mechanism. However, their role in neuron biology and in MND is not understood. In a yeast two-hybrid screen, we identified the DEAD box protein Ddx20 (gemin3, DP103) as interacting partner of HspB8. Using co-immunoprecipitation, chemical cross-linking, and in vivo quantitative fluorescence resonance energy transfer, we confirmed this interaction. We also show that the two disease-associated mutant HspB8 forms have abnormally increased binding to Ddx20. Ddx20 itself binds to the survival-of-motor-neurons protein (SMN protein), and mutations in the SMN1 gene cause spinal muscular atrophy, another MND and one of the most prevalent genetic causes of infant mortality. Thus, these protein interaction data have linked the three etiologic factors HspB8, HspB1, and SMN protein, and mutations in any of their genes cause the various forms of MND. Ddx20 and SMN protein are involved in spliceosome assembly and pre-mRNA processing. RNase treatment affected the interaction of the mutant HspB8 with Ddx20 suggesting RNA involvement in this interaction and a potential role of HspB8 in ribonucleoprotein processing.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Proteína DEAD-box 20/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Proteína DEAD-box 20/química , Proteína DEAD-box 20/genética , Transferência Ressonante de Energia de Fluorescência , Imunofluorescência , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Imunoprecipitação , Focalização Isoelétrica , Chaperonas Moleculares , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Técnicas do Sistema de Duplo-Híbrido
20.
Chromosoma ; 119(2): 205-15, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19997741

RESUMO

Cajal bodies (CBs) are subnuclear domains that participate in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and play a part in the assembly of the spliceosomal complex. The CB marker protein, coilin, interacts with survival of motor neuron (SMN) and Sm proteins. Several coilin phosphoresidues have been identified by mass spectrometric analysis. Phosphorylation of coilin affects its self-interaction and localization in the nucleus. We hypothesize that coilin phosphorylation also impacts its binding to SMN and Sm proteins. In vitro binding studies with a C-terminal fragment of coilin and corresponding phosphomimics show that SMN binds preferentially to dephosphorylated analogs and that SmB' binds preferentially to phosphomimetic constructs. Bacterially expressed full-length coilin binds more SMN and SmB' than does the C-terminal fragment. Co-immunoprecipitation and phosphatase experiments show that SMN also binds dephosphorylated coilin in vivo. These data show that phosphorylation of coilin influences interaction with its target proteins and, thus, may be significant in managing the flow of snRNPs through the CB.


Assuntos
Proteínas Nucleares/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteínas Centrais de snRNP/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Corpos Enovelados/metabolismo , Humanos , Imunoprecipitação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteínas Centrais de snRNP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA