Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.504
Filtrar
1.
Sci Rep ; 14(1): 20565, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232000

RESUMO

Studies on MECP2 function and its implications in Rett Syndrome (RTT) have traditionally centered on neurons. Here, using human embryonic stem cell (hESC) lines, we modeled MECP2 loss-of-function to explore its effects on astrocyte (AST) development and dysfunction in the brain. Ultrastructural analysis of RTT hESC-derived cerebral organoids revealed significantly smaller mitochondria compared to controls (CTRs), particularly pronounced in glia versus neurons. Employing a multiomics approach, we observed increased gene expression and accessibility of a subset of nuclear-encoded mitochondrial genes upon mutation of MECP2 in ASTs compared to neurons. Analysis of hESC-derived ASTs showed reduced mitochondrial respiration and altered key proteins in the tricarboxylic acid cycle and electron transport chain in RTT versus CTRs. Additionally, RTT ASTs exhibited increased cytosolic amino acids under basal conditions, which were depleted upon increased energy demands. Notably, mitochondria isolated from RTT ASTs exhibited increased reactive oxygen species and influenced neuronal activity when transferred to cortical neurons. These findings underscore MECP2 mutation's differential impact on mitochondrial and metabolic pathways in ASTs versus neurons, suggesting that dysfunctional AST mitochondria may contribute to RTT pathophysiology by affecting neuronal health.


Assuntos
Astrócitos , Proteína 2 de Ligação a Metil-CpG , Mitocôndrias , Mutação , Neurônios , Espécies Reativas de Oxigênio , Síndrome de Rett , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Mitocôndrias/metabolismo , Astrócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Neurônios/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Células-Tronco Embrionárias Humanas/metabolismo , Linhagem Celular
2.
eNeuro ; 11(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39266326

RESUMO

Rett syndrome (RTT), a severe neurodevelopmental disorder caused by mutations in the MeCP2 gene, is characterized by cognitive and social deficits. Previous studies have noted hypoactivity in the medial prefrontal cortex (mPFC) pyramidal neurons of MeCP2-deficient mice (RTT mice) in response to both social and nonsocial stimuli. To further understand the neural mechanisms behind the social deficits of RTT mice, we monitored excitatory pyramidal neurons in the prelimbic region of the mPFC during social interactions in mice. These neurons' activity was closely linked to social preference, especially in wild-type mice. However, RTT mice showed reduced social interest and corresponding hypoactivity in these neurons, indicating that impaired mPFC activity contributes to their social deficits. We identified six mPFC neural ensembles selectively tuned to various stimuli, with RTT mice recruiting fewer neurons to ensembles responsive to social interactions and consistently showing lower stimulus-ON ensemble transient rates. Despite these lower rates, RTT mice exhibited an increase in the percentage of social-ON neurons in later sessions, suggesting a compensatory mechanism for the decreased firing rate. This highlights the limited plasticity in the mPFC caused by MeCP2 deficiency and offers insights into the neural dynamics of social encoding. The presence of multifunctional neurons and those specifically responsive to social or object stimuli in the mPFC emphasizes its crucial role in complex behaviors and cognitive functions, with selective neuron engagement suggesting efficiency in neural activation that optimizes responses to environmental stimuli.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Córtex Pré-Frontal , Células Piramidais , Síndrome de Rett , Animais , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/metabolismo , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/fisiopatologia , Síndrome de Rett/genética , Masculino , Células Piramidais/fisiologia , Comportamento Social , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Neurônios/metabolismo , Modelos Animais de Doenças , Potenciais de Ação/fisiologia , Interação Social , Feminino
3.
Mol Autism ; 15(1): 39, 2024 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300547

RESUMO

BACKGROUND: Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT. METHODS: Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed. RESULTS: mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice. LIMITATIONS: The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions. CONCLUSIONS: The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.


Assuntos
Encéfalo , Modelos Animais de Doenças , Metabolismo Energético , Mitocôndrias , Receptor CB1 de Canabinoide , Síndrome de Rett , Rimonabanto , Animais , Feminino , Camundongos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/antagonistas & inibidores , Síndrome de Rett/metabolismo , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Rimonabanto/farmacologia
4.
Cell Mol Life Sci ; 81(1): 410, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305343

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused by de novo mutations in the MECP2 gene. Although miRNAs in extracellular vesicles (EVs) have been suggested to play an essential role in several neurological conditions, no prior study has utilized brain organoids to profile EV-derived miRNAs during normal and RTT-affected neuronal development. Here we report the spatiotemporal expression pattern of EV-derived miRNAs in region-specific forebrain organoids generated from female hiPSCs with a MeCP2:R255X mutation and the corresponding isogenic control. EV miRNA and protein expression profiles were characterized at day 0, day 13, day 40, and day 75. Several members of the hsa-miR-302/367 cluster were identified as having a time-dependent expression profile with RTT-specific alterations at the latest developmental stage. Moreover, the miRNA species of the chromosome 14 miRNA cluster (C14MC) exhibited strong upregulation in RTT forebrain organoids irrespective of their spatiotemporal location. Together, our results suggest essential roles of the C14MC and hsa-miR-302/367 clusters in EVs during normal and RTT-associated neurodevelopment, displaying promising prospects as biomarkers for monitoring RTT progression.


Assuntos
Encéfalo , Vesículas Extracelulares , Proteína 2 de Ligação a Metil-CpG , MicroRNAs , Organoides , Síndrome de Rett , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , Organoides/metabolismo , Organoides/patologia , Feminino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Prosencéfalo/metabolismo
5.
Mol Biol Rep ; 51(1): 979, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269588

RESUMO

BACKGROUND: Rett syndrome (RTT) is a rare neurodevelopmental disorder that primarily affects females and is characterized by a period of normal development followed by severe cognitive, motor, and communication impairment. The syndrome is predominantly caused by mutations in the MECP2. This study aimed to use comprehensive multi-omic analysis to identify the molecular and metabolic alterations associated with Rett syndrome. METHODS AND RESULTS: Transcriptomic and metabolomic profiling was performed using neuron-like cells derived from the fibroblasts of 3 Rett syndrome patients with different MECP2 mutations (R168X, P152R, and R133C) and 1 healthy control. Differential gene expression, alternative splicing events, and metabolite changes were analyzed to identify the key pathways and processes affected in patients with Rett syndrome. Transcriptomic analysis showed there was significant down-regulation of genes associated with the extracellular matrix (ECM) and cytoskeletal components, which was particularly notable in patient P3 (R133C mutation), who had non-random X chromosome inactivation. Additionally, significant changes in microtubule-related gene expression and alternative splicing events were observed, especially in patient P2 (P152R mutation). Metabolomic profiling showed that there were alterations in metabolic pathways, particularly up-regulation of ketone body synthesis and degradation pathways, in addition to an increase in free fatty acid levels. Integrated analysis highlighted the interplay between structural gene down-regulation and metabolic shifts, underscoring the adaptive responses to cellular stress in Rett neurons. CONCLUSION: The present findings provide valuable insights into the molecular and metabolic landscape of Rett syndrome, emphasizing the importance of combining omic data to enlighten the molecular pathophysiology of this syndrome.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Mutação , Neurônios , Síndrome de Rett , Transcriptoma , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Transcriptoma/genética , Feminino , Neurônios/metabolismo , Mutação/genética , Fibroblastos/metabolismo , Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Metaboloma
6.
Protein Sci ; 33(10): e5170, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276009

RESUMO

The intrinsically disordered protein MeCP2 is a global transcriptional regulator encoded by the MECP2 gene. Although the structured domains of MeCP2 have been the subject of multiple studies, its unstructured regions have not been that extensively characterized. In this work, we show that MeCP2 possesses properties akin to those of supercharged proteins. By utilizing its unstructured portions, MeCP2 can successfully transduce across cell membranes and localize to heterochromatic foci in the nuclei, displaying uptake levels a third lower than a MeCP2 construct fused to the cell-penetrating peptide TAT. MeCP2 uptake can further be enhanced by the addition of compounds that promote endosomal escape following cellular trafficking by means of macropinocytosis. Using a combination of in silico prediction algorithms and live-cell imaging experiments, we mapped the sequence in MeCP2 responsible for its cellular incorporation, which bears a striking resemblance to TAT itself. Transduced MeCP2 was shown to interact with HDAC3. These findings provide valuable insight into the properties of MeCP2 and may be beneficial for devising future protein-based treatment strategies.


Assuntos
Membrana Celular , Histona Desacetilases , Proteína 2 de Ligação a Metil-CpG , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/química , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Histona Desacetilases/metabolismo , Histona Desacetilases/química , Histona Desacetilases/genética , Células HEK293 , Transporte Proteico , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética
7.
Theranostics ; 14(11): 4256-4277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113793

RESUMO

Rationale: Posttranslational modifications of proteins have not been addressed in studies aimed at elucidating the cardioprotective effect of exercise in atherosclerotic cardiovascular disease (ASCVD). In this study, we reveal a novel mechanism by which exercise ameliorates atherosclerosis via lactylation. Methods: Using ApoE-/- mice in an exercise model, proteomics analysis was used to identify exercise-induced specific lactylation of MeCP2 at lysine 271 (K271). Mutation of the MeCP2 K271 lactylation site in aortic plaque macrophages was achieved by recombinant adenoviral transfection. Explore the molecular mechanisms by which motility drives MeCP2 K271 lactylation to improve plaque stability using ATAC-Seq, CUT &Tag and molecular biology. Validation of the potential target RUNX1 for exercise therapy using Ro5-3335 pharmacological inhibition. Results: we showed that in ApoE-/- mice, methyl-CpG-binding protein 2 (MeCP2) K271 lactylation was observed in aortic root plaque macrophages, promoting pro-repair M2 macrophage polarization, reducing the plaque area, shrinking necrotic cores, reducing plaque lipid deposition, and increasing collagen content. Adenoviral transfection, by introducing a mutant at lysine 271, overexpressed MeCP2 K271 lactylation, which enhanced exercise-induced M2 macrophage polarization and increased plaque stability. Mechanistically, the exercise-induced atheroprotective effect requires an interaction between MeCP2 K271 lactylation and H3K36me3, leading to increased chromatin accessibility and transcriptional repression of RUNX1. In addition, the pharmacological inhibition of the transcription factor RUNX1 exerts atheroprotective effects by promoting the polarization of plaque macrophages towards the pro-repair M2 phenotype. Conclusions: These findings reveal a novel mechanism by which exercise ameliorates atherosclerosis via MeCP2 K271 lactylation-H3K36me3/RUNX1. Interventions that enhance MeCP2 K271 lactylation have been shown to increase pro-repair M2 macrophage infiltration, thereby promoting plaque stabilization and reducing the risk of atherosclerotic cardiovascular disease. We also established RUNX1 as a potential drug target for exercise therapy, thereby providing guidance for the discovery of new targets.


Assuntos
Apolipoproteínas E , Aterosclerose , Macrófagos , Proteína 2 de Ligação a Metil-CpG , Animais , Humanos , Masculino , Camundongos , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Macrófagos/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Placa Aterosclerótica/metabolismo , Processamento de Proteína Pós-Traducional
8.
Nat Commun ; 15(1): 7259, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179542

RESUMO

Safely and efficiently controlling gene expression is a long-standing goal of biomedical research, and CRISPR/Cas system can be harnessed to create powerful tools for epigenetic editing. Adeno-associated-viruses (AAVs) represent the delivery vehicle of choice for therapeutic platform. However, their small packaging capacity isn't suitable for large constructs including most CRISPR/dCas9-effector vectors. Thus, AAV-based CRISPR/Cas systems have been delivered via two separate viral vectors. Here we develop a compact CRISPR/dCas9-based repressor system packaged in AAV as a single optimized vector. The system comprises the small Staphylococcus aureus (Sa)dCas9 and an engineered repressor molecule, a fusion of MeCP2's transcription repression domain (TRD) and KRAB. The dSaCas9-KRAB-MeCP2(TRD) vector platform repressed robustly and sustainably the expression of multiple genes-of-interest, in vitro and in vivo, including ApoE, the strongest genetic risk factor for late onset Alzheimer's disease (LOAD). Our platform broadens the CRISPR/dCas9 toolset available for transcriptional manipulation of gene expression in research and therapeutic settings.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Edição de Genes , Vetores Genéticos , Edição de Genes/métodos , Dependovirus/genética , Sistemas CRISPR-Cas/genética , Humanos , Animais , Vetores Genéticos/genética , Camundongos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Terapia Genética/métodos , Epigenoma , Células HEK293 , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Epigênese Genética , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Apolipoproteínas E/genética , Staphylococcus aureus/genética
9.
Cell Commun Signal ; 22(1): 416, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192337

RESUMO

Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Receptores ErbB , Gânglios Espinais , Histona Desacetilase 2 , Canal de Potássio KCNQ2 , Animais , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Ratos , Dor do Câncer/genética , Dor do Câncer/metabolismo , Dor do Câncer/patologia , Receptores ErbB/metabolismo , Receptores ErbB/genética , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Transcrição Gênica , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genética , Transdução de Sinais/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Feminino , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ratos Sprague-Dawley , Sistema de Sinalização das MAP Quinases/genética
10.
Respir Physiol Neurobiol ; 328: 104314, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117159

RESUMO

Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the methyl-CPG-binding protein 2 (Mecp2) gene. Frequent apneas and irregular breathing are prevalent in RTT, and also occur in rodent models of the disorder, including Mecp2Bird and Mecp2R168X mice. Sarizotan, a serotonin 5-HT1a and dopamine D2-like receptor agonist, reduces the incidence of apneas and irregular breathing in mouse models of RTT (Abdala et al., 2014). Targeting the 5HT1a receptor alone also improves respiration in RTT mice (Levitt et al., 2013). However, the contribution of D2-like receptors in correcting these respiratory disturbances remains untested. PAOPA, a dopamine D2-like receptor positive allosteric modulator, and quinpirole, a dopamine D2-like receptor orthosteric agonist, were used in conjunction with whole-body plethysmography to evaluate whether activation of D2-like receptors is sufficient to improve breathing disturbances in female heterozygous Mecp2Bird/+ and Mecp2R168X/+ mice. PAOPA did not significantly change apnea incidence or irregularity score in RTT mice. PAOPA also had no effect on the ventilatory response to hypercapnia (7 % CO2). In contrast, quinpirole reduced apnea incidence and irregularity scores and improved the hypercapnic ventilatory response in Mecp2R168X/+ and Mecp2Bird/+ mice, while also reducing respiratory rate. These results suggest that D2-like receptors could contribute to the positive effects of sarizotan in the correction of respiratory abnormalities in Rett syndrome. However, positive allosteric modulation of D2-like receptors alone was not sufficient to evoke these effects.


Assuntos
Modelos Animais de Doenças , Agonistas de Dopamina , Proteína 2 de Ligação a Metil-CpG , Quimpirol , Receptores de Dopamina D2 , Síndrome de Rett , Animais , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/agonistas , Agonistas de Dopamina/farmacologia , Feminino , Camundongos , Quimpirol/farmacologia , Proteína 2 de Ligação a Metil-CpG/genética , Respiração/efeitos dos fármacos , Camundongos Transgênicos , Regulação Alostérica/efeitos dos fármacos , Camundongos Endogâmicos C57BL
12.
Genes (Basel) ; 15(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39202466

RESUMO

Although long-term survival in Rett syndrome (RTT) has been observed, limited information on older people with RTT exists. We hypothesized that increased longevity in RTT would be associated with genetic variants in MECP2 associated with milder severity, and that clinical features would not be static in older individuals. To address these hypotheses, we compared the distribution of MECP2 variants and clinical severity between younger individuals with Classic RTT (under 30 years old) and older individuals (over 30 years old). Contrary to expectation, enrichment of a severe MECP2 variant (R106W) was observed in the older cohort. Overall severity was not different between the cohorts, but specific clinical features varied between the cohorts. Overall severity from first to last visit increased in the younger cohort but not in the older cohort. While some specific clinical features in the older cohort were stable from the first to the last visit, others showed improvement or worsening. These data do not support the hypothesis that mild MECP2 variants or less overall severity leads to increased longevity in RTT but demonstrate that clinical features change with increasing age in adults with RTT. Additional work is needed to understand disease progression in adults with RTT.


Assuntos
Progressão da Doença , Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Síndrome de Rett/genética , Síndrome de Rett/patologia , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Adulto , Feminino , Adolescente , Adulto Jovem , Masculino , Pessoa de Meia-Idade , Criança , Pré-Escolar , Idoso , Longevidade/genética , Estudos de Coortes , Mutação
13.
J Cell Mol Med ; 28(13): e18510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953409

RESUMO

In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.


Assuntos
Anti-Inflamatórios , Epigênese Genética , Flavanonas , Proteína 2 de Ligação a Metil-CpG , Regiões Promotoras Genéticas , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Animais , Flavanonas/farmacologia , Epigênese Genética/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Metilação de DNA/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Transcrição RelA/metabolismo , Sepse/tratamento farmacológico , Sepse/genética , Sepse/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , DNA Metiltransferase 3A/metabolismo , Masculino , Proteína p300 Associada a E1A/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética
14.
Eur J Pediatr ; 183(9): 4085-4091, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960904

RESUMO

PURPOSE: Rett syndrome is a rare neurodevelopmental disorder associated with methyl CpG binding protein 2 (MECP2) gene mutations. We aimed to characterize the long-term nutritional and gastrointestinal course of Rett syndrome in a large national patient population. METHODS: We conducted a retrospective cohort study of patients followed during 1991-2021 at a national center for Rett syndrome. The data retrieved included clinical features, laboratory and genetic analyses. Continuous anthropometric measurements were calculated for the closest visit to the median ages: 2.5, 7.5, 12.5 and 17.5 years. Kaplan Meier curves were used to describe the appearance of clinical manifestations during the follow up period. Generalized estimating equation models were used to compare repeated measurements. RESULTS: Included were 141 patients (139 females), the median age at the first visit was 3.2 years (interquartile range [IQR] 2.3-5.7), and the median length of follow-up was 94.5 months (IQR 28.6-153.3). Mean weight, height and BMI Z-scores were -1.09, -1.03 and -0.56, respectively, at median age 2.5 years; and deteriorated to -3.95, -3.01 and -1.19, respectively, at median age 17.5 years (P < 0.001). Gastrointestinal features included constipation (47.5%, 67/141) and chewing/feeding difficulties (20%, 28/141) at presentation; and an additional 47 (33.3%) and 24 (17.0%), respectively, during follow up. Twenty-eight patients (20%) developed aerophagia and 44 (31.2%) gastroesophageal reflux. No relation was found between genetic mutation types and clinical manifestations. GI manifestations were more prevalent in patients with typical form of Rett syndrome. CONCLUSIONS: Anthropometric parameters were shown to deteriorate with age, regardless of the specific genetic mutation. Chewing/feeding difficulties, constipation and gastroesophageal reflux are common in Rett patients.


Assuntos
Gastroenteropatias , Síndrome de Rett , Humanos , Síndrome de Rett/genética , Síndrome de Rett/complicações , Síndrome de Rett/fisiopatologia , Feminino , Estudos Retrospectivos , Criança , Pré-Escolar , Adolescente , Masculino , Seguimentos , Gastroenteropatias/etiologia , Proteína 2 de Ligação a Metil-CpG/genética , Estado Nutricional , Mutação
15.
Epilepsy Res ; 205: 107399, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39003968

RESUMO

OBJECTIVES: This study aimed to evaluate seizure semiology, electroencephalogram (EEG), magnetic resonance imaging (MRI), and genetic findings, as well as treatment choices in Rett syndrome (RTT). METHODS: A retrospective analysis was conducted on one hundred and twenty cases diagnosed with RTT with a genetic mutation. Data were obtained from nine participating centers. RESULTS: In this study, 93.3 % of patients were female, with typical RTT found in 70 % of cases. Genetic etiology revealed MECP2, FoxG1, and CDKL5 in 93.8 %, 2.7 %, and 1.8 % of cases, respectively. Atypical RTT clinics were observed in 50 % of male cases, with the first EEG being normal in atypical RTT cases (p = 0.01). Generalized tonic-clonic and myoclonic epilepsy were the most common seizure semiologies, while absence and focal epilepsy were less prevalent. Valproate, levetiracetam, lamotrigine, and clobazam were the most commonly used antiepileptic drugs, affecting the severity and frequency of seizures (p = 0.015, p=<0.001, p = 0.022, and p=<0.001, respectively). No significant differences were observed in EEG findings. The initiation of anti-seizure medications significantly altered seizure characteristics (Table 4). A ketogenic diet and vagal nerve stimulation (VNS) correlated with a 50 % improvement in cognitive function, while steroid treatment showed a 60 % improvement. Remarkably, seizures were substantially reduced after VNS application. CONCLUSION: This study underscores the importance of genetic diagnosis in RTT cases with a clinical diagnosis. These preliminary results will be further validated with the inclusion of clinically diagnosed RTT cases in our ongoing study.


Assuntos
Anticonvulsivantes , Eletroencefalografia , Imageamento por Ressonância Magnética , Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Convulsões , Humanos , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Feminino , Masculino , Estudos Retrospectivos , Eletroencefalografia/métodos , Criança , Imageamento por Ressonância Magnética/métodos , Pré-Escolar , Convulsões/genética , Convulsões/fisiopatologia , Anticonvulsivantes/uso terapêutico , Adolescente , Proteína 2 de Ligação a Metil-CpG/genética , Lactente , Mutação/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Forkhead/genética , Proteínas Serina-Treonina Quinases
16.
Nat Microbiol ; 9(8): 2051-2072, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39075233

RESUMO

Delivering macromolecules across biological barriers such as the blood-brain barrier limits their application in vivo. Previous work has demonstrated that Toxoplasma gondii, a parasite that naturally travels from the human gut to the central nervous system (CNS), can deliver proteins to host cells. Here we engineered T. gondii's endogenous secretion systems, the rhoptries and dense granules, to deliver multiple large (>100 kDa) therapeutic proteins into neurons via translational fusions to toxofilin and GRA16. We demonstrate delivery in cultured cells, brain organoids and in vivo, and probe protein activity using imaging, pull-down assays, scRNA-seq and fluorescent reporters. We demonstrate robust delivery after intraperitoneal administration in mice and characterize 3D distribution throughout the brain. As proof of concept, we demonstrate GRA16-mediated brain delivery of the MeCP2 protein, a putative therapeutic target for Rett syndrome. By characterizing the potential and current limitations of the system, we aim to guide future improvements that will be required for broader application.


Assuntos
Encéfalo , Neurônios , Proteínas de Protozoários , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Animais , Neurônios/metabolismo , Neurônios/parasitologia , Camundongos , Humanos , Encéfalo/metabolismo , Encéfalo/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Sistemas de Liberação de Medicamentos
17.
Stem Cell Reports ; 19(8): 1074-1091, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39059378

RESUMO

Although microglia are macrophages of the central nervous system, their involvement is not limited to immune functions. The roles of microglia during development in humans remain poorly understood due to limited access to fetal tissue. To understand how microglia can impact human neurodevelopment, the methyl-CpG binding protein 2 (MECP2) gene was knocked out in human microglia-like cells (MGLs). Disruption of the MECP2 in MGLs led to transcriptional and functional perturbations, including impaired phagocytosis. The co-culture of healthy MGLs with MECP2-knockout (KO) neurons rescued synaptogenesis defects, suggesting a microglial role in synapse formation. A targeted drug screening identified ADH-503, a CD11b agonist, restored phagocytosis and synapse formation in spheroid-MGL co-cultures, significantly improved disease progression, and increased survival in MeCP2-null mice. These results unveil a MECP2-specific regulation of human microglial phagocytosis and identify a novel therapeutic treatment for MECP2-related conditions.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Microglia , Transtornos do Neurodesenvolvimento , Fagocitose , Microglia/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Técnicas de Cocultura , Modelos Animais de Doenças , Camundongos Knockout , Sinapses/metabolismo , Neurônios/metabolismo
19.
Medicina (Kaunas) ; 60(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38929606

RESUMO

Background and Objectives: This study aimed to investigate the relationship between neuropathic pain and CREB-binding protein (CBP) and methyl-CpG-binding protein 2 (MeCP2) expression levels in a rat model with spared nerve injury (SNI). Materials and Methods: Rat (male Sprague-Dawley white rats) models with surgical SNI (n = 6) were prepared, and naive rats (n = 5) were used as controls. The expression levels of CBP and MeCP2 in the spinal cord and dorsal root ganglion (DRG) were compared through immunohistochemistry at 7 and 14 days after surgery. The relationship between neuropathic pain and CBP/MeCP2 was also analyzed through intrathecal siRNA administration. Results: SNI induced a significant increase in the number of CBPs in L4 compared with contralateral DRG as well as with naive rats. The number of MeCP2 cells in the dorsal horn on the ipsilateral side decreased significantly compared with the contralateral dorsal horn and the control group. SNI induced a significant decrease in the number of MeCP2 neurons in the L4 ipsilateral DRG compared with the contralateral DRG and naive rats. The intrathecal injection of CBP siRNA significantly inhibited mechanical allodynia induced by SNI compared with non-targeting siRNA treatment. MeCP2 siRNA injection showed no significant effect on mechanical allodynia. Conclusions: The results suggest that CBP and MeCP2 may play an important role in the generation of neuropathic pain following peripheral nerve injury.


Assuntos
Proteína de Ligação a CREB , Modelos Animais de Doenças , Proteína 2 de Ligação a Metil-CpG , Neuralgia , Ratos Sprague-Dawley , Animais , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Neuralgia/metabolismo , Neuralgia/etiologia , Masculino , Ratos , Proteína de Ligação a CREB/metabolismo , Gânglios Espinais/metabolismo , RNA Interferente Pequeno , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/metabolismo , Medula Espinal/metabolismo , Imuno-Histoquímica
20.
Nat Commun ; 15(1): 5136, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879605

RESUMO

Coordination of neuronal differentiation with expansion of the neuroepithelial/neural progenitor cell (NEPC/NPC) pool is essential in early brain development. Our in vitro and in vivo studies identify independent and opposing roles for two neural-specific and differentially expressed non-coding RNAs derived from the same locus: the evolutionarily conserved lncRNA Rncr3 and the embedded microRNA miR124a-1. Rncr3 regulates NEPC/NPC proliferation and controls the biogenesis of miR124a, which determines neuronal differentiation. Rncr3 conserved exons 2/3 are cytosine methylated and bound by methyl-CpG binding protein MeCP2, which restricts expression of miR124a embedded in exon 4 to prevent premature neuronal differentiation, and to orchestrate proper brain growth. MeCP2 directly binds cytosine-methylated Rncr3 through previously unrecognized lysine residues and suppresses miR124a processing by recruiting PTBP1 to block access of DROSHA-DGCR8. Thus, miRNA processing is controlled by lncRNA m5C methylation along with the defined m5C epitranscriptomic RNA reader protein MeCP2 to coordinate brain development.


Assuntos
Proteína 2 de Ligação a Metil-CpG , MicroRNAs , Células-Tronco Neurais , Neurogênese , RNA Longo não Codificante , MicroRNAs/metabolismo , MicroRNAs/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Neurogênese/genética , Animais , Camundongos , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Encéfalo/metabolismo , Encéfalo/embriologia , Humanos , Diferenciação Celular , Metilação de DNA , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proliferação de Células , Camundongos Endogâmicos C57BL , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Masculino , Éxons/genética , Neurônios/metabolismo , Ribonuclease III
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA