Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
Sci Rep ; 14(1): 16164, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003369

RESUMO

The present study investigated the relationship between MSH3 and MSH6 genes in lung cancer patients. Genotyping of lung cancer patients and healthy controls was performed. Odds ratio values were calculated and survival analysis performed. Patients with mutant genotype (TT) for MSH6 polymorphism have 1.5-fold risk for the development of lung cancer (p = 0.03). For non-smokers, the mutant-type genotype had a threefold increased risk of lung cancer (p = 0.01). Patients administered with docetaxel and carbo/cisplatin and carrying GT genotype for MSH6 polymorphism, patients reported a decrease in median survival time (4.9 vs 9.13 months). MSH3 and MSH6 polymorphisms are involved in modulating the risk towards lung cancer. MSH6 polymorphism is associated with high mortality rate for patients undergoing cisplatin and docetaxel chemotherapy.


Assuntos
Cisplatino , Proteínas de Ligação a DNA , Predisposição Genética para Doença , Neoplasias Pulmonares , Proteína 3 Homóloga a MutS , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Feminino , Cisplatino/uso terapêutico , Proteína 3 Homóloga a MutS/genética , Proteínas de Ligação a DNA/genética , Polimorfismo de Nucleotídeo Único , Docetaxel/uso terapêutico , Índia/epidemiologia , Idoso , Estudos de Casos e Controles , Genótipo , Adulto , Carboplatina/uso terapêutico
2.
Nat Genet ; 56(7): 1420-1433, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956208

RESUMO

Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown. Here we show that microsatellite instability modulates DNA repair by toggling hypermutable mononucleotide homopolymer runs in MSH6 and MSH3 through stochastic frameshift switching. Spontaneous mutation and reversion modulate subclonal mutation rate, mutation bias and HLA and neoantigen diversity. Patient-derived organoids corroborate these observations and show that MMR homopolymer sequences drift back into reading frame in the absence of immune selection, suggesting a fitness cost of elevated mutation rates. Combined experimental and simulation studies demonstrate that subclonal immune selection favors incremental MMR mutations. Overall, our data demonstrate that MMR-deficient colorectal cancers fuel intratumor heterogeneity by adapting subclonal mutation rate and diversity to immune selection.


Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Instabilidade de Microssatélites , Humanos , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mutação , Proteína 3 Homóloga a MutS/genética , Taxa de Mutação , Mutação da Fase de Leitura/genética
3.
EBioMedicine ; 103: 105142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691939

RESUMO

BACKGROUND: Both defects in mismatch repair (dMMR) and high microsatellite instability (MSI-H) have been recognised as crucial biomarkers that guide treatment strategies and disease management in colorectal cancer (CRC). As MMR and MSI tests are being widely conducted, an increasing number of MSI-H tumours have been identified in CRCs with mismatch repair proficiency (pMMR). The objective of this study was to assess the clinical features of patients with pMMR/MSI-H CRC and elucidate the underlying molecular mechanism in these cases. METHODS: From January 2015 to December 2018, 1684 cases of pMMR and 401 dMMR CRCs were enrolled. Of those patients, 93 pMMR/MSI-H were identified. The clinical phenotypes and prognosis were analysed. Frozen and paraffin-embedded tissue were available in 35 patients with pMMR/MSI-H, for which comprehensive genomic and transcriptomic analyses were performed. FINDINGS: In comparison to pMMR/MSS CRCs, pMMR/MSI-H CRCs exhibited significantly less tumour progression and better long-term prognosis. The pMMR/MSI-H cohorts displayed a higher presence of CD8+ T cells and NK cells when compared to the pMMR/MSS group. Mutational signature analysis revealed that nearly all samples exhibited deficiencies in MMR genes, and we also identified deleterious mutations in MSH3-K383fs. INTERPRETATION: This study revealed pMMR/MSI-H CRC as a distinct subgroup within CRC, which manifests diverse clinicopathological features and long-term prognostic outcomes. Distinct features in the tumour immune-microenvironment were observed in pMMR/MSI-H CRCs. Pathogenic deleterious mutations in MSH3-K383fs were frequently detected, suggesting another potential biomarker for identifying MSI-H. FUNDING: This work was supported by the Science and Technology Commission of Shanghai Municipality (20DZ1100101).


Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Instabilidade de Microssatélites , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Feminino , Masculino , Pessoa de Meia-Idade , Prognóstico , Idoso , Mutação , Biomarcadores Tumorais/genética , Adulto , Perfilação da Expressão Gênica , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Estadiamento de Neoplasias
4.
Am J Hum Genet ; 111(6): 1165-1183, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749429

RESUMO

The pathological huntingtin (HTT) trinucleotide repeat underlying Huntington disease (HD) continues to expand throughout life. Repeat length correlates both with earlier age at onset (AaO) and faster progression, making slowing its expansion an attractive therapeutic approach. Genome-wide association studies have identified candidate variants associated with altered AaO and progression, with many found in DNA mismatch repair (MMR)-associated genes. We examine whether lowering expression of these genes affects the rate of repeat expansion in human ex vivo models using HD iPSCs and HD iPSC-derived striatal medium spiny neuron-enriched cultures. We have generated a stable CRISPR interference HD iPSC line in which we can specifically and efficiently lower gene expression from a donor carrying over 125 CAG repeats. Lowering expression of each member of the MMR complexes MutS (MSH2, MSH3, and MSH6), MutL (MLH1, PMS1, PMS2, and MLH3), and LIG1 resulted in characteristic MMR deficiencies. Reduced MSH2, MSH3, and MLH1 slowed repeat expansion to the largest degree, while lowering either PMS1, PMS2, or MLH3 slowed it to a lesser degree. These effects were recapitulated in iPSC-derived striatal cultures where MutL factor expression was lowered. CRISPRi-mediated lowering of key MMR factor expression to levels feasibly achievable by current therapeutic approaches was able to effectively slow the expansion of the HTT CAG tract. We highlight members of the MutL family as potential targets to slow pathogenic repeat expansion with the aim to delay onset and progression of HD and potentially other repeat expansion disorders exhibiting somatic instability.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteína Huntingtina , Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Expansão das Repetições de Trinucleotídeos , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Genes Modificadores , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla
5.
Genetics ; 227(3)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38691577

RESUMO

Although gene conversion (GC) in Saccharomyces cerevisiae is the most error-free way to repair double-strand breaks (DSBs), the mutation rate during homologous recombination is 1,000 times greater than during replication. Many mutations involve dissociating a partially copied strand from its repair template and re-aligning with the same or another template, leading to -1 frameshifts in homonucleotide runs, quasipalindrome (QP)-associated mutations and microhomology-mediated interchromosomal template switches. We studied GC induced by HO endonuclease cleavage at MATα, repaired by an HMR::KI-URA3 donor. We inserted into HMR::KI-URA3 an 18-bp inverted repeat where one arm had a 4-bp insertion. Most GCs yield MAT::KI-ura3::QP + 4 (Ura-) outcomes, but template-switching produces Ura+ colonies, losing the 4-bp insertion. If the QP arm without the insertion is first encountered by repair DNA polymerase and is then (mis)used as a template, the palindrome is perfected. When the QP + 4 arm is encountered first, Ura+ derivatives only occur after second-end capture and second-strand synthesis. QP + 4 mutations are suppressed by mismatch repair (MMR) proteins Msh2, Msh3, and Mlh1, but not Msh6. Deleting Rdh54 significantly reduces QP mutations only when events creating Ura+ occur in the context of a D-loop but not during second-strand synthesis. A similar bias is found with a proofreading-defective DNA polymerase mutation (poI3-01). DSB-induced mutations differed in several genetic requirements from spontaneous events. We also created a + 1 frameshift in the donor, expanding a run of 4 Cs to 5 Cs. Again, Ura+ recombinants markedly increased by disabling MMR, suggesting that MMR acts during GC but favors the unbroken, template strand.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo de Erro de Pareamento de DNA , Mutação da Fase de Leitura , Mutagênese , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Conversão Gênica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Proteína 1 Homóloga a MutL
6.
Brain ; 147(5): 1784-1798, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38387080

RESUMO

The Huntington's disease mutation is a CAG repeat expansion in the huntingtin gene that results in an expanded polyglutamine tract in the huntingtin protein. The CAG repeat is unstable and expansions of hundreds of CAGs have been detected in Huntington's disease post-mortem brains. The age of disease onset can be predicted partially from the length of the CAG repeat as measured in blood. Onset age is also determined by genetic modifiers, which in six cases involve variation in DNA mismatch repair pathways genes. Knocking-out specific mismatch repair genes in mouse models of Huntington's disease prevents somatic CAG repeat expansion. Taken together, these results have led to the hypothesis that somatic CAG repeat expansion in Huntington's disease brains is required for pathogenesis. Therefore, the pathogenic repeat threshold in brain is longer than (CAG)40, as measured in blood, and is currently unknown. The mismatch repair gene MSH3 has become a major focus for therapeutic development, as unlike other mismatch repair genes, nullizygosity for MSH3 does not cause malignancies associated with mismatch repair deficiency. Potential treatments targeting MSH3 currently under development include gene therapy, biologics and small molecules, which will be assessed for efficacy in mouse models of Huntington's disease. The zQ175 knock-in model carries a mutation of approximately (CAG)185 and develops early molecular and pathological phenotypes that have been extensively characterized. Therefore, we crossed the mutant huntingtin allele onto heterozygous and homozygous Msh3 knockout backgrounds to determine the maximum benefit of targeting Msh3 in this model. Ablation of Msh3 prevented somatic expansion throughout the brain and periphery, and reduction of Msh3 by 50% decreased the rate of expansion. This had no effect on the deposition of huntingtin aggregation in the nuclei of striatal neurons, nor on the dysregulated striatal transcriptional profile. This contrasts with ablating Msh3 in knock-in models with shorter CAG repeat expansions. Therefore, further expansion of a (CAG)185 repeat in striatal neurons does not accelerate the onset of molecular and neuropathological phenotypes. It is striking that highly expanded CAG repeats of a similar size in humans cause disease onset before 2 years of age, indicating that somatic CAG repeat expansion in the brain is not required for pathogenesis. Given that the trajectory for somatic CAG expansion in the brains of Huntington's disease mutation carriers is unknown, our study underlines the importance of administering treatments targeting somatic instability as early as possible.


Assuntos
Proteína Huntingtina , Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Doença de Huntington/genética , Doença de Huntington/terapia , Animais , Humanos , Expansão das Repetições de Trinucleotídeos/genética , Camundongos , Proteína Huntingtina/genética , Proteína 3 Homóloga a MutS/genética , Modelos Animais de Doenças , Proteínas do Tecido Nervoso/genética , Encéfalo/patologia , Encéfalo/metabolismo
7.
Neoplasia ; 49: 100970, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38281411

RESUMO

The maintenance of DNA sequence integrity is critical to avoid accumulation of cancer-causing mutations. Inactivation of DNA Mismatch Repair (MMR) genes (e.g., MLH1 and MSH2) is common among many cancers, including colorectal cancer (CRC) and is the driver of classic microsatellite instability (MSI) in tumors. Somatic MSH3 alterations have been linked to a specific form of MSI called elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) that is associated with patient poor prognosis and elevated among African American (AA) rectal cancer patients. Genetic variants of MSH3 and their pathogenicity vary among different populations, such as among AA, which are not well-represented in publicly available databases. Targeted exome sequencing of MSH3 among AA CRC samples followed by computational bioinformatic pipeline and molecular dynamic simulation analysis approach confirmed six identified MSH3 variants (c.G1237A, c.C2759T, c.G1397A, c.G2926A, c.C3028T, c.G3241A) that corresponded to MSH3 amino-acid changes (p.E413K; p.S466N; p.S920F; p.E976K; p.H1010Y; p.E1081K). All identified MSH3 variants were non-synonymous, novel, pathogenic, and show loss or gain of hydrogen bonding, ionic bonding, hydrophobic bonding, and disulfide bonding and have a deleterious effect on the structure of MSH3 protein. Some variants were located within the ATPase site of MSH3, affecting ATP hydrolysis that is critical for MSH3's function. Other variants were in the MSH3-MSH2 interacting domain, important for MSH3's binding to MSH2. Overall, our data suggest that these variants among AA CRC patients affect the function of MSH3 making them pathogenic and likely contributing to the development or advancement of CRC among AA. Further clarifying functional studies will be necessary to fully understand the impact of these variants on MSH3 function and CRC development in AA patients.


Assuntos
Negro ou Afro-Americano , Neoplasias Colorretais , Humanos , Negro ou Afro-Americano/genética , Neoplasias Colorretais/etnologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Instabilidade de Microssatélites , Repetições de Microssatélites , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Virulência
8.
Gastroenterol Hepatol ; 47(4): 397-400, 2024 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37597744

RESUMO

Recently, biallelic MSH3 germline pathogenic/likely pathogenic variants have been recognized as a rare cause of adenomatous polyposis. We present a 49-year-old woman who was admitted to our high-risk colorectal cancer clinic after incidental detection of a biallelic MSH3 (likely) pathogenic variant when tested for the germline (likely) pathogenic variants in hereditary breast and ovarian cancer related genes. The focus of this case report is to describe the genotype and phenotype of our patient with MSH3-related adenomatous polyposis. More than half of the polyps (13/19) were located in the right colon. In addition, benign and malignant extraintestinal lesions may be common as our patient had simple liver and kidney cysts and two basal cell skin carcinomas.


Assuntos
Polipose Adenomatosa do Colo , Pólipos do Colo , Neoplasias Colorretais , Feminino , Humanos , Pessoa de Meia-Idade , Pólipos do Colo/genética , Polipose Adenomatosa do Colo/complicações , Polipose Adenomatosa do Colo/genética , Genótipo , Fenótipo , Neoplasias Colorretais/genética , Proteína 3 Homóloga a MutS/genética
9.
Nucleic Acids Res ; 51(22): 12185-12206, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37930834

RESUMO

The Msh2-Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2-Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2-Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2-Msh3 binding to 5' ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2-Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2-Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2-Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2-Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2-Msh3 can disrupt DNA replication and repair and highlights the role of Msh2-Msh3 protein abundance in Msh2-Msh3-mediated genomic instability.


Assuntos
Instabilidade Genômica , Proteínas de Saccharomyces cerevisiae , Humanos , DNA/genética , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Int J Oncol ; 63(6)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888748

RESUMO

Extrachromosomal DNAs (ecDNAs), also known as double minutes (DMs), can induce a fast increase in gene copy numbers and promote the development of cancer, including drug resistance. MutS homolog 3 (MSH3), a key protein in mismatch repair, has been indicated to participate in the regulation of DNA double­strand break (DSB) repair, which has been reported to be associated with the formation of ecDNAs. However, it remains unclear whether MSH3 can influence drug resistance via ecDNAs in cancer. In the present study, high MSH3 expression was observed in methotrexate (MTX)­resistant HT29 cells [DM­ and homogeneously staining region (HSR)­containing cells] compared with parental HT29 cells. Additionally, decreased amounts of ecDNAs, HSRs and amplified genes locating on ecDNAs and HSRs were detected following depletion of MSH3 and this could be reversed by overexpressing MSH3 in DM­containing cells. No corresponding changes were found in HSR­containing cells. The present study further verified the involvement of MSH3­regulated DNA DSB repair pathways in the formation of ecDNAs by detecting the expression of core proteins and pathway activity. Furthermore, expulsion of ecDNAs/HSRs was detected and increased frequencies of micronuclei/nuclear buds with dihydrofolate reductase (DHFR) signals were observed in MSH3­depleted DM­containing cells. Finally, changes in MSH3 expression could affect DHFR amplification­derived DHFR expression and cell sensitivity to MTX, suggesting that MSH3 may influence cancer drug resistance by altering the amount of ecDNAs. In conclusion, the present study revealed a novel mechanism involving MSH3 in the regulation of ecDNAs by DSB repair, which will have clinical value in the treatment of ecDNA­based drug resistance in cancer.


Assuntos
Neoplasias Colorretais , Metotrexato , Humanos , Metotrexato/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Reparo do DNA , Aberrações Cromossômicas , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , DNA , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo
11.
Front Immunol ; 14: 1205250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426643

RESUMO

Disulfidptosis is a newly discovered mode of cell death induced by disulfide stress. However, the prognostic value of disulfidptosis-related genes (DRGs) in renal cell carcinoma (RCC) remains to be further elucidated. In this study, consistent cluster analysis was used to classify 571 RCC samples into three DRG-related subtypes based on changes in DRGs expression. Through univariate regression analysis and LASSO-Cox regression analysis of differentially expressed genes (DEGs) among three subtypes, we constructed and validated a DRG risk score to predict the prognosis of patients with RCC, while also identifying three gene subtypes. Analysis of DRG risk score, clinical characteristics, tumor microenvironment (TME), somatic cell mutations, and immunotherapy sensitivity revealed significant correlations between them. A series of studies have shown that MSH3 can be a potential biomarker of RCC, and its low expression is associated with poor prognosis in patients with RCC. Last but not least, overexpression of MSH3 promotes cell death in two RCC cell lines under glucose starvation conditions, indicating that MSH3 is a key gene in the process of cell disulfidptosis. In summary, we identify potential mechanism of RCC progression through DRGs -related tumor microenvironment remodeling. In addition, this study has successfully established a new disulfidptosis-related genes prediction model and discovered a key gene MSH3. They may be new prognostic biomarkers for RCC patients, provide new insights for the treatment of RCC patients, and may inspire new methods for the diagnosis and treatment of RCC patients.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Prognóstico , Carcinoma de Células Renais/genética , Microambiente Tumoral/genética , Morte Celular , Neoplasias Renais/genética , Proteína 3 Homóloga a MutS
12.
J Med Genet ; 60(12): 1198-1205, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37402566

RESUMO

BACKGROUND: The MSH3 gene is part of the DNA mismatch repair system, but has never been shown to be involved in Lynch syndrome. A first report of four patients from two families, bearing biallelic MSH3 germline variants, with a phenotype of attenuated colorectal adenomatous polyposis raised the question of its involvement in hereditary cancer predisposition. The patients' tumours exhibited elevated microsatellite alterations at selected tetranucleotide repeats (EMAST), a hallmark of MSH3 deficiency. METHODS: We report five new unrelated patients with MSH3-associated polyposis. We describe their personal and familial history and study the EMAST phenotype in various normal and tumour samples, which are relevant findings based on the rarity of this polyposis subtype so far. RESULTS: All patients had attenuated colorectal adenomatous polyposis, with duodenal polyposis in two cases. Both women had breast carcinomas. EMAST phenotype was present at various levels in different samples of the five patients, confirming the MSH3 deficiency, with a gradient of instability in polyps depending on their degree of dysplasia. The negative EMAST phenotype ruled out the diagnosis of germline MSH3 deficiency for two patients: one homozygous for a benign variant and one with a monoallelic large deletion. CONCLUSION: This report lends further credence to biallelic MSH3 germline pathogenic variants being involved in colorectal and duodenal adenomatous polyposis. Large-scale studies may help clarify the tumour spectrum and associated risks. Ascertainment of EMAST may help with the interpretation of variants of unknown significance. We recommend adding MSH3 to dedicated diagnostic gene panels.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Humanos , Feminino , Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Repetições de Microssatélites/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Predisposição Genética para Doença , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo
14.
Mol Ther ; 31(6): 1661-1674, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37177784

RESUMO

Huntington's disease (HD) is a severe neurodegenerative disorder caused by the expansion of the CAG trinucleotide repeat tract in the huntingtin gene. Inheritance of expanded CAG repeats is needed for HD manifestation, but further somatic expansion of the repeat tract in non-dividing cells, particularly striatal neurons, hastens disease onset. Called somatic repeat expansion, this process is mediated by the mismatch repair (MMR) pathway. Among MMR components identified as modifiers of HD onset, MutS homolog 3 (MSH3) has emerged as a potentially safe and effective target for therapeutic intervention. Here, we identify a fully chemically modified short interfering RNA (siRNA) that robustly silences Msh3 in vitro and in vivo. When synthesized in a di-valent scaffold, siRNA-mediated silencing of Msh3 effectively blocked CAG-repeat expansion in the striatum of two HD mouse models without affecting tumor-associated microsatellite instability or mRNA expression of other MMR genes. Our findings establish a promising treatment approach for patients with HD and other repeat expansion diseases.


Assuntos
Doença de Huntington , Proteína 3 Homóloga a MutS , Expansão das Repetições de Trinucleotídeos , Animais , Camundongos , Corpo Estriado/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/terapia , Doença de Huntington/metabolismo , Neostriado/metabolismo , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Proteína 3 Homóloga a MutS/genética
15.
Nucleic Acids Res ; 51(11): 5584-5602, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37140056

RESUMO

DNA double-strand break (DSB) repair via homologous recombination is initiated by end resection. The extent of DNA end resection determines the choice of the DSB repair pathway. Nucleases for end resection have been extensively studied. However, it is still unclear how the potential DNA structures generated by the initial short resection by MRE11-RAD50-NBS1 are recognized and recruit proteins, such as EXO1, to DSB sites to facilitate long-range resection. We found that the MSH2-MSH3 mismatch repair complex is recruited to DSB sites through interaction with the chromatin remodeling protein SMARCAD1. MSH2-MSH3 facilitates the recruitment of EXO1 for long-range resection and enhances its enzymatic activity. MSH2-MSH3 also inhibits access of POLθ, which promotes polymerase theta-mediated end-joining (TMEJ). Collectively, we present a direct role of MSH2-MSH3 in the initial stages of DSB repair by promoting end resection and influencing the DSB repair pathway by favoring homologous recombination over TMEJ.


Assuntos
Reparo do DNA , Exodesoxirribonucleases , Proteína 2 Homóloga a MutS , Proteína 3 Homóloga a MutS , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga , Proteína 2 Homóloga a MutS/metabolismo , Humanos , Linhagem Celular , DNA Helicases/metabolismo , Proteína 3 Homóloga a MutS/metabolismo
16.
Fam Cancer ; 22(1): 49-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35675019

RESUMO

Biallelic MSH3 germline variants are a rare cause of adenomatous polyposis as yet reported in two small families only. We describe the phenotype of a third family, the largest thus far, with adenomatous polyposis related to compound heterozygous MSH3 pathogenic variants. The index patient was a 55-years old male diagnosed with rectal cancer and adenomatous polyposis (cumulatively 52 polyps), with a family history of colorectal polyposis with unknown cause. Next-generation sequencing and copy number variation analysis of a panel of genes associated with colorectal cancer and polyposis revealed compound heterozygous germline pathogenic variants in the MSH3 gene. Nine out of 11 siblings were genotyped. Three siblings carried the same compound heterozygous MSH3 variants. Colonoscopy screening showed predominantly right-sided adenomatous polyposis in all compound heterozygous siblings, with a cumulative number of adenomas ranging from 18 to 54 in an average of four colonoscopies, and age at first adenoma detection ranging from 46 to 59. Microsatellite analysis demonstrated alterations at selected tetranucleotide repeats (EMAST) in DNA retrieved from the rectal adenocarcinoma, colorectal adenomas as well as of normal colonic mucosa. Gastro-duodenoscopy did not reveal adenomas in any of the four patients. Extra-intestinal findings included a ductal adenocarcinoma in ectopic breast tissue in one female sibling at the age of 46, and liver cysts in three affected siblings. None of the three heterozygous or wild type siblings who previously underwent colonoscopy had adenomatous polyposis. We conclude that biallelic variants in MSH3 are a rare cause of attenuated adenomatous polyposis with an onset in middle age.


Assuntos
Adenocarcinoma , Adenoma , Polipose Adenomatosa do Colo , Neoplasias Colorretais , Masculino , Humanos , Feminino , Variações do Número de Cópias de DNA , Polipose Adenomatosa do Colo/diagnóstico , Neoplasias Colorretais/genética , Adenoma/genética , Proteína 3 Homóloga a MutS/genética
17.
FEBS J ; 289(18): 5682-5696, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35334159

RESUMO

The pathology of age-related cataract (ARC) mainly involves the misfolding and aggregation of proteins, especially oxidative damage repair proteins, in the lens, induced by ultraviolet-B (UVB). MSH3, as a key member of the mismatch repair family, primarily maintains genome stability. However, the function of MSH3 and the mechanism by which cells maintain MSH3 proteostasis during cataractogenesis remains unknown. In the present study, the protein expression levels of MSH3 were found to be attenuated in ARC specimens and SRA01/04 cells under UVB exposure. The ectopic expression of MSH3 notably impeded UVB-induced apoptosis, whereas the knockdown of MSH3 promoted apoptosis. Protein half-life assay revealed that UVB irradiation accelerated the decline of MSH3 by ubiquitination and degradation. Subsequently, we found that E3 ubiquitin ligase synoviolin (SYVN1) interacted with MSH3 and promoted its ubiquitination and degradation. Of note, the expression and function of SYVN1 were contrary to those of MSH3 and SYVN1 regulated MSH3 protein degradation via the ubiquitin-proteasome pathway and the autophagy-lysosome pathway. Based on these findings, we propose a mechanism for ARC pathogenesis that involves SYVN1-mediated degradation of MSH3 via the ubiquitin-proteasome pathway and the autophagy-lysosome pathway, and suggest that interventions targeting SYVN1 might be a potential therapeutic strategy for ARC.


Assuntos
Catarata , Complexo de Endopeptidases do Proteassoma , Apoptose/genética , Catarata/metabolismo , Células Epiteliais/metabolismo , Humanos , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo
18.
PLoS One ; 16(11): e0259185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843512

RESUMO

The spectrum of somatic genetic variation in colorectal adenomas caused by biallelic pathogenic germline variants in the MSH3 gene, was comprehensively analysed to characterise mutational signatures and identify potential driver genes and pathways of MSH3-related tumourigenesis. Three patients from two families with MSH3-associated polyposis were included. Whole exome sequencing of nine adenomas and matched normal tissue was performed. The amount of somatic variants in the MSH3-deficient adenomas and the pattern of single nucleotide variants (SNVs) was similar to sporadic adenomas, whereas the fraction of small insertions/deletions (indels) (21-42% of all small variants) was significantly higher. Interestingly, pathogenic somatic APC variants were found in all but one adenoma. The vast majority (12/13) of these were di-, tetra-, or penta-base pair (bp) deletions. The fraction of APC indels was significantly higher than that reported in patients with familial adenomatous polyposis (FAP) (p < 0.01) or in sporadic adenomas (p < 0.0001). In MSH3-deficient adenomas, the occurrence of APC indels in a repetitive sequence context was significantly higher than in FAP patients (p < 0.01). In addition, the MSH3-deficient adenomas harboured one to five (recurrent) somatic variants in 13 established or candidate driver genes for early colorectal carcinogenesis, including ACVR2A and ARID genes. Our data suggest that MSH3-related colorectal carcinogenesis seems to follow the classical APC-driven pathway. In line with the specific function of MSH3 in the mismatch repair (MMR) system, we identified a characteristic APC mutational pattern in MSH3-deficient adenomas, and confirmed further driver genes for colorectal tumourigenesis.


Assuntos
Polipose Adenomatosa do Colo/patologia , Neoplasias Colorretais/patologia , Proteína 3 Homóloga a MutS/genética , Receptores de Activinas Tipo II/genética , Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Humanos , Mutação INDEL , Polimorfismo de Nucleotídeo Único
19.
Nucleic Acids Res ; 49(20): 11643-11652, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718701

RESUMO

The Repeat Expansion Diseases, a large group of human diseases that includes the fragile X-related disorders (FXDs) and Huntington's disease (HD), all result from expansion of a disease-specific microsatellite via a mechanism that is not fully understood. We have previously shown that mismatch repair (MMR) proteins are required for expansion in a mouse model of the FXDs, but that the FANCD2 and FANCI associated nuclease 1 (FAN1), a component of the Fanconi anemia (FA) DNA repair pathway, is protective. FAN1's nuclease activity has been reported to be dispensable for protection against expansion in an HD cell model. However, we show here that in a FXD mouse model a point mutation in the nuclease domain of FAN1 has the same effect on expansion as a null mutation. Furthermore, we show that FAN1 and another nuclease, EXO1, have an additive effect in protecting against MSH3-dependent expansions. Lastly, we show that the loss of FANCD2, a vital component of the Fanconi anemia DNA repair pathway, has no effect on expansions. Thus, FAN1 protects against MSH3-dependent expansions without diverting the expansion intermediates into the canonical FA pathway and this protection depends on FAN1 having an intact nuclease domain.


Assuntos
Domínio Catalítico , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Enzimas Multifuncionais/metabolismo , Expansão das Repetições de Trinucleotídeos , Animais , Enzimas Reparadoras do DNA/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Enzimas Multifuncionais/química , Enzimas Multifuncionais/genética , Proteína 3 Homóloga a MutS/metabolismo , Mutação Puntual
20.
Hum Pathol ; 118: 9-17, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537247

RESUMO

Immunohistochemical evaluation of mismatch repair protein (MMR) expression is an important screening tool in diagnostic pathology, where it is routinely used to identify subsets of colorectal cancers (CRCs) with either inherited or sporadic forms of microsatellite instability (MSI). MSH3 is not included in current MMR panels, although aberrant MSH3 expression is reported to occur in 40-60% of CRCs and is associated with elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) and a worse prognosis. In this study, we applied MSH3 immunohistochemistry and tetranucleotide MSI analysis to a cohort of 250 unselected CRCs to evaluate the potential use of the methods in routine practice. Partial, complete, and focal loss of nuclear MSH3 and its cytoplasmic mislocalization were evident in 67% of tumors, whereas MSI was evident in two to six of a panel of six tetranucleotide repeats in 46% of cases. However, concordance between MSH3 immunohistochemistry and tetranucleotide MSI results was only 61%, indicating the unsuitability of this combination of tests in routine pathology practice. MSH3 immunostaining was compromised in areas of tissue crush and autolysis, which are common in biopsy and surgical samples, potentially mitigating against its routine use. Although tetranucleotide MSI is clearly evident in a subset of CRCs, further development of validated sets of tetranucleotide repeats and either MSH3 or other immunohistochemical markers will be required to include EMAST testing in the routine evaluation of CRCs in clinical practice.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Colorretais , Imuno-Histoquímica/métodos , Instabilidade de Microssatélites , Proteína 3 Homóloga a MutS/análise , Reação em Cadeia da Polimerase/métodos , Artefatos , Humanos , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA