Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 452
Filtrar
1.
Exp Physiol ; 109(6): 966-979, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594909

RESUMO

The acute exudative phase of acute respiratory distress syndrome (ARDS), a severe form of respiratory failure, is characterized by alveolar damage, pulmonary oedema, and an exacerbated inflammatory response. There is no effective treatment for this condition, but based on the major contribution of inflammation, anti-inflammatory strategies have been evaluated in animal models and clinical trials, with conflicting results. In COVID-19 ARDS patients, interleukin (IL)-1 and IL-6 receptor antagonists (IL-1Ra and IL-6Ra, kineret and tocilizumab, respectively) have shown some efficacy. Moreover, we have previously developed novel peptides modulating IL-1R and IL-6R activity (rytvela and HSJ633, respectively) while preserving immune vigilance and cytoprotective pathways. We aimed to assess the efficacy of these novel IL-1Ra and IL-6Ra, compared to commercially available drugs (kineret, tocilizumab) during the exudative phase (day 7) of bleomycin-induced acute lung injury (ALI) in mice. Our results first showed that none of the IL-1Ra and IL-6Ra compounds attenuated bleomycin-induced weight loss and venous P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ increase. Histological analyses and lung water content measurements also showed that these drugs did not improve lung injury scores or pulmonary oedema, after the bleomycin challenge. Finally, IL-1Ra and IL-6Ra failed to alleviate the inflammatory status of the mice, as indicated by cytokine levels and alveolar neutrophil infiltration. Altogether, these results indicate a lack of beneficial effects of IL-1R and IL-6R antagonists on key parameters of ALI in the bleomycin mouse model.


Assuntos
Lesão Pulmonar Aguda , Anticorpos Monoclonais Humanizados , Modelos Animais de Doenças , Receptores de Interleucina-6 , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Camundongos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Bleomicina , Pulmão/metabolismo , Pulmão/efeitos dos fármacos
2.
Arterioscler Thromb Vasc Biol ; 44(4): e117-e130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385289

RESUMO

BACKGROUND: Kawasaki disease (KD) is an acute febrile illness and systemic vasculitis often associated with cardiac sequelae, including arrhythmias. Abundant evidence indicates a central role for IL (interleukin)-1 and TNFα (tumor necrosis factor-alpha) signaling in the formation of arterial lesions in KD. We aimed to investigate the mechanisms underlying the development of electrophysiological abnormalities in a murine model of KD vasculitis. METHODS: Lactobacillus casei cell wall extract-induced KD vasculitis model was used to investigate the therapeutic efficacy of clinically relevant IL-1Ra (IL-1 receptor antagonist) and TNFα neutralization. Echocardiography, in vivo electrophysiology, whole-heart optical mapping, and imaging were performed. RESULTS: KD vasculitis was associated with impaired ejection fraction, increased ventricular tachycardia, prolonged repolarization, and slowed conduction velocity. Since our transcriptomic analysis of human patients showed elevated levels of both IL-1ß and TNFα, we asked whether either cytokine was linked to the development of myocardial dysfunction. Remarkably, only inhibition of IL-1 signaling by IL-1Ra but not TNFα neutralization was able to prevent changes in ejection fraction and arrhythmias, whereas both IL-1Ra and TNFα neutralization significantly improved vasculitis and heart vessel inflammation. The treatment of L casei cell wall extract-injected mice with IL-1Ra also restored conduction velocity and improved the organization of Cx43 (connexin 43) at the intercalated disk. In contrast, in mice with gain of function of the IL-1 signaling pathway, L casei cell wall extract induced spontaneous ventricular tachycardia and premature deaths. CONCLUSIONS: Our results characterize the electrophysiological abnormalities associated with L casei cell wall extract-induced KD and show that IL-1Ra is more effective in preventing KD-induced myocardial dysfunction and arrhythmias than anti-TNFα therapy. These findings support the advancement of clinical trials using IL-1Ra in patients with KD.


Assuntos
Cardiomiopatias , Síndrome de Linfonodos Mucocutâneos , Taquicardia Ventricular , Vasculite , Humanos , Animais , Camundongos , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Taquicardia Ventricular/prevenção & controle , Taquicardia Ventricular/complicações
4.
J Thorac Cardiovasc Surg ; 167(5): e146-e158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37951532

RESUMO

OBJECTIVE: Endothelial to mesenchymal transition may represent a key link between inflammatory stress and endothelial dysfunction seen in aortic aneurysm disease. Endothelial to mesenchymal transition is regulated by interleukin-1ß, and previous work has demonstrated an essential role of interleukin-1 signaling in experimental aortic aneurysm models. We hypothesize that endothelial to mesenchymal transition is present in murine aortic aneurysms, and loss of interleukin-1 signaling attenuates this process. METHODS: Murine aortic aneurysms were created in novel CDH5-Cre lineage tracking mice by treating the intact aorta with peri-adventitial elastase. Endothelial to mesenchymal transition transcription factors as well as endothelial and mesenchymal cell markers were analyzed via immunohistochemistry and immunofluorescence (n = 10/group). To determine the role of interleukin-1 signaling, endothelial-specific interleukin-1 receptor 1 knockout and wild-type mice (n = 10/group) were treated with elastase. Additionally, C57/BL6 mice were treated with the interleukin-1 receptor 1 antagonist Anakinra (n = 7) or vehicle (n = 8). RESULTS: Elastase treatment yielded greater aortic dilation compared with controls (elastase 97.0% ± 34.0%; control 5.3% ± 4.8%; P < .001). Genetic deletion of interleukin-1 receptor 1 attenuated aortic dilation (control 126.7% ± 38.7%; interleukin-1 receptor 1 knockout 35.2% ± 14.7%; P < .001), as did pharmacologic inhibition of interleukin-1 receptor 1 with Anakinra (vehicle 146.3% ± 30.1%; Anakinra 63.5% ± 23.3%; P < .001). Elastase treatment resulted in upregulation of endothelial to mesenchymal transition transcription factors (Snail, Slug, Twist, ZNF) and mesenchymal cell markers (S100, alpha smooth muscle actin) and loss of endothelial cell markers (vascular endothelial cadherin, endothelial nitric oxide synthase, von Willebrand factor). These changes were attenuated by interleukin-1 receptor 1 knockout and Anakinra treatment. CONCLUSIONS: Endothelial to mesenchymal transition occurs in aortic aneurysm disease and is attenuated by loss of interleukin-1 signaling. Endothelial dysfunction through endothelial to mesenchymal transition represents a new and novel pathway in understanding aortic aneurysm disease and may be a potential target for future treatment.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Doenças da Aorta , Camundongos , Animais , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Camundongos Knockout , Receptores de Interleucina-1/genética , Interleucina-1beta , Elastase Pancreática , Fatores de Transcrição , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Eur J Appl Physiol ; 124(1): 257-267, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37453973

RESUMO

PURPOSE: Cytokines are released as part of an inflammatory reaction in response to strength exercise to initiate muscle repair and morphological adaptations. Whether hormonal fluctuations induced by the menstrual cycle or oral contraceptives affect inflammatory responses to strength exercise remains unknown. Therefore, we aimed to compare the response of cytokines after acute strength exercise in naturally menstruating women and oral contraceptive users. METHODS: Naturally menstruating women (MC, n = 13, 24 ± 4 years, weekly strength training: 4.3 ± 1.7 h) and women using a monophasic combined pill (> 9 months) (OC, n = 8, 22 ± 3 years, weekly strength training: 4.5 ± 1.9 h) were recruited. A one-repetition-maximum (1RM) test and strength exercise in the squat (4 × 10 repetitions, 70%1RM) was performed in the early follicular phase or pill free interval. Concentrations of oestradiol, IL-1ß, IL-1ra, IL-6, IL-8, and IL-10 were assessed before (pre), directly after (post) and 24 h after (post24) strength exercise. RESULTS: IL-1ra increased from pre to post (+ 51.1 ± 59.4%, p = 0.189) and statistically decreased from post to post24 (- 20.5 ± 13.5%, p = 0.011) only in OC. Additionally, IL-1ß statistically decreased from post to post24 (- 39.6 ± 23.0%, p = 0.044) only in OC. There was an interaction effect for IL-1ß (p = 0.038) and concentrations were statistically decreased at post24 in OC compared to MC (p = 0.05). IL-8 increased across both groups from post to post24 (+ 66.6 ± 96.3%, p = 0.004). CONCLUSION: We showed a differential regulation of IL-1ß and IL-1ra between OC users in the pill-free interval and naturally cycling women 24 h after strength exercise, while there was no effect on other cytokines. Whether this is associated with previously shown compromised morphological adaptations remains to be investigated.


Assuntos
Citocinas , Proteína Antagonista do Receptor de Interleucina 1 , Feminino , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-8/farmacologia , Ciclo Menstrual , Anticoncepcionais Orais/farmacologia
6.
Nanomedicine ; 55: 102719, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977510

RESUMO

Chronic inflammatory diseases are increasing in developed societies, thus new anti-inflammatory approaches are needed in the clinic. Synthetic peptides complexes can be designed to mimic the activity of anti-inflammatory mediators, in order to alleviate inflammation. Here, we evaluated the anti-inflammatory efficacy of tethered peptides mimicking the interleukin-1 receptor antagonist (IL-1Ra) and the heat-shock protein 70 (HSP70). We tested their biocompatibility and anti-inflammatory activity in vitro in primary human monocytes and differentiated macrophages activated with two different stimuli: the TLR agonists (LPS + IFN-γ) or Pam3CSK4. Our results demonstrate that IL-1Ra and HSP70 synthetic peptides present a satisfactory biocompatible profile and significantly inhibit the secretion of several pro-inflammatory cytokines (IL-6, IL-8, IL-1ß and TNFα). We further confirmed their anti-inflammatory activity when peptides were coated on a biocompatible material commonly employed in surgical implants. Overall, our findings support the potential use of IL-1Ra and HSP70 synthetic peptides for the treatment of inflammatory conditions.


Assuntos
Anti-Inflamatórios , Proteína Antagonista do Receptor de Interleucina 1 , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/uso terapêutico
7.
Sci Transl Med ; 15(722): eadf1690, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967202

RESUMO

Conventional microdiscectomy treatment for intervertebral disc herniation alleviates pain but does not repair the annulus fibrosus, resulting in a high incidence of recurrent herniation and persistent dysfunction. The lack of repair and the acute inflammation that arise after injury can further compromise the disc and result in disc-wide degeneration in the long term. To address this clinical need, we developed tension-activated repair patches (TARPs) for annulus fibrosus repair and local delivery of the anti-inflammatory factor anakinra (a recombinant interleukin-1 receptor antagonist). TARPs transmit physiologic strain to mechanically activated microcapsules embedded within the patch, which release encapsulated bioactive molecules in direct response to spinal loading. Mechanically activated microcapsules carrying anakinra were loaded into TARPs, and the effects of TARP-mediated annular repair and anakinra delivery were evaluated in a goat model of annular injury in the cervical spine. TARPs integrated with native tissue and provided structural reinforcement at the injury site that prevented aberrant disc-wide remodeling resulting from detensioning of the annular fibrosus. The delivery of anakinra by TARP implantation increased matrix deposition and retention at the injury site and improved maintenance of disc extracellular matrix. Anakinra delivery additionally attenuated the inflammatory response associated with TARP implantation, decreasing osteolysis in adjacent vertebrae and preserving disc cellularity and matrix organization throughout the annulus fibrosus. These results demonstrate the therapeutic potential of TARPs for the treatment of intervertebral disc herniation.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Nanofibras , Animais , Deslocamento do Disco Intervertebral/tratamento farmacológico , Deslocamento do Disco Intervertebral/cirurgia , Cabras , Cápsulas , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Degeneração do Disco Intervertebral/cirurgia
8.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833885

RESUMO

Chronic immune activation in systemic sclerosis is supported by the production of a plethora of cytokines with proven regulatory activities of the immune responses. This study aimed to explore PBMCs' cytokine profiles in SSc patients versus controls, as well as to investigate the balance between pro- and anti-inflammatory cytokines in association with disease duration. PBMCs were isolated from 18 SSc patients and 17 controls and further subjected to in vitro stimulation with lipopolysaccharide and heat-killed Candida albicans. Cytokine production was measured after 24 h and 7 days, respectively, using ELISA kits for interleukin (IL)-1ß, IL-1 receptor antagonist (IL-1Ra), IL-6, tumor necrosis factor (TNF), IL-10, IL-17, and interferon-gamma (IFN-gamma). IL-1 ß, IL-6, and TNF levels were increased in SSc patients compared with healthy volunteers irrespective of the stimulus used. IL-1Ra and Il-17 concentrations were not statistically different between groups, even though a trend toward higher levels in patients compared with their matched controls was also observed. Most cytokines demonstrated a stable course with disease progression, except for IL-10 levels, which declined over time. In conclusion, the results of this pilot study reveal that in patients with SSc a persistently enhanced immune response is established and maintained regardless of stimulus or disease duration.


Assuntos
Leucócitos Mononucleares , Escleroderma Sistêmico , Humanos , Interleucina-10 , Interleucina-17/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-6/farmacologia , Projetos Piloto , Citocinas , Fator de Necrose Tumoral alfa/farmacologia , Imunidade
9.
ACS Biomater Sci Eng ; 9(11): 6282-6292, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37906515

RESUMO

In order to scale up culture therapeutic cells, such as mesenchymal stromal cells (MSCs), culture in suspension bioreactors using microcarriers (µCs) is preferred. However, the impact of microcarrier type on the resulting MSC secretory activity has not been investigated. In this study, two poly(ethylene glycol) hydrogel formulations with different swelling ratios (named "stiffer" and "softer") were fabricated as µC substrates to culture MSCs and MSCs genetically modified to express the interleukin-1 receptor antagonist (IL-1Ra-MSCs). Changes in cell number, secretory and angiogenic activity, and changes in MAPK signaling were evaluated when cultured on hydrogel µCs, as well as on tissue culture plastic-based Synthemax µCs. We demonstrated that culture on stiffer µCs increased secretion of IL-1Ra compared to culture on Synthemax µCs by IL-1Ra-MSCs by 1.2- to 1.6-fold, as well as their in vitro angiogenic activity, compared to culture on Synthemax µCs, while culture on both stiffer and softer µCs altered the secretion of several other factors compared to culture on Synthemax µCs. Changes in angiogenic activity corresponded with increased gene expression and secretion of hepatocyte growth factor by MSCs cultured on softer µCs by 2.5- to 6-fold compared to MSCs cultured on Synthemax µCs. Quantification of phosphoprotein signaling with the MAPK pathway revealed broad reduction of pathway activation by IL-1Ra-MSCs cultured on both stiffer and softer µCs compared to Synthemax, where phosphorylated c-Jun, ATF2, and MEK1 were reduced specifically on softer µCs. Overall, this study showed that µC surfaces can influence the secretory activity of genetically modified MSCs and identified associated changes in MAPK pathway signaling, which is a known central regulator of cytokine secretion.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Células-Tronco Mesenquimais , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Técnicas de Cultura de Células/métodos , Materiais Biocompatíveis , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Polietilenoglicóis/farmacologia , Polietilenoglicóis/metabolismo
10.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895080

RESUMO

Temporal lobe epilepsy is a common, chronic disorder with spontaneous seizures that is often refractory to drug therapy. A potential cause of temporal lobe epilepsy is primary brain injury, making prevention of epileptogenesis after the initial event an optimal method of treatment. Despite this, no preventive therapy for epilepsy is currently available. The purpose of this study was to evaluate the effects of anakinra, lamotrigine, and their combination on epileptogenesis using the rat lithium-pilocarpine model of temporal lobe epilepsy. The study showed that there was no significant difference in the number and duration of seizures between treated and untreated animals. However, the severity of seizures was significantly reduced after treatment. Anakinra and lamotrigine, alone or in combination, significantly reduced neuronal loss in the CA1 hippocampus compared to the control group. However, the drugs administered alone were found to be more effective in preventing neuron loss in the hippocampal CA3 field compared to combination treatment. The treatment alleviated the impairments in activity level, exploratory behavior, and anxiety but had a relatively weak effect on TLE-induced impairments in social behavior and memory. The efficacy of the combination treatment did not differ from that of anakinra and lamotrigine monotherapy. These findings suggest that anakinra and lamotrigine, either alone or in combination, may be clinically useful in preventing the development of histopathological and behavioral abnormalities associated with epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Ratos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/patologia , Pilocarpina/efeitos adversos , Lamotrigina/efeitos adversos , Lítio/efeitos adversos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Anticonvulsivantes/efeitos adversos , Convulsões/tratamento farmacológico , Hipocampo , Modelos Animais de Doenças
11.
Am J Obstet Gynecol MFM ; 5(11): 101124, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597799

RESUMO

BACKGROUND: Intraamniotic inflammation is associated with preterm birth, especially in cases occurring before 32 weeks' gestation, and is causally linked with an increased risk for neonatal mortality and morbidity. Targeted anti-inflammatory interventions may assist in improving the outcomes for pregnancies impacted by intrauterine inflammation. Interleukin-1 is a central upstream mediator of inflammation. Accordingly, interleukin-1 is a promising candidate target for intervention therapies and has been targeted previously using the interleukin-1 receptor antagonist, anakinra. Recent studies have shown that the novel, noncompetitive, allosteric interleukin-1 receptor inhibitor, rytvela, partially resolved inflammation associated with preterm birth and fetal injury. In this study, we used a preterm sheep model of chorioamnionitis to investigate the anti-inflammatory efficacy of rytvela and anakinra, administered in the amniotic fluid in the setting of intraamniotic Escherichia coli lipopolysaccharide exposure. OBJECTIVE: We hypothesized that both rytvela and anakinra would reduce lipopolysaccharide-induced intrauterine inflammation and protect the fetal brain. STUDY DESIGN: Ewes with a singleton fetus at 105 days of gestation (term is ∼150 days) were randomized to one of the following groups: (1) intraamniotic injections of 2 mL saline at time=0 and time=24 hours as a negative control group (saline group, n=12); (2) intraamniotic injection of 10 mg Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 2 mL saline at time=0 hours and time=24 hours as an inflammation positive control group (lipopolysaccharide group, n=11); (3) intraamniotic injection of Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 2.5 mg rytvela at time=0 hours and time=24 hours to test the anti-inflammatory efficacy of rytvela (lipopolysaccharide + rytvela group, n=10); or (4) intraamniotic injection of Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 100 mg anakinra at time=0 hours and time=24 hours to test the anti-inflammatory efficacy of anakinra (lipopolysaccharide + anakinra group, n=12). Amniotic fluid was sampled at time 0, 24, and 48 hours (ie, at each intervention and at delivery). Fetal umbilical cord blood was collected at delivery for differential blood counts and chemical studies. Inflammation was characterized by the analysis of fetal tissue cytokine and chemokine levels using quantitative polymerase chain reaction, enzyme-linked inmmunosorbent assay, and histology. The primary study outcome of interest was the assessment of anakinra and rytvela brain-protective effects in the setting of Escherichia coli lipopolysaccharide-induced intrauterine inflammation. Secondary outcomes of interest were to assess protection from fetal and intrauterine (ie, amniotic fluid, chorioamnion) inflammation. RESULTS: Intraamniotic administration of lipopolysaccharide caused inflammation of the fetal lung, brain, and chorioamnionitis in preterm fetal sheep. Relative to treatment with saline only in the setting of lipopolysaccharide exposure, intraamniotic administration of both rytvela and anakinra both significantly prevented periventricular white matter injury, microglial activation, and histologic chorioamnionitis. Anakinra showed additional efficacy in inhibiting fetal lung myeloperoxidase activity, but its use was associated with metabolic acidaemia and reduced fetal plasma insulin-like growth factor-1 levels at delivery. CONCLUSION: Intraamniotic administration of rytvela or anakinra significantly inhibited fetal brain inflammation and chorioamnionitis in preterm fetal sheep exposed to intraamniotic lipopolysaccharide. In addition, anakinra treatment was associated with potential negative impacts on the developing fetus.


Assuntos
Anti-Inflamatórios , Corioamnionite , Doenças Neuroinflamatórias , Nascimento Prematuro , Animais , Feminino , Gravidez , Líquido Amniótico/química , Líquido Amniótico/metabolismo , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/análise , Corioamnionite/induzido quimicamente , Corioamnionite/tratamento farmacológico , Corioamnionite/imunologia , Escherichia coli , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/análise , Interleucina-1/análise , Lipopolissacarídeos/análise , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/prevenção & controle , Nascimento Prematuro/imunologia , Nascimento Prematuro/prevenção & controle , Receptores de Interleucina-1/análise , Ovinos , Modelos Animais de Doenças , Animais Recém-Nascidos
12.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569715

RESUMO

We investigated the effects of the cytokine inhibitors IL-1 receptor antagonist (IL-1Ra) and soluble tumor necrosis factor receptor-1 (sTNFR1) on the extracellular matrix metabolism of human intervertebral discs (IVDs) and the roles of IL-1ß and TNF in the homeostasis of IVD cells. The 1.2% alginate beads and the explants obtained from 35 human lumbar discs were treated with cytokine inhibitors. Extracellular matrix metabolism was evaluated by proteoglycan (PG) and collagen syntheses and IL-1ß, TNF, and IL-6 expressions after three days of culture in the presence or absence of IL-1Ra, sTNFR1, and cycloheximide. Simultaneous treatment with IL-1Ra and sTNFR1 stimulated PG and collagen syntheses in the NP and AF cells and explants. The IL-1ß concentration was significantly correlated to the relative increase in PG synthesis in AF explants after simultaneous cytokine inhibitor treatment. The relative increase in PG synthesis induced by simultaneous cytokine treatment was significantly higher in an advanced grade of MRI. Expressions of IL-1ß and TNF were upregulated by each cytokine inhibitor, and simultaneous treatment suppressed IL-1ß and TNF productions. In conclusion, IL-1Ra and sTNFR1 have the potential to increase PG and collagen synthesis in IVDs. IL-1ß and TNF have a feedback pathway to maintain optimal expression, resulting in the control of homeostasis in IVD explants.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Citocinas/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Disco Intervertebral/metabolismo , Matriz Extracelular/metabolismo , Proteoglicanas/metabolismo , Receptores de Interleucina-1/metabolismo , Colágeno/metabolismo
13.
Cancer Discov ; 13(10): 2248-2269, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37486241

RESUMO

KRAS mutations are causally linked to protumor inflammation and are identified as driving factors in tumorigenesis. Here, using multiomics data gathered from a large set of patients, we showed that KRAS mutation was associated with a specific landscape of alternative mRNA splicing that connected to myeloid inflammation in intrahepatic cholangiocarcinoma (iCCA). Then, we identified a negative feedback mechanism in which the upregulation of interleukin 1 receptor antagonist (IL1RN)-201/203 due to alternative splicing confers vital anti-inflammatory effects in KRAS-mutant iCCA. In KRAS-mutant iCCA mice, both IL1RN-201/203 upregulation and anakinra treatment ignited a significant antitumor immune response by altering neutrophil recruitment and phenotypes. Furthermore, anakinra treatment synergistically enhanced anti-PD-1 therapy to activate intratumoral GZMB+ CD8+ T cells in KRAS-mutant iCCA mice. Clinically, we found that high IL1RN-201/203 levels in patients with KRAS-mutant iCCA were significantly associated with superior response to anti-PD-1 immunotherapy. SIGNIFICANCE: This work describes a novel inflammatory checkpoint mediated by IL1RN alternative splicing variants that may serve as a promising basis to develop therapeutic options for KRAS-mutant iCCA and other cancers. This article is featured in Selected Articles from This Issue, p. 2109.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Inflamação/tratamento farmacológico , Inflamação/genética
14.
J Transl Med ; 21(1): 473, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461111

RESUMO

BACKGROUND: Interleukin-1 receptor antagonist (IL-1RA), a member of the IL-1 family, has diverse roles in cancer development. However, the role of IL-1RA in oral squamous cell carcinoma (OSCC), in particular the underlying mechanisms, remains to be elucidated. METHODS: Tumor tissues from OSCC patients were assessed for protein expression by immunohistochemistry. Patient survival was evaluated by Kaplan-Meier curve analysis. Impact of differential IL-1RA expression on cultured OSCC cell lines was assessed in vitro by clonogenic survival, tumorsphere formation, soft agar colony formation, and transwell cell migration and invasion assays. Oxygen consumption rate was measured by Seahorse analyzer or multi-mode plate reader. PCR array was applied to screen human cancer stem cell-related genes, proteome array for phosphorylation status of kinases, and Western blot for protein expression in cultured cells. In vivo tumor growth was investigated by orthotopic xenograft in mice, and protein expression in xenograft tumors assessed by immunohistochemistry. RESULTS: Clinical analysis revealed that elevated IL-1RA expression in OSCC tumor tissues was associated with increased tumor size and cancer stage, and reduced survival in the patient group receiving adjuvant radiotherapy compared to the patient group without adjuvant radiotherapy. In vitro data supported these observations, showing that overexpression of IL-1RA increased OSCC cell growth, migration/invasion abilities, and resistance to ionizing radiation, whereas knockdown of IL-1RA had largely the opposite effects. Additionally, we identified that EGFR/JNK activation and SOX2 expression were modulated by differential IL-1RA expression downstream of mitochondrial metabolism, with application of mitochondrial complex inhibitors suppressing these pathways. Furthermore, in vivo data revealed that treatment with cisplatin or metformin-a mitochondrial complex inhibitor and conventional therapy for type 2 diabetes-reduced IL-1RA-associated xenograft tumor growth as well as EGFR/JNK activation and SOX2 expression. This inhibitory effect was further augmented by combination treatment with cisplatin and metformin. CONCLUSIONS: The current study suggests that IL-1RA promoted OSCC malignancy through mitochondrial metabolism-mediated EGFR/JNK activation and SOX2 expression. Inhibition of this mitochondrial metabolic pathway may present a potential therapeutic strategy in OSCC.


Assuntos
Carcinoma de Células Escamosas , Diabetes Mellitus Tipo 2 , Neoplasias de Cabeça e Pescoço , Metformina , Neoplasias Bucais , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Cisplatino/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Metformina/farmacologia , Proliferação de Células , Movimento Celular , Fatores de Transcrição SOXB1/farmacologia
15.
Immunity ; 56(7): 1485-1501.e7, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37315560

RESUMO

The interleukin 1 (IL-1) pathway signals through IL-1 receptor type 1 (IL-1R1) and emerges as a central mediator for systemic inflammation. Aberrant IL-1 signaling leads to a range of autoinflammatory diseases. Here, we identified a de novo missense variant in IL-1R1 (p.Lys131Glu) in a patient with chronic recurrent multifocal osteomyelitis (CRMO). Patient PBMCs showed strong inflammatory signatures, particularly in monocytes and neutrophils. The p.Lys131Glu substitution affected a critical positively charged amino acid, which disrupted the binding of the antagonist ligand, IL-1Ra, but not IL-1α or IL-1ß. This resulted in unopposed IL-1 signaling. Mice with a homologous mutation exhibited similar hyperinflammation and greater susceptibility to collagen antibody-induced arthritis, accompanied with pathological osteoclastogenesis. Leveraging the biology of the mutation, we designed an IL-1 therapeutic, which traps IL-1ß and IL-1α, but not IL-1Ra. Collectively, this work provides molecular insights and a potential drug for improved potency and specificity in treating IL-1-driven diseases.


Assuntos
Osteomielite , Receptores de Interleucina-1 , Camundongos , Animais , Receptores de Interleucina-1/genética , Osteomielite/tratamento farmacológico , Osteomielite/genética , Osteomielite/patologia , Inflamação/genética , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Transdução de Sinais , Mutação
16.
Pediatr Neurol ; 144: 72-77, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172460

RESUMO

BACKGROUND: Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy characterized by early-onset macrocephaly and progressive white matter vacuolation. The MLC1 protein plays a role in astrocyte activation during neuroinflammation and regulates volume decrease following astrocyte osmotic swelling. Loss of MLC1 function activates interleukin (IL)-1ß-induced inflammatory signals. Theoretically, IL-1 antagonists (such as anakinra and canakinumab) can slow the progression of MLC. Herein, we present two boys from different families who had MLC due to biallelic MLC1 gene mutations and were treated with the anti-IL-1 drug anakinra. METHODS: Two boys from different families presented with megalencephaly and psychomotor retardation. Brain magnetic resonance imaging findings in both patients were compatible with the diagnosis of MLC. The diagnosis of MLC was confirmed via Sanger analysis of the MLC1 gene. Anakinra was administered to both patients. Volumetric brain studies and psychometric evaluations were performed before and after anakinra treatment. RESULTS: After anakinra therapy, brain volume in both patients decreased significantly and cognitive functions and social interactions improved. No adverse effects were observed during anakinra therapy. CONCLUSIONS: Anakinra or other IL-1 antagonists can be used to suppress disease activity in patients with MLC; however, the present findings need to be confirmed via additional research.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Megalencefalia , Proteínas de Membrana , Receptores de Interleucina-1 , Humanos , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cognição , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Megalencefalia/diagnóstico por imagem , Megalencefalia/tratamento farmacológico , Megalencefalia/genética , Proteínas de Membrana/genética , Mutação , Receptores de Interleucina-1/antagonistas & inibidores
17.
J Affect Disord ; 335: 358-370, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217098

RESUMO

BACKGROUND: Proinflammatory cytokines IL-1ß has been proposed to be a key mediator in the pathophysiology of mood-related disorders. However, the IL-1 receptor antagonist (IL-1ra) is a natural antagonist of IL-1 and plays a key role in the regulation of IL-1-mediated inflammation, the effects of IL-1ra in stress-induced depression has not been well elucidated. METHODS: Chronic social defeat stress (CSDS) and lipopolysaccharide (LPS) were used to investigate the effects of IL-1ra. ELISA kit and qPCR were used to detect IL-1ra levels. Golgi staining and electrophysiological recordings were used to investigate glutamatergic neurotransmission in the hippocampus. Immunofluorescence and western blotting were used to analyze CREB-BDNF pathway and synaptic proteins. RESULTS: Serum levels of IL-1ra increased significantly in two animal models of depression, and there was a significant correlation between serum IL-1ra levels and depression-like behaviors. Both CSDS and LPS induced the imbalance of IL-1ra and IL-1ß in the hippocampus. Furthermore, chronic intracerebroventricular (i.c.v.) infusion of IL-1ra not only blocked CSDS-induced depression-like behaviors, but also alleviated CSDS-induced decrease in dendritic spine density and impairments in AMPARs-mediated neurotransmission. Finally, IL-1ra treatment produces antidepressant-like effects through the activation of CREB-BDNF in the hippocampus. LIMITATION: Further studies need to investigate the effect of IL-1ra in the periphery in CSDS-induced depression. CONCLUSION: Our study suggests that the imbalance of IL-1ra and IL-1ß reduces the expression of the CREB-BDNF pathway in the hippocampus, which dysregulates AMPARs-mediated neurotransmission, ultimately leading to depression-like behaviors. IL-1ra could be a new potential candidate for the treatment of mood disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Animais , Camundongos , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Regulação para Cima , Derrota Social , Lipopolissacarídeos/farmacologia , Comportamento Animal , Interleucina-1 , Hipocampo/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
18.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1578-1588, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005846

RESUMO

This study aimed to explore the mechanism of n-butanol alcohol extract of Baitouweng Decoction(BAEB) in the treatment of vulvovaginal candidiasis(VVC) in mice based on the negative regulation of NLRP3 inflammasome via PKCδ/NLRC4/IL-1Ra axis. In the experiment, female C57BL/6 mice were divided randomly into the following six groups: a blank control group, a VVC model group, high-, medium-, and low-dose BAEB groups(80, 40, and 20 mg·kg~(-1)), and a fluconazole group(20 mg·kg~(-1)). The VVC model was induced in mice except for those in the blank control group by the estrogen dependence method. After modeling, no treatment was carried out in the blank control group. The mice in the high-, medium-, and low-dose BAEB groups were treated with BAEB at 80, 40, and 20 mg·kg~(-1), respectively, and those in the fluconazole group were treated with fluconazole at 20 mg·kg~(-1). The mice in the VVC model group received the same volume of normal saline. The general state and body weight of mice in each group were observed every day, and the morphological changes of Candida albicans in the vaginal lavage of mice were examined by Gram staining. The fungal load in the vaginal lavage of mice was detected by microdilution assay. After the mice were killed, the degree of neutrophil infiltration in the vaginal lavage was detected by Papanicolaou staining. The content of inflammatory cytokines interleukin(IL)-1ß, IL-18, and lactate dehydrogenase(LDH) in the vaginal lavage was tested by enzyme-linked immunosorbent assay(ELISA), and vaginal histopathology was analyzed by hematoxylin-eosin(HE) staining. The expression and distribution of NLRP3, PKCδ, pNLRC4, and IL-1Ra in vaginal tissues were measured by immunohistochemistry(IHC), and the expression and distribution of pNLRC4 and IL-1Ra in vaginal tissues were detected by immunofluorescence(IF). The protein expression of NLRP3, PKCδ, pNLRC4, and IL-1Ra was detected by Western blot(WB), and the mRNA expression of NLRP3, PKCδ, pNLRC4, and IL-1Ra was detected by qRT-PCR. The results showed that compared with the blank control group, the VVC model group showed redness, edema, and white secretions in the vagina. Compared with the VVC model group, the BAEB groups showed improved general state of VVC mice. As revealed by Gram staining, Papanicolaou staining, microdilution assay, and HE staining, compared with the blank control group, the VVC model group showed a large number of hyphae, neutrophils infiltration, and increased fungal load in the vaginal lavage, destroyed vaginal mucosa, and infiltration of a large number of inflammatory cells. BAEB could reduce the transformation of C. albicans from yeast to hyphae. High-dose BAEB could significantly reduce neutrophil infiltration and fungal load. Low-and medium-dose BAEB could reduce the da-mage to the vaginal tissue, while high-dose BAEB could restore the damaged vaginal tissues to normal levels. ELISA results showed that the content of inflammatory cytokines IL-1ß, IL-18, and LDH in the VVC model group significantly increased compared with that in the blank control group, and the content of IL-1ß, IL-18 and LDH in the medium-and high-dose BAEB groups was significantly reduced compared with that in the VVC model group. WB and qRT-PCR results showed that compared with the blank control group, the VVC model group showed reduced protein and mRNA expression of PKCδ, pNLRC4, and IL-1Ra in vaginal tissues of mice and increased protein and mRNA expression of NLRP3. Compared with the VVC model group, the medium-and high-dose BAEB groups showed up-regulated protein and mRNA expression of PKCδ, pNLRC4, and IL-1Ra in vaginal tissues and inhibited protein and mRNA expression of NLRP3 in vaginal tissues. This study indicated that the therapeutic effect of BAEB on VVC mice was presumably related to the negative regulation of NLRP3 inflammasome by promoting PKCδ/NLRC4/IL-1Ra axis.


Assuntos
Candidíase Vulvovaginal , Medicamentos de Ervas Chinesas , Feminino , Animais , Humanos , Camundongos , Candidíase Vulvovaginal/tratamento farmacológico , Inflamassomos/genética , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , 1-Butanol/farmacologia , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Camundongos Endogâmicos C57BL , Candida albicans , Citocinas , Medicamentos de Ervas Chinesas/farmacologia , Etanol , RNA Mensageiro , Proteínas de Ligação ao Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/uso terapêutico
19.
J Orthop Res ; 41(9): 2055-2064, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36866823

RESUMO

Meniscus tears represent a common orthopedic injury that often requires surgery to restore pain-free function. The need for surgical intervention is due, in part, to the inflammatory and catabolic environment that inhibits meniscus healing after injury. In other organ systems, healing is dependent on the migration of cells to the site of injury; however, in the meniscus, it is currently unknown how the microenvironment dictates cell migration in the postinjury inflamed setting. Here, we investigated how inflammatory cytokines alter meniscal fibrochondrocyte (MFC) migration and sensation of microenvironmental stiffness. We further tested whether an FDA approved interleukin-1 receptor antagonist (IL-1Ra; Anakinra) could rescue migratory deficits caused by inflammatory challenge. When cultured in the presence of inflammatory cytokines (tumor necrosis factor-α [TNF-α] or interleukin-1ß [IL-1ß]) for 1 day, MFC migration was inhibited for 3 days before returning to control levels at Day 7. This migratory deficit was clear in three-dimensional as well, where fewer MFCs exposed to inflammatory cytokines migrated from a living meniscal explant compared with control. Notably, addition of IL-1Ra to MFCs previously exposed to IL-1ß restored migration to baseline levels. This study demonstrates that joint inflammation can have negative impacts on meniscus cell migration and mechanosensation, affecting their potential for repair, and that resolution of this inflammation with concurrent anti-inflammatories can reverse these deficits. Future work will apply these findings to mitigate the negative consequences of joint inflammation and promote repair in a clinically relevant meniscus injury model.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Menisco , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Citocinas , Fator de Necrose Tumoral alfa/metabolismo , Movimento Celular , Inflamação
20.
Glia ; 71(7): 1607-1625, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929654

RESUMO

Acute ischemic stroke (AIS), one of the leading causes of mortality worldwide, is characterized by a rapid inflammatory cascade resulting in exacerbation of ischemic brain injury. Microglia are the first immune responders. However, the role of postischemic microglial activity in ischemic brain injury remains far from being fully understood. Here, using the transgenic mouse line CX3 CR1creER :R26iDTR to genetically ablate microglia, we showed that microglial deletion exaggerated ischemic brain injury. Associated with this worse outcome, there were increased neutrophil recruitment, microvessel blockade and blood flow stagnation in the acute phase, accompanied by transcriptional upregulation of chemokine (C-X-C motif) ligand 1 (CXCL1). Our study showed that microglial interleukin-1 receptor antagonist (IL-1RA) suppressed astrocytic CXCL1 expression induced by oxygen and glucose deprivation and inhibited neutrophil migration. Furthermore, neutralizing antibody therapy against CXCL1 or the administration of recombinant IL-1RA protein reduced brain infarct volume and improved motor coordination performance of mice after ischemic stroke. Our study suggests that microglia protect against acute ischemic brain injury by secreting IL-1RA to inhibit astrocytic CXCL1 expression, which reduces neutrophil recruitment and neutrophil-derived microvessel occlusion.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , AVC Isquêmico/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/farmacologia , Microglia/metabolismo , Infiltração de Neutrófilos/fisiologia , Lesões Encefálicas/metabolismo , Camundongos Transgênicos , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA