Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.817
Filtrar
1.
Biomolecules ; 14(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39334940

RESUMO

This study aimed to explore how Dab1 functional silencing influences the expression patterns of different connexins in the developing yotari (yot) mice eyes as potential determinants of retinogenesis. Using immunofluorescence staining, the protein expression of Dab1, Reelin, and connexin 37, 40, 43, and 45 (Cx37, Cx40, Cx43, and Cx45) in the wild-type (wt) and yot eyes at embryonic days 13.5 and 15.5 (E13.5 and E15.5) were analyzed. Different expression patterns of Cx37 were seen between the wt and yot groups. The highest fluorescence intensity of Cx37 was observed in the yot animals at E15.5. Cx40 had higher expression at the E13.5 when differentiation of retinal layers was still beginning, whereas it decreased at the E15.5 when differentiation was at the advanced stage. Higher expression of Cx43 was found in the yot group at both time points. Cx45 was predominantly expressed at E13.5 in both groups. Our results reveal the altered expression of connexins during retinogenesis in yot mice and their potential involvement in retinal pathology, where they might serve as prospective therapeutic targets.


Assuntos
Conexinas , Proteína Reelina , Animais , Camundongos , Conexinas/metabolismo , Conexinas/genética , Proteína Reelina/metabolismo , Retina/metabolismo , Retina/crescimento & desenvolvimento , Olho/metabolismo , Olho/embriologia , Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Diferenciação Celular
2.
Nat Commun ; 15(1): 7734, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232006

RESUMO

The adhesion receptor vascular endothelial (VE)-cadherin transduces an array of signals that modulate crucial lymphatic cell behaviors including permeability and cytoskeletal remodeling. Consequently, VE-cadherin must interact with a multitude of intracellular proteins to exert these functions. Yet, the full protein interactome of VE-cadherin in endothelial cells remains a mystery. Here, we use proximity proteomics to illuminate how the VE-cadherin interactome changes during junctional reorganization from dis-continuous to continuous junctions, triggered by the lymphangiogenic factor adrenomedullin. These analyses identified interactors that reveal roles for ADP ribosylation factor 6 (ARF6) and the exocyst complex in VE-cadherin trafficking and recycling. We also identify a requisite role for VE-cadherin in the in vitro and in vivo control of secretion of reelin-a lymphangiocrine glycoprotein with recently appreciated roles in governing heart development and injury repair. This VE-cadherin protein interactome shines light on mechanisms that control adherens junction remodeling and secretion from lymphatic endothelial cells.


Assuntos
Junções Aderentes , Antígenos CD , Caderinas , Células Endoteliais , Proteína Reelina , Animais , Humanos , Camundongos , Junções Aderentes/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Caderinas/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Junções Intercelulares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Proteômica/métodos , Serina Endopeptidases/metabolismo
3.
J Alzheimers Dis ; 100(4): 1099-1119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995785

RESUMO

Alzheimer's disease (AD) accounts for most dementia cases, but we lack a complete understanding of the mechanisms responsible for the core pathology associated with the disease (e.g., amyloid plaque and neurofibrillary tangles). Inflammation has been identified as a key contributor of AD pathology, with recent evidence pointing towards Reelin dysregulation as being associated with inflammation. Here we describe Reelin signaling and outline existing research involving Reelin signaling in AD and inflammation. Research is described pertaining to the inflammatory and immunological functions of Reelin before we propose a mechanism through which inflammation renders Reelin susceptible to dysregulation resulting in the induction and exacerbation of AD pathology. Based on this hypothesis, it is predicted that disorders of both inflammation (including peripheral inflammation and neuroinflammation) and Reelin dysregulation (including disorders associated with upregulated Reelin expression and disorders of Reelin downregulation) have elevated risk of developing AD. We conclude with a description of AD risk in various disorders involving Reelin dysregulation and inflammation.


Assuntos
Doença de Alzheimer , Proteínas da Matriz Extracelular , Homeostase , Inflamação , Proteína Reelina , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Inflamação/metabolismo , Homeostase/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Animais , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Transdução de Sinais/fisiologia
4.
Nature ; 632(8026): 858-868, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048816

RESUMO

Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.


Assuntos
Doença de Alzheimer , Encéfalo , Perfilação da Expressão Gênica , Análise de Célula Única , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Astrócitos/classificação , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Autopsia , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Colina/metabolismo , Cognição/fisiologia , Redes Reguladoras de Genes , Interneurônios/classificação , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Inibição Neural , Neurônios/classificação , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Poliaminas/metabolismo , Proteína Reelina , Transdução de Sinais , Tálamo/citologia , Tálamo/metabolismo , Tálamo/patologia , Transcriptoma
5.
Biol Pharm Bull ; 47(7): 1314-1320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39019611

RESUMO

Dab1 is an intracellular adaptor protein essential for brain formation during development. Tyrosine phosphorylation in Dab1 plays important roles in neuronal migration, dendrite development, and synapse formation by affecting several downstream pathways. Reelin is the best-known extracellular protein that induces Dab1 phosphorylation. However, whether other upstream molecule(s) contribute to Dab1 phosphorylation remains largely unknown. Here, we found that EphA4, a member of the Eph family of receptor-type tyrosine kinases, induced Dab1 phosphorylation when co-expressed in cultured cells. Tyrosine residues phosphorylated by EphA4 were the same as those phosphorylated by Reelin in neurons. The autophosphorylation of EphA4 was necessary for Dab1 phosphorylation. We also found that EphA4-induced Dab1 phosphorylation was mediated by the activation of the Src family tyrosine kinases. Interestingly, Dab1 phosphorylation was not observed when EphA4 was activated by ephrin-A5 in cultured cortical neurons, suggesting that Dab1 is localized in a different compartment in them. EphA4-induced Dab1 phosphorylation may occur under limited and/or pathological conditions in the brain.


Assuntos
Neurônios , Receptor EphA4 , Proteína Reelina , Quinases da Família src , Proteína Reelina/metabolismo , Fosforilação , Animais , Receptor EphA4/metabolismo , Receptor EphA4/genética , Quinases da Família src/metabolismo , Neurônios/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Células HEK293 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Células Cultivadas , Efrina-A5/metabolismo , Efrina-A5/genética , Camundongos , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/metabolismo , Ratos
6.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119802, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069227

RESUMO

RATIONALE: Very-low-density lipoprotein receptor (VLDLR) involves in ocular neovascularization, a major cause of severe vision loss. However, the underlying molecular mechanisms were not completely clarified. Here, we aimed to investigate roles of circular RNAs (circRNAs) in VLDLR-associated ocular neovascularization. METHODS: Vldlr knockout (Vldlr-/-, ko), Robo4 knockout (Robo4-/-, ko) and wild-type (WT) mice were used. Mouse model of oxygen induced retinopathy (OIR) and high-throughput sequence were performed to profile the differential expression of circRNA and transcripts. RNase R treatment, Sanger PCR sequencing and quantitative polymerase chain reaction (qPCR) were used to validate candidate circRNAs and their expression patterns. Choroidal sprouting assay ex vivo and laser induction choroid neovascularization were used to determine the expression and functions of QKI/CircSlc17a5 on choroidal neovascularization. RESULTS: In macrophage and ocular tissues derived from Vldlr (Vldlr-/-,Vldlr ko) or Robo4 (Robo4-/-,Robo4 ko) deficiency as well as wild-type (WT) mice, Quaking (Qki) expression was significantly down-regulated in Vldlr deficiency compared to WT and Robo4 deficiency groups. Ectopic VLDLR expression or Reelin stimulation increased expression of QKI in bEnd.3 cells. Circular RNA sequencing uncovered that VLDLR regulated the biogenesis of certain circular RNAs, including the circSlc17a5. The number of Circular RNAs increased in mice treated with OIR. QKI mediated the biogenesis of circSlc17a5, which was an important regulator of choroidal angiogenesis. CONCLUSION: CircSlc17a5 regulated by VLDLR/QKI plays important roles in the choroidal angiogenesis.


Assuntos
Neovascularização de Coroide , Camundongos Knockout , RNA Circular , Receptores de LDL , Animais , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Camundongos , RNA Circular/genética , RNA Circular/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Reelina , Transdução de Sinais , Camundongos Endogâmicos C57BL , Corioide/metabolismo , Corioide/irrigação sanguínea , Modelos Animais de Doenças , Angiogênese
7.
J Clin Invest ; 134(16)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980724

RESUMO

Reelin (RELN) is a secreted glycoprotein essential for cerebral cortex development. In humans, recessive RELN variants cause cortical and cerebellar malformations, while heterozygous variants were associated with epilepsy, autism, and mild cortical abnormalities. However, the functional effects of RELN variants remain unknown. We identified inherited and de novo RELN missense variants in heterozygous patients with neuronal migration disorders (NMDs) as diverse as pachygyria and polymicrogyria. We investigated in culture and in the developing mouse cerebral cortex how different variants impacted RELN function. Polymicrogyria-associated variants behaved as gain-of-function, showing an enhanced ability to induce neuronal aggregation, while those linked to pachygyria behaved as loss-of-function, leading to defective neuronal aggregation/migration. The pachygyria-associated de novo heterozygous RELN variants acted as dominant-negative by preventing WT RELN secretion in culture, animal models, and patients, thereby causing dominant NMDs. We demonstrated how mutant RELN proteins in vitro and in vivo predict cortical malformation phenotypes, providing valuable insights into the pathogenesis of such disorders.


Assuntos
Moléculas de Adesão Celular Neuronais , Movimento Celular , Proteínas da Matriz Extracelular , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso , Proteína Reelina , Serina Endopeptidases , Humanos , Animais , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos , Feminino , Masculino , Movimento Celular/genética , Neurônios/metabolismo , Neurônios/patologia , Polimicrogiria/genética , Polimicrogiria/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Heterozigoto , Lisencefalia/genética , Lisencefalia/patologia , Alelos
8.
Chem Biol Interact ; 399: 111145, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39002876

RESUMO

Imidacloprid (IMI) is a widely used neonicotinoid insecticide that poses risks for developmental neurotoxicity in mammals. The present study investigated the effects of maternal exposure to IMI on behaviors and adult neurogenesis in the hippocampal dentate gyrus (DG) of rat offspring. Dams were exposed to IMI via diet (83, 250, or 750 ppm in diet) from gestational day 6 until day 21 post-delivery on weaning, and offspring were maintained until adulthood on postnatal day 77. In the neurogenic niche, 750-ppm IMI decreased numbers of late-stage neural progenitor cells (NPCs) and post-mitotic immature granule cells by suppressing NPC proliferation and ERK1/2-FOS-mediated synaptic plasticity of granule cells on weaning. Suppressed reelin signaling might be responsible for the observed reductions of neurogenesis and synaptic plasticity. In adulthood, IMI at ≥ 250 ppm decreased neural stem cells by suppressing their proliferation and increasing apoptosis, and mature granule cells were reduced due to suppressed NPC differentiation. Behavioral tests revealed increased spontaneous activity in adulthood at 750 ppm. IMI decreased hippocampal acetylcholinesterase activity and Chrnb2 transcript levels in the DG on weaning and in adulthood. IMI increased numbers of astrocytes and M1-type microglia in the DG hilus, and upregulated neuroinflammation and oxidative stress-related genes on weaning. In adulthood, IMI increased malondialdehyde level and number of M1-type microglia, and downregulated neuroinflammation and oxidative stress-related genes. These results suggest that IMI persistently affected cholinergic signaling, induced neuroinflammation and oxidative stress during exposure, and increased sensitivity to oxidative stress after exposure in the hippocampus, causing hyperactivity and progressive suppression of neurogenesis in adulthood. The no-observed-adverse-effect level of IMI for offspring behaviors and hippocampal neurogenesis was determined to be 83 ppm (5.5-14.1 mg/kg body weight/day).


Assuntos
Hipocampo , Exposição Materna , Neonicotinoides , Células-Tronco Neurais , Neurogênese , Nitrocompostos , Efeitos Tardios da Exposição Pré-Natal , Proteína Reelina , Animais , Neurogênese/efeitos dos fármacos , Gravidez , Feminino , Neonicotinoides/toxicidade , Ratos , Nitrocompostos/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/citologia , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Inseticidas/toxicidade , Masculino , Proliferação de Células/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos
9.
Biomolecules ; 14(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39062513

RESUMO

Lowe Syndrome (LS) is a rare X-linked disorder characterized by renal dysfunction, cataracts, and several central nervous system (CNS) anomalies. The mechanisms underlying the neurological dysfunction in LS remain unclear, albeit they share some phenotypic characteristics similar to the deficiency or dysfunction of the Reelin signaling, a relevant pathway with roles in CNS development and neuronal functions. In this study, we investigated the role of OCRL1, an inositol polyphosphate 5-phosphatase encoded by the OCRL gene, mutated in LS, focusing on its impact on endosomal trafficking and receptor recycling in human neuronal cells. Specifically, we tested the effects of OCRL1 deficiency in the trafficking and signaling of ApoER2/LRP8, a receptor for the ligand Reelin. We found that loss of OCRL1 impairs ApoER2 intracellular trafficking, leading to reduced receptor expression and decreased levels at the plasma membrane. Additionally, human neurons deficient in OCRL1 showed impairments in ApoER2/Reelin-induced responses. Our findings highlight the critical role of OCRL1 in regulating ApoER2 endosomal recycling and its impact on the ApoER2/Reelin signaling pathway, providing insights into potential mechanisms underlying the neurological manifestations of LS.


Assuntos
Moléculas de Adesão Celular Neuronais , Endossomos , Proteínas da Matriz Extracelular , Proteínas Relacionadas a Receptor de LDL , Proteínas do Tecido Nervoso , Neurônios , Monoéster Fosfórico Hidrolases , Transporte Proteico , Proteína Reelina , Serina Endopeptidases , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/deficiência , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/deficiência , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/deficiência , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/deficiência , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/deficiência , Endossomos/metabolismo , Neurônios/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Transdução de Sinais , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo
10.
PLoS Genet ; 20(7): e1011348, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038048

RESUMO

Disrupted alternative splicing plays a determinative role in neurological diseases, either as a direct cause or as a driver in disease susceptibility. Transcriptomic profiling of aged human postmortem brain samples has uncovered hundreds of aberrant mRNA splicing events in Alzheimer's disease (AD) brains, associating dysregulated RNA splicing with disease. We previously identified a complex array of alternative splicing combinations across apolipoprotein E receptor 2 (APOER2), a transmembrane receptor that interacts with both the neuroprotective ligand Reelin and the AD-associated risk factor, APOE. Many of the human APOER2 isoforms, predominantly featuring cassette splicing events within functionally important domains, are critical for the receptor's function and ligand interaction. However, a comprehensive repertoire and the functional implications of APOER2 isoforms under both physiological and AD conditions are not fully understood. Here, we present an in-depth analysis of the splicing landscape of human APOER2 isoforms in normal and AD states. Using single-molecule, long-read sequencing, we profiled the entire APOER2 transcript from the parietal cortex and hippocampus of Braak stage IV AD brain tissues along with age-matched controls and investigated several functional properties of APOER2 isoforms. Our findings reveal diverse patterns of cassette exon skipping for APOER2 isoforms, with some showing region-specific expression and others unique to AD-affected brains. Notably, exon 15 of APOER2, which encodes the glycosylation domain, showed less inclusion in AD compared to control in the parietal cortex of females with an APOE ɛ3/ɛ3 genotype. Also, some of these APOER2 isoforms demonstrated changes in cell surface expression, APOE-mediated receptor processing, and synaptic number. These variations are likely critical in inducing synaptic alterations and may contribute to the neuronal dysfunction underlying AD pathogenesis.


Assuntos
Processamento Alternativo , Doença de Alzheimer , Proteínas Relacionadas a Receptor de LDL , Proteína Reelina , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Processamento Alternativo/genética , Isoformas de Proteínas/genética , Análise de Sequência de RNA , Feminino , Idoso , Encéfalo/metabolismo , Encéfalo/patologia , Apolipoproteínas E/genética , Masculino , Hipocampo/metabolismo , Hipocampo/patologia , Idoso de 80 Anos ou mais , Splicing de RNA/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
11.
Cells ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38994948

RESUMO

Excessive inflammatory reactions and oxidative stress are well-recognized molecular findings in autism and these processes can affect or be affected by the epigenetic landscape. Nonetheless, adequate therapeutics are unavailable, as patient-specific brain molecular markers for individualized therapies remain challenging. METHODS: We used iPSC-derived neurons and astrocytes of patients with autism vs. controls (5/group) to examine whether they replicate the postmortem brain expression/epigenetic alterations of autism. Additionally, DNA methylation of 10 postmortem brain samples (5/group) was analyzed for genes affected in PSC-derived cells. RESULTS: We found hyperexpression of TGFB1, TGFB2, IL6 and IFI16 and decreased expression of HAP1, SIRT1, NURR1, RELN, GPX1, EN2, SLC1A2 and SLC1A3 in the astrocytes of patients with autism, along with DNA hypomethylation of TGFB2, IL6, TNFA and EN2 gene promoters and a decrease in HAP1 promoter 5-hydroxymethylation in the astrocytes of patients with autism. In neurons, HAP1 and IL6 expression trended alike. While HAP1 promoter was hypermethylated in neurons, IFI16 and SLC1A3 promoters were hypomethylated and TGFB2 exhibited increased promoter 5-hydroxymethlation. We also found a reduction in neuronal arborization, spine size, growth rate, and migration, but increased astrocyte size and a reduced growth rate in autism. In postmortem brain samples, we found DNA hypomethylation of TGFB2 and IFI16 promoter regions, but DNA hypermethylation of HAP1 and SLC1A2 promoters in autism. CONCLUSION: Autism-associated expression/epigenetic alterations in iPSC-derived cells replicated those reported in the literature, making them appropriate surrogates to study disease pathogenesis or patient-specific therapeutics.


Assuntos
Astrócitos , Transtorno Autístico , Encéfalo , Metilação de DNA , Epigênese Genética , Células-Tronco Pluripotentes Induzidas , Neurônios , Humanos , Astrócitos/metabolismo , Astrócitos/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Transtorno Autístico/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Metilação de DNA/genética , Encéfalo/patologia , Encéfalo/metabolismo , Masculino , Feminino , Regiões Promotoras Genéticas/genética , Forma Celular , Criança , Regulação da Expressão Gênica , Proteína Reelina
12.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856043

RESUMO

The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.


Assuntos
Moléculas de Adesão Celular Neuronais , Dendritos , Córtex Entorrinal , Proteínas da Matriz Extracelular , Camundongos Knockout , Proteínas do Tecido Nervoso , Proteína Reelina , Serina Endopeptidases , Animais , Córtex Entorrinal/metabolismo , Dendritos/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Camundongos , Interneurônios/metabolismo , Neurônios/metabolismo , Sinalização do Cálcio
13.
Brain Struct Funct ; 229(7): 1617-1629, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38916724

RESUMO

In layer II of the entorhinal cortex, the principal neurons that project to the dentate gyrus and the CA3/2 hippocampal fields markedly express the large glycoprotein reelin (Re + ECLII neurons). In rodents, neurons located at the dorsal extreme of the EC, which border the rhinal fissure, express the highest levels, and the expression gradually decreases at levels successively further away from the rhinal fissure. Here, we test two predictions deducible from the hypothesis that reelin expression is strongly correlated with neuronal metabolic rate. Since the mitochondrial turnover rate serves as a proxy for energy expenditure, the mitophagy rate arguably also qualifies as such. Because messenger RNA of the canonical promitophagic BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) is known to be highly expressed in the EC, we predicted that Bnip3 would be upregulated in Re + ECLII neurons, and that the degree of upregulation would strongly correlate with the expression level of reelin in these neurons. We confirm both predictions, supporting that the energy requirement of Re + ECLII neurons is generally high and that there is a systematic increase in metabolic rate as one moves successively closer to the rhinal fissure. Intriguingly, the systematic variation in energy requirement of the neurons that manifest the observed reelin gradient appears to be consonant with the level of spatial and temporal detail by which they encode information about the external environment.


Assuntos
Moléculas de Adesão Celular Neuronais , Córtex Entorrinal , Proteínas da Matriz Extracelular , Proteínas de Membrana , Proteínas do Tecido Nervoso , Neurônios , Proteína Reelina , Serina Endopeptidases , Animais , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Proteínas da Matriz Extracelular/metabolismo , Neurônios/metabolismo , Córtex Entorrinal/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Camundongos , Ratos , RNA Mensageiro/metabolismo
14.
Biomolecules ; 14(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786001

RESUMO

During the first and second stages of postnatal development, neocortical neurons exhibit a wide range of spontaneous synchronous activity (SSA). Towards the end of the second postnatal week, the SSA is replaced by a more sparse and desynchronized firing pattern. The developmental desynchronization of neocortical spontaneous neuronal activity is thought to be intrinsically generated, since sensory deprivation from the periphery does not affect the time course of this transition. The extracellular protein reelin controls various aspects of neuronal development through multimodular signaling. However, so far it is unclear whether reelin contributes to the developmental desynchronization transition of neocortical neurons. The present study aims to investigate the role of reelin in postnatal cortical developmental desynchronization using a conditional reelin knockout (RelncKO) mouse model. Conditional reelin deficiency was induced during early postnatal development, and Ca2+ recordings were conducted from organotypic cultures (OTCs) of the somatosensory cortex. Our results show that both wild type (wt) and RelncKO exhibited an SSA pattern during the early postnatal week. However, at the end of the second postnatal week, wt OTCs underwent a transition to a desynchronized network activity pattern, while RelncKO activity remained synchronous. This changing activity pattern suggests that reelin is involved in regulating the developmental desynchronization of cortical neuronal network activity. Moreover, the developmental desynchronization impairment observed in RelncKO was rescued when RelncKO OTCs were co-cultured with wt OTCs. Finally, we show that the developmental transition to a desynchronized state at the end of the second postnatal week is not dependent on glutamatergic signaling. Instead, the transition is dependent on GABAAR and GABABR signaling. The results suggest that reelin controls developmental desynchronization through GABAAR and GABABR signaling.


Assuntos
Proteínas da Matriz Extracelular , Camundongos Knockout , Neocórtex , Proteínas do Tecido Nervoso , Proteína Reelina , Serina Endopeptidases , Animais , Camundongos , Neocórtex/metabolismo , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Neurônios/metabolismo , Rede Nervosa/metabolismo , Rede Nervosa/crescimento & desenvolvimento , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/crescimento & desenvolvimento
15.
Mol Genet Genomics ; 299(1): 55, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771357

RESUMO

Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.


Assuntos
Sequenciamento do Exoma , Estudos de Associação Genética , Transtornos do Neurodesenvolvimento , Linhagem , Proteína Reelina , Proteínas de Transporte Vesicular , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Moléculas de Adesão Celular Neuronais/genética , Exoma/genética , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Mutação , Transtornos do Neurodesenvolvimento/genética , Paquistão , Proteínas de Transporte Vesicular/genética , Proteína Reelina/genética
16.
Ageing Res Rev ; 98: 102339, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38754634

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder that affects the cerebral cortex and hippocampus, and is characterised by progressive cognitive decline and memory loss. A recent report of a patient carrying a novel gain-of-function variant of RELN (H3447R, termed RELN-COLBOS) who developed resilience against presenilin-linked autosomal-dominant AD (ADAD) has generated enormous interest. The RELN-COLBOS variant enhances interactions with the apolipoprotein E receptor 2 (ApoER2) and very-low-density lipoprotein receptor (VLDLR), which are associated with delayed AD onset and progression. These findings were validated in a transgenic mouse model. Reelin is involved in neurodevelopment, neurogenesis, and neuronal plasticity. The evidence accumulated thus far has demonstrated that the Reelin pathway links apolipoprotein E4 (ApoE4), amyloid-ß (Aß), and tubulin-associated unit (Tau), which are key proteins that have been implicated in AD pathogenesis. Reelin and key components of the Reelin pathway have been highlighted as potential therapeutic targets and biomarkers for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Apolipoproteína E4 , Moléculas de Adesão Celular Neuronais , Proteínas da Matriz Extracelular , Proteínas do Tecido Nervoso , Proteína Reelina , Serina Endopeptidases , Proteínas tau , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Humanos , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Animais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Camundongos
17.
Biol Sex Differ ; 15(1): 39, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715106

RESUMO

BACKGROUND: Early life adversity impairs hippocampal development and function across diverse species. While initial evidence indicated potential variations between males and females, further research is required to validate these observations and better understand the underlying mechanisms contributing to these sex differences. Furthermore, most of the preclinical work in rodents was performed in adult males, with only few studies examining sex differences during adolescence when such differences appear more pronounced. To address these concerns, we investigated the impact of limited bedding (LB), a mouse model of early adversity, on hippocampal development in prepubescent and adolescent male and female mice. METHODS: RNA sequencing, confocal microscopy, and electron microscopy were used to evaluate the impact of LB and sex on hippocampal development in prepubescent postnatal day 17 (P17) mice. Additional studies were conducted on adolescent mice aged P29-36, which included contextual fear conditioning, retrograde tracing, and ex vivo diffusion magnetic resonance imaging (dMRI). RESULTS: More severe deficits in axonal innervation and myelination were found in the perforant pathway of prepubescent and adolescent LB males compared to LB female littermates. These sex differences were due to a failure of reelin-positive neurons located in the lateral entorhinal cortex (LEC) to innervate the dorsal hippocampus via the perforant pathway in males, but not LB females, and were strongly correlated with deficits in contextual fear conditioning. CONCLUSIONS: LB impairs the capacity of reelin-positive cells located in the LEC to project and innervate the dorsal hippocampus in LB males but not female LB littermates. Given the critical role that these projections play in supporting normal hippocampal function, a failure to establish proper connectivity between the LEC and the dorsal hippocampus provides a compelling and novel mechanism to explain the more severe deficits in myelination and contextual freezing found in adolescent LB males.


Childhood adversity, such as severe deprivation and neglect, leads to structural changes in human brain development that are associated with learning deficits and behavioral difficulties. Some of the most consistent findings in individuals exposed to childhood adversity are reduced hippocampal volume and abnormal hippocampal function. This is important because the hippocampus is necessary for learning and memory, and it plays a crucial role in depression and anxiety. Although initial studies suggested more pronounced hippocampal deficits in men, additional research is needed to confirm these findings and to elucidate the mechanisms responsible for these sex differences. We found that male and female mice exposed to early impoverishment and deprivation exhibit similar structural changes to those observed in deprived children. Interestingly, adolescent male mice, but not females, display severe deficits in their ability to freeze when placed back in a box where they were previously shocked. The ability to associate "shock/danger" with a "box/place" is referred to as contextual fear conditioning and requires normal connections between the entorhinal cortex and the hippocampus. We found that these connections did not form properly in male mice exposed to impoverished conditions, but they were only minimally affected in females. These findings appear to explain why exposure to impoverished conditions impairs contextual fear conditioning in male mice but not in female mice. Additional work is needed to determine whether similar sex-specific changes in these connections are also observed in adolescents exposed to neglect and deprivation.


Assuntos
Hipocampo , Memória , Camundongos Endogâmicos C57BL , Via Perfurante , Proteína Reelina , Caracteres Sexuais , Animais , Masculino , Feminino , Hipocampo/metabolismo , Medo , Camundongos , Estresse Psicológico
18.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791562

RESUMO

We compared the effects of two different high-caloric diets administered to 4-week-old rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression. The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length of the astrocyte processes. These data highlight the significance of determining the mechanisms mediating the observed effects of these diets and imply that the cognitive impairments previously found might be related to both the neuroinflammation process and the reduction in PV, NPY, and RELN expression in the hippocampal formation.


Assuntos
Astrócitos , Quinase 5 Dependente de Ciclina , Hipocampo , Neurogênese , Proteína Reelina , Animais , Astrócitos/metabolismo , Ratos , Proteína Reelina/metabolismo , Masculino , Hipocampo/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Neurônios GABAérgicos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/genética , Ratos Wistar , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Parvalbuminas/metabolismo
19.
J Affect Disord ; 360: 326-335, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788856

RESUMO

BACKGROUND: Major depressive disorder (MDD) is notably underdiagnosed and undertreated due to its complex nature and subjective diagnostic methods. Biomarker identification would help provide a clearer understanding of MDD aetiology. Although machine learning (ML) has been implemented in previous studies to study the alteration of microRNA (miRNA) levels in MDD cases, clinical translation has not been feasible due to the lack of interpretability (i.e. too many miRNAs for consideration) and stability. METHODS: This study applied logistic regression (LR) model to the blood miRNA expression profile to differentiate patients with MDD (n = 60) from healthy controls (HCs, n = 60). Embedded (L1-regularised logistic regression) feature selector was utilised to extract clinically relevant miRNAs, and optimized for clinical application. RESULTS: Patients with MDD could be differentiated from HCs with the area under the receiver operating characteristic curve (AUC) of 0.81 on testing data when all available miRNAs were considered (which served as a benchmark). Our LR model selected miRNAs up to 5 (known as LR-5 model) emerged as the best model because it achieved a moderate classification ability (AUC = 0.75), relatively high interpretability (feature number = 5) and stability (ϕ̂Z=0.55) compared to the benchmark. The top-ranking miRNAs identified by our model have demonstrated associations with MDD pathways involving cytokine signalling in the immune system, the reelin signalling pathway, programmed cell death and cellular responses to stress. CONCLUSION: The LR-5 model, which is optimised based on ML design factors, may lead to a robust and clinically usable MDD diagnostic tool.


Assuntos
Biomarcadores , Transtorno Depressivo Maior , Aprendizado de Máquina , MicroRNAs , Proteína Reelina , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/classificação , MicroRNAs/sangue , MicroRNAs/genética , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Modelos Logísticos , Serina Endopeptidases/genética , Serina Endopeptidases/sangue , Moléculas de Adesão Celular Neuronais/genética , Curva ROC , Estudos de Casos e Controles , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/sangue
20.
Artigo em Russo | MEDLINE | ID: mdl-38676676

RESUMO

This review highlights literature data on potential genetic markers that potentially influence the development of postoperative cognitive dysfunction, such as TOMM40, APOE, TREM2, METTL3, PGC1a, HMGB1 and ERMN. The main pathogenetic mechanisms triggered by these genes and leading to the development of cognitive impairment after anesthesia are described. The paper systematizes previously published works that provide evidence of the impact of specific genetic variants on the development of postoperative cognitive dysfunction.


Assuntos
Apolipoproteínas E , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Complicações Cognitivas Pós-Operatórias , Receptores Imunológicos , Humanos , Complicações Cognitivas Pós-Operatórias/genética , Apolipoproteínas E/genética , Metiltransferases/genética , Glicoproteínas de Membrana/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas de Membrana Transportadoras/genética , Marcadores Genéticos , Proteína Reelina , Disfunção Cognitiva/genética , Disfunção Cognitiva/etiologia , Predisposição Genética para Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA