Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Biol Macromol ; 270(Pt 2): 132519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768919

RESUMO

The Lrp/AsnC family of transcriptional regulators is commonly found in prokaryotes and is associated with the regulation of amino acid metabolism. However, it remains unclear how the L-cysteine-responsive Lrp/AsnC family regulator perceives and responds to L-cysteine. Here, we try to elucidate the molecular mechanism of the L-cysteine-responsive transcriptional regulator. Through 5'RACE and EMSA, we discovered a 15 bp incompletely complementary pair palindromic sequence essential for DecR binding, which differed slightly from the binding sequence of other Lrp/AsnC transcription regulators. Using alanine scanning, we identified the L-cysteine binding site on DecR and found that different Lrp/AsnC regulators adjust their binding pocket's side-chain residues to accommodate their specific effector. MD simulations were then conducted to explore how ligand binding influences the allosteric behavior of the protein. PCA and in silico docking revealed that ligand binding induced perturbations in the linker region, triggering conformational alterations and leading to the relocalization of the DNA-binding domains, enabling the embedding of the DNA-binding region of DecR into the DNA molecule, thereby enhancing DNA-binding affinity. Our findings can broaden the understanding of the recognition and regulatory mechanisms of the Lrp/AsnC-type transcription factors, providing a theoretical basis for further investigating the molecular mechanisms of other transcription factors.


Assuntos
Proteínas de Bactérias , Cisteína , Ligação Proteica , Cisteína/química , Cisteína/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Proteína Reguladora de Resposta a Leucina/metabolismo , Proteína Reguladora de Resposta a Leucina/química , Proteína Reguladora de Resposta a Leucina/genética
2.
Microbiologyopen ; 12(3): e1356, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379425

RESUMO

The leucine-responsive regulatory protein (Lrp) family of transcriptional regulators is widespread among prokaryotes and especially well-represented in archaea. It harbors members with diverse functional mechanisms and physiological roles, often linked to the regulation of amino acid metabolism. BarR is an Lrp-type regulator that is conserved in thermoacidophilic Thermoprotei belonging to the order Sulfolobales and is responsive to the non-proteinogenic amino acid ß-alanine. In this work, we unravel molecular mechanisms of the Acidianus hospitalis BarR homolog, Ah-BarR. Using a heterologous reporter gene system in Escherichia coli, we demonstrate that Ah-BarR is a dual-function transcription regulator that is capable of repressing transcription of its own gene and activating transcription of an aminotransferase gene, which is divergently transcribed from a common intergenic region. Atomic force microscopy (AFM) visualization reveals a conformation in which the intergenic region appears wrapped around an octameric Ah-BarR protein. ß-alanine causes small conformational changes without affecting the oligomeric state of the protein, resulting in a relief of regulation while the regulator remains bound to the DNA. This regulatory and ligand response is different from the orthologous regulators in Sulfolobus acidocaldarius and Sulfurisphaera tokodaii, which is possibly explained by a distinct binding site organization and/or by the presence of an additional C-terminal tail in Ah-BarR. By performing site-directed mutagenesis, this tail is shown to be involved in ligand-binding response.


Assuntos
Acidianus , Proteínas de Escherichia coli , Fatores de Transcrição/metabolismo , Acidianus/genética , Acidianus/metabolismo , Alanina/metabolismo , Ligantes , Proteína Reguladora de Resposta a Leucina/genética , Proteína Reguladora de Resposta a Leucina/metabolismo , beta-Alanina , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , DNA Intergênico , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Transcrição Gênica
3.
mBio ; 14(2): e0269022, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786566

RESUMO

Feast-famine response proteins are a widely conserved class of global regulators in prokaryotes, the most highly studied of which is the Escherichia coli leucine-responsive regulatory protein (Lrp). Lrp senses the environmental nutrition status and subsequently regulates up to one-third of the genes in E. coli, either directly or indirectly. Lrp exists predominantly as octamers and hexadecamers (16mers), where leucine is believed to shift the equilibrium toward the octameric state. In this study, we analyzed the effects of three oligomerization state mutants of Lrp in terms of their ability to bind to DNA and regulate gene expression in response to exogenous leucine. We find that oligomerization beyond dimers is required for Lrp's regulatory activity and that, contrary to previous speculation, exogenous leucine modulates Lrp activity at its target promoters exclusively by inhibiting Lrp binding to DNA. We also show evidence that Lrp binding bridges DNA over length scales of multiple kilobases, revealing a new range of mechanisms for Lrp-mediated transcriptional regulation. IMPORTANCE Leucine-responsive regulatory protein (Lrp) is one of the most impactful regulators in E. coli and other bacteria. Lrp senses nutrient conditions and responds by controlling strategies for virulence, cellular motility, and nutrient acquisition. Despite its importance and being evolutionarily highly conserved across bacteria and archaea, several mysteries remain regarding Lrp, including how it actually responds to leucine to change its regulation of targets. Previous studies have led to the hypothesis that Lrp switches between two states, an octamer (8 Lrp molecules together) and a hexadecamer (16 Lrp molecules together), upon exposure to leucine; these are referred to as different oligomerization states. Here, we show that contrary to previous expectations, it is Lrp's propensity to bind DNA, rather than its oligomerization state, that is directly affected by leucine in the cell's environment. Our new understanding of Lrp activity will aid in identifying and disrupting pathways used by bacteria to cause disease.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteína Reguladora de Resposta a Leucina/genética , Proteína Reguladora de Resposta a Leucina/metabolismo , Escherichia coli/metabolismo , Fatores de Transcrição/metabolismo , Leucina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , DNA/metabolismo , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
4.
J Biotechnol ; 351: 99-108, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500701

RESUMO

Over expression of recombinant proteins triggers a cellular stress response (CSR) that down-regulates numerous genes that have a key role in sustaining expression. Instead of trying to individually up-regulate these genes we hypothesized that a superior strategy would be to modulate the expression of global regulators that control the expression of many such downstream genes. Transcriptomic profiling of post induction cultures expressing recombinant asparaginase in Escherichia coli showed the down-regulation of several critical genes many of which were under the control of the global regulator lrp which is known to have a significant impact on both amino acid metabolism and protein translation. Therefore, to ameliorate the deleterious effects of the CSR we decided to supplement the activity of lrp using plasmid-based co-expression. We observed that the test culture containing an additional plasmid expressing lrp under the arabinose promoter gave a 50% higher yield of recombinant L-Asparaginase after 32 h in batch culture compared to the control, which had only one plasmid expressing the recombinant protein. This approach helped us design a better performing strain, which could sustain expression rates for a significantly longer time period. This work illustrates that modifying the expression of regulatory genes could serve as a better strategy to prevent the reprogramming of the cellular machinery which is the hallmark of the CSR and help in the design better hosts for recombinant protein expression.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Asparaginase/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Leucina/metabolismo , Proteína Reguladora de Resposta a Leucina/genética , Proteína Reguladora de Resposta a Leucina/metabolismo , Proteínas Recombinantes/metabolismo
5.
J Bacteriol ; 203(18): e0016221, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34228496

RESUMO

Acetic acid bacteria grow while producing acetic acid, resulting in acidification of the culture. Limited reports elucidate the effect of changes in intracellular pH on transcriptional factors. In the present study, the intracellular pH of Komagataeibacter europaeus was monitored with a pH-sensitive green fluorescent protein, showing that the intracellular pH decreased from 6.3 to 4.7 accompanied by acetic acid production during cell growth. The leucine-responsive regulatory protein of K. europaeus (KeLrp) was used as a model to examine pH-dependent effects, and its properties were compared with those of the Escherichia coli ortholog (EcLrp) at different pH levels. The DNA-binding activities of EcLrp and KeLrp with the target DNA (Ec-ilvI and Ke-ilvI) were examined by gel mobility shift assays under various pH conditions. EcLrp showed the highest affinity with the target at pH 8.0 (Kd [dissociation constant], 0.7 µM), decreasing to a minimum of 3.4 µM at pH 4.0. Conversely, KeLrp did not show significant differences in binding affinity between pH 4 and 7 (Kd, 1.0 to 1.5 µM), and the highest affinity was at pH 5.0 (Kd, 1.0 µM). Circular dichroism spectroscopy revealed that the α-helical content of KeLrp was the highest at pH 5.0 (49%) and was almost unchanged while being maintained at >45% over a range of pH levels examined, while that of EcLrp decreased from its maximum (49% at pH 7.0) to its minimum (36% at pH 4.0). These data indicate that KeLrp is stable and functions over a wide range of intracellular pH levels. IMPORTANCE Lrp is a highly conserved transcriptional regulator found in bacteria and archaea and regulates transcriptions of various genes. The intracellular pH of acetic acid bacteria (AAB) changes accompanied by acetic acid production during cell growth. The Lrp of AAB K. europaeus (KeLrp) was structurally stable over a wide range of pH and maintained DNA-binding activity even at low pH compared with Lrp from E. coli living in a neutral environment. An in vitro experiment showed DNA-binding activity of KeLrp to the target varied with changes in pH. In AAB, change of the intracellular pH during a cell growth would be an important trigger in controlling the activity of Lrp in vivo.


Assuntos
Ácido Acético/metabolismo , Acetobacteraceae/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Reguladora de Resposta a Leucina/genética , Proteína Reguladora de Resposta a Leucina/metabolismo , Acetobacteraceae/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Proteína Reguladora de Resposta a Leucina/química , Ligação Proteica
6.
Crit Rev Biochem Mol Biol ; 56(4): 373-400, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34151666

RESUMO

Since the discovery of the Escherichia coli leucine-responsive regulatory protein (Lrp) almost 50 years ago, hundreds of Lrp homologs have been discovered, occurring in 45% of sequenced bacteria and almost all sequenced archaea. Lrp-like proteins are often referred to as the feast/famine regulatory proteins (FFRPs), reflecting their common regulatory roles. Acting as either global or local transcriptional regulators, FFRPs detect the environmental nutritional status by sensing small effector molecules (usually amino acids) and regulate the expression of genes involved in metabolism, virulence, motility, nutrient transport, stress tolerance, and antibiotic resistance to implement appropriate behaviors for the specific ecological niche of each organism. Despite FFRPs' complexity, a significant role in gene regulation, and prevalence throughout prokaryotes, the last comprehensive review on this family of proteins was published about a decade ago. In this review, we integrate recent notable findings regarding E. coli Lrp and other FFRPs across bacteria and archaea with previous observations to synthesize a more complete view on the mechanistic details and biological roles of this ancient class of transcription factors.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteína Reguladora de Resposta a Leucina/metabolismo , Archaea/genética , Proteínas Arqueais/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteína Reguladora de Resposta a Leucina/genética
7.
ACS Synth Biol ; 10(3): 589-599, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33593066

RESUMO

Molecular cloning is the core of synthetic biology, as it comprises the assembly of DNA and its expression in target hosts. At present, however, cloning is most often a manual, time-consuming, and repetitive process that highly benefits from automation. The automation of a complete rational cloning procedure, i.e., from DNA creation to expression in the target host, involves the integration of different operations and machines. Examples of such workflows are sparse, especially when the design is rational (i.e., the DNA sequence design is fixed and not based on randomized libraries) and the target host is less genetically tractable (e.g., not sensitive to heat-shock transformation). In this study, an automated workflow for the rational construction of plasmids and their subsequent conjugative transfer into the biotechnological platform organism Corynebacterium glutamicum is presented. The whole workflow is accompanied by a custom-made software tool. As an application example, a rationally designed library of transcription factor-biosensors based on the regulator Lrp was constructed and characterized. A sensor with an improved dynamic range was obtained, and insights from the screening provided evidence for a dual regulator function of C. glutamicum Lrp.


Assuntos
Corynebacterium glutamicum/metabolismo , Biologia Sintética/métodos , Automação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais/métodos , Corynebacterium glutamicum/genética , DNA/química , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca Gênica , Engenharia Genética , Proteína Reguladora de Resposta a Leucina/genética , Proteína Reguladora de Resposta a Leucina/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
ACS Synth Biol ; 9(9): 2378-2389, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32813974

RESUMO

4-Hydroxyisoleucine (4-HIL), a promising drug for treating diabetes, can be synthesized from the self-produced l-isoleucine (Ile) by expressing the Ile dioxygenase gene ido in Corynebacterium glutamicum. However, the requirement of three substrates, Ile, α-ketoglutarate (α-KG), and O2, makes such de novo biosynthesis difficult to be fulfilled effectively under static engineering conditions. In this study, dynamic control of 4-HIL biosynthesis by the Ile biosensor Lrp-PbrnFE was researched. The native PbrnFE promoter of natural Ile biosensor was still weak even under Ile induction. Through tetA dual genetic selection, several modified stronger PbrnFEN promoters were obtained from the synthetic library of the Ile biosensor. Dynamic regulation of ido expression by modified Ile biosensors increased the 4-HIL titer from 24.7 mM to 28.9-74.4 mM. The best strain ST04 produced even a little more 4-HIL than the static strain SN02 overexpressing ido by the strong PtacM promoter (69.7 mM). Further dynamic modulation of α-KG supply in ST04 by expressing different PbrnFEN-controlled odhI decreased the 4-HIL production but increased the l-glutamate or Ile accumulation. However, synergistic modulation of α-KG supply and O2 supply in ST04 by different combinations of PbrnFEN-odhI and PbrnFEN-vgb improved the 4-HIL production significantly, and the highest titer (135.3 mM) was obtained in ST17 strain regulating all the three genes by PbrnFE7. This titer was higher than those of all the static metabolic engineered C. glutamicum strains ever constructed. Therefore, dynamic regulation by modified Ile biosensor is a predominant strategy for enhancing 4-HIL de novo biosynthesis in C. glutamicum.


Assuntos
Técnicas Biossensoriais/métodos , Corynebacterium glutamicum/genética , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Proteínas de Bactérias/genética , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Isoleucina/biossíntese , Isoleucina/química , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/metabolismo , Proteína Reguladora de Resposta a Leucina/genética , Engenharia Metabólica , Mutagênese , Regiões Promotoras Genéticas
9.
mBio ; 11(4)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723914

RESUMO

A multifunctional autoprocessing repeats-in-toxin (MARTX) toxin plays an essential role in the virulence of many pathogens, including a fulminating human pathogen Vibrio vulnificus H-NS and HlyU repress and derepress expression of the MARTX toxin gene rtxA in V. vulnificus, respectively. However, little is known about other regulatory proteins and environmental signals involved in rtxA regulation. In this study, we found that a leucine-responsive regulatory protein (Lrp) activates rtxA by binding directly and specifically to the rtxA promoter, P rtxA Phased hypersensitivity resulting from DNase I cleavage of the P rtxA regulatory region suggests that Lrp probably induces DNA bending in P rtxA Lrp activates P rtxA independently of H-NS and HlyU, and leucine inhibits Lrp binding to P rtxA and reduces the Lrp-mediated activation. Furthermore, a cyclic AMP receptor protein (CRP) represses P rtxA , and exogenous glucose relieves the CRP-mediated repression. Biochemical and mutational analyses demonstrated that CRP binds directly and specifically to the upstream region of P rtxA , which presumably alters the DNA conformation in P rtxA and thus represses rtxA Moreover, CRP represses expression of lrp and hlyU by binding directly to their upstream regions, forming coherent feed-forward loops with Lrp and HlyU. In conclusion, expression of rtxA is controlled by a regulatory network comprising CRP, Lrp, H-NS, and HlyU in response to changes in host environmental signals such as leucine and glucose. This collaborative regulation enables the elaborate expression of rtxA, thereby enhancing the fitness and pathogenesis of V. vulnificus during the course of infection.IMPORTANCE A MARTX toxin, RtxA, is an essential virulence factor of many pathogens, including Vibrio species. H-NS and HlyU repress and derepress, respectively, rtxA expression of a life-threatening pathogen, Vibrio vulnificus We found that Lrp directly activates rtxA independently of H-NS and HlyU, and leucine inhibits the Lrp-mediated activation of rtxA Furthermore, we demonstrated that CRP represses rtxA but derepresses in the presence of exogenous glucose. CRP represses rtxA not only directly by binding to upstream of rtxA but also indirectly by repressing lrp and hlyU This is the first report of a regulatory network comprising CRP, Lrp, H-NS, and HlyU, which coordinates the rtxA expression in response to environmental signals such as leucine and glucose during infection. This elaborate regulatory network will enhance the fitness of V. vulnificus and contribute to its successful infection within the host.


Assuntos
Toxinas Bacterianas/genética , Proteína Receptora de AMP Cíclico/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Vibrio vulnificus/genética , Proteína Receptora de AMP Cíclico/metabolismo , Meio Ambiente , Glucose/farmacologia , Humanos , Proteína Reguladora de Resposta a Leucina/genética , Proteína Reguladora de Resposta a Leucina/metabolismo , Regiões Promotoras Genéticas , Vibrioses/microbiologia , Vibrio vulnificus/efeitos dos fármacos , Vibrio vulnificus/patogenicidade , Virulência , Fatores de Virulência
10.
Appl Microbiol Biotechnol ; 104(6): 2575-2587, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31993701

RESUMO

Leucine-responsive regulatory proteins (Lrps) are a family of transcription factors involved in diverse biological processes in bacteria. So far, molecular mechanism of Lrps for regulating antibiotics biosynthesis in actinomycetes remains largely unexplored. This study, for the first time in Streptomyces lincolnensis, identified an Lrp (named as SLCG_Lrp) associated with lincomycin production. SLCG_Lrp was validated to be a positive regulator for lincomycin biosynthesis by directly stimulating transcription of two structural genes (lmbA and lmbV), three resistance genes (lmrA, lmrB and lmrC), and a regulatory gene (lmbU) within the lincomycin biosynthetic gene (lin) cluster. SLCG_Lrp was transcriptionally self-inhibited and triggered the expression of its adjacent gene SLCG_3127 encoding a LysE superfamily protein. Further, the binding site of SLCG_Lrp in the intergenic region of SLCG_3127 and SLCG_Lrp was precisely identified. Inactivation of SLCG_3127 in S. lincolnensis resulted in yield improvement of lincomycin, which was caused by intracellular accumulation of proline and cysteine. Arginine and phenylalanine were identified as specific regulatory ligands, respectively, to reduce and promote DNA-binding affinity of SLCG_Lrp. We further found that SLCG_Lrp was directly repressed by SLCG_2919, the first identified transcription factor outside lin cluster for lincomycin production. Therefore, our findings revealed SLCG_Lrp-mediated transcriptional regulation of lincomycin biosynthesis. This study extends the understanding of molecular mechanisms underlying lincomycin biosynthetic regulation.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteína Reguladora de Resposta a Leucina/genética , Lincomicina/biossíntese , Streptomyces/genética , Transcrição Gênica , Vias Biossintéticas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Família Multigênica , Fatores de Transcrição/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-31681632

RESUMO

Clostridium difficile is a Gram-positive, spore-forming bacterium, and major cause of nosocomial diarrhea. Related studies have identified numerous factors that influence virulence traits such as the production of the two primary toxins, toxin A (TcdA) and toxin B (TcdB), as well as sporulation, motility, and biofilm formation. However, multiple putative transcriptional regulators are reportedly encoded in the genome, and additional factors are likely involved in virulence regulation. Although the leucine-responsive regulatory protein (Lrp) has been studied extensively in Gram-negative bacteria, little is known about its function in Gram-positive bacteria, although homologs have been identified in the genome. This study revealed that disruption of the lone lrp homolog in C. difficile decelerated growth under nutrient-limiting conditions, increased TcdA and TcdB production. Lrp was also found to negatively regulate sporulation while positively regulate swimming motility in strain R20291, but not in strain 630. The C. difficile Lrp appeared to function through transcriptional repression or activation. In addition, the lrp mutant was relatively virulent in a mouse model of infection. The results of this study collectively demonstrated that Lrp has broad regulatory function in C. difficile toxin expression, sporulation, motility, and pathogenesis.


Assuntos
Toxinas Bacterianas/genética , Clostridioides difficile/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteína Reguladora de Resposta a Leucina/metabolismo , Esporos Bacterianos , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Biofilmes , Linhagem Celular , Chlorocebus aethiops , Infecções por Clostridium/microbiologia , Modelos Animais de Doenças , Enterotoxinas/genética , Enterotoxinas/metabolismo , Humanos , Proteína Reguladora de Resposta a Leucina/química , Proteína Reguladora de Resposta a Leucina/genética , Masculino , Camundongos , Mutação , Transcrição Gênica , Células Vero
12.
mBio ; 10(3)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138749

RESUMO

Erwinia amylovora causes the devastating fire blight disease of apple and pear trees. During systemic infection of host trees, pathogen cells must rapidly respond to changes in their environment as they move through different host tissues that present distinct challenges and sources of nutrition. Growing evidence indicates that small RNAs (sRNAs) play an important role in disease progression as posttranscriptional regulators. The sRNA ArcZ positively regulates the motility phenotype and transcription of flagellar genes in E. amylovora Ea1189 yet is a direct repressor of translation of the flagellar master regulator, FlhD. We utilized transposon mutagenesis to conduct a forward genetic screen and identified suppressor mutations that increase motility in the Ea1189ΔarcZ mutant background. This enabled us to determine that the mechanism of transcriptional activation of the flhDC mRNA by ArcZ is mediated by the leucine-responsive regulatory protein, Lrp. We show that Lrp contributes to expression of virulence and several virulence-associated traits, including production of the exopolysaccharide amylovoran, levansucrase activity, and biofilm formation. We further show that Lrp is regulated posttranscriptionally by ArcZ through destabilization of lrp mRNA. Thus, ArcZ regulation of FlhDC directly and indirectly through Lrp forms an incoherent feed-forward loop that regulates levansucrase activity and motility as outputs. This work identifies Lrp as a novel participant in virulence regulation in E. amylovora and places it in the context of a virulence-associated regulatory network.IMPORTANCE Fire blight disease continues to plague the commercial production of apples and pears despite more than a century of research into disease epidemiology and disease control. The causative agent of fire blight, Erwinia amylovora coordinates turning on or off specific virulence-associated traits at the appropriate time during disease development. The development of novel control strategies requires an in-depth understanding of E. amylovora regulatory mechanisms, including regulatory control of virulence-associated traits. This study investigates how the small RNA ArcZ regulates motility at the transcriptional level and identifies the transcription factor Lrp as a novel participant in the regulation of several virulence-associated traits. We report that ArcZ and Lrp together affect key virulence-associated traits through integration of transcriptional and posttranscriptional mechanisms. Further understanding of the topology of virulence regulatory networks can uncover weak points that can subsequently be exploited to control E. amylovora.


Assuntos
Erwinia amylovora/genética , Erwinia amylovora/patogenicidade , Regulação Bacteriana da Expressão Gênica , Proteína Reguladora de Resposta a Leucina/genética , Pequeno RNA não Traduzido/genética , Fatores de Virulência/genética , Erwinia amylovora/metabolismo , Virulência/genética
13.
Microbiology (Reading) ; 165(6): 683-696, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31063124

RESUMO

Regulators encoded by the beta-glucoside (bgl) operon of Escherichia coli are known to influence the expression of downstream target genes that confer a fitness advantage in stationary phase. We have examined the role of bglG in the regulation of ridA that encodes an enamine/imine deaminase essential for the elimination of reactive intermediates generated during the catabolism of amino acids such as serine. We report here that ridA is positively regulated by leucine responsive regulatory protein (Lrp) and leucine antagonizes the activation by Lrp. We also show that Lrp itself is under the indirect regulation of BglG, which brings about the overexpression of ridA in Bgl+ strains during stationary phase. Loss of ridA function in a Bgl+ background results in a significant growth retardation in serine-containing media compared to that in a Bgl- background. We propose that overexpression of ridA in Bgl+ background during stationary phase is physiologically relevant to eliminate toxic metabolites generated by the catabolism of serine-containing peptides as a result of elevated levels of their uptake.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Proteína Reguladora de Resposta a Leucina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Meios de Cultura/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Leucina/farmacologia , Proteína Reguladora de Resposta a Leucina/antagonistas & inibidores , Proteína Reguladora de Resposta a Leucina/genética , Mutação , Óperon/genética , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Serina/análise , Serina/metabolismo
14.
Microb Cell Fact ; 18(1): 38, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782164

RESUMO

BACKGROUND: Bitespiramycin (BT) is produced by recombinant spiramycin (SP) producing strain Streptomyces spiramyceticus harboring a heterologous 4″-O-isovaleryltransferase gene (ist). Exogenous L-Leucine (L-Leu) could improve the production of BT. The orf2 gene found from the genomic sequence of S. spiramyceticus encodes a leucine-responsive regulatory protein (Lrp) family regulator named as SSP_Lrp. The functions of SSP_Lrp and L-Leu involved in the biosynthesis of spiramycin (SP) and BT were investigated in S. spiramyceticus. RESULTS: SSP_Lrp was a global regulator directly affecting the expression of three positive regulatory genes, bsm23, bsm42 and acyB2, in SP or BT biosynthesis. Inactivation of SSP_Lrp gene in S. spiramyceticus 1941 caused minor increase of SP production. However, SP production of the ΔSSP_Lrp-SP strain containing an SSP_Lrp deficient of putative L-Leu binding domain was higher than that of S. spiramyceticus 1941 (476.2 ± 3.1 µg/L versus 313.3 ± 25.2 µg/L, respectively), especially SP III increased remarkably. The yield of BT in ΔSSP_Lrp-BT strain was more than twice than that in 1941-BT. The fact that intracellular concentrations of branched-chain amino acids (BCAAs) decreased markedly in the ΔSSP_Lrp-SP demonstrated increasing catabolism of BCAAs provided more precursors for SP biosynthesis. Comparative analysis of transcriptome profiles of the ΔSSP_Lrp-SP and S. spiramyceticus 1941 found 12 genes with obvious differences in expression, including 6 up-regulated genes and 6 down-regulated genes. The up-regulated genes are related to PKS gene for SP biosynthesis, isoprenoid biosynthesis, a Sigma24 family factor, the metabolism of aspartic acid, pyruvate and acyl-CoA; and the down-regulated genes are associated with ribosomal proteins, an AcrR family regulator, and biosynthesis of terpenoid, glutamate and glutamine. CONCLUSION: SSP_Lrp in S. spiramyceticus was a negative regulator involved in the SP and BT biosynthesis. The deletion of SSP_Lrp putative L-Leu binding domain was advantageous for production of BT and SP, especially their III components.


Assuntos
Proteína Reguladora de Resposta a Leucina/genética , Espiramicina/análogos & derivados , Espiramicina/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Engenharia Genética , Leucina/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
15.
Metab Eng ; 45: 67-74, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29203222

RESUMO

Methane, the main component of natural gas, can be used to produce methanol which can be further converted to other valuable products. There is increasing interest in using biological systems for the production of fuels and chemicals from methanol, termed methylotrophy. In this work, we have examined methanol assimilation metabolism in a synthetic methylotrophic E. coli strain. Specifically, we applied 13C-tracers and evaluated 25 different co-substrates for methanol assimilation, including amino acids, sugars and organic acids. In particular, co-utilization of threonine significantly enhanced methylotrophy. Through our investigations, we proposed specific metabolic pathways that, when activated, correlated with increased methanol assimilation. These pathways are normally repressed by the leucine-responsive regulatory protein (lrp), a global regulator of metabolism associated with the feast-or-famine response in E. coli. By deleting lrp, we were able to further enhance the methylotrophic ability of our synthetic strain, as demonstrated through increased incorporation of 13C carbon from 13C-methanol into biomass.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Proteína Reguladora de Resposta a Leucina/genética , Metanol/metabolismo , Escherichia coli/genética
16.
J Biosci Bioeng ; 125(1): 67-75, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28867618

RESUMO

The leucine responsive regulatory protein (Lrp) is a global transcription factor that regulates the expression of genes involved in amino acid metabolism. To identify metabolic pathways and related genes under the control of Lrp in the acetic acid bacterium Komagataeibacter europaeus, the Kelrp null mutant (KGMA7110), which requires supplementation of all 20 amino acids for normal growth, was cultivated in minimal media containing or lacking particular amino acids. The results confirmed that KGMA7110 was auxotrophic for methionine and its catabolites S-adenosylmethionine (SAM) and spermidine (SPD). Quantitative reverse-transcription PCR analysis revealed lower metK (SAM synthetase) and mdtI (SPD efflux pump) expression in KGMA7110 than in wild-type KGMA0119. By contrast, these genes were significantly up-regulated in the Kelrp mutant lacking the putative C-terminal ligand-sensing domain (KGMA7203), indicating abnormal regulation of target genes by the KeLrp variant in KGMA7203. KGMA7110 (0.69±0.27 µM) and KGMA7203 (4.90±0.61 µM) excreted lower and higher quantities of SPD, respectively, than KGMA0119 (2.28±0.26 µM). This was attributed to imbalanced carbon flow caused by Kelrp disruption that respectively attenuated and stimulated metK and mdtI expression. These findings indicate that KeLrp plays a key role in SAM biosynthesis and intracellular polyamine homeostasis in K. europaeus.


Assuntos
Ácido Acético/metabolismo , Gluconacetobacter/metabolismo , Homeostase , Proteína Reguladora de Resposta a Leucina/metabolismo , Metionina/metabolismo , Poliaminas/metabolismo , Deleção de Genes , Gluconacetobacter/genética , Proteína Reguladora de Resposta a Leucina/deficiência , Proteína Reguladora de Resposta a Leucina/genética , Metionina Adenosiltransferase/metabolismo , S-Adenosilmetionina/metabolismo , Espermidina/metabolismo
17.
J Biomed Sci ; 24(1): 54, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800764

RESUMO

BACKGROUND: An attenuated mutant (designated NY303) of Vibrio vulnificus, which causes serious wound infection and septicemia in humans, was isolated fortuitously from a clinical strain YJ016. This mutant was defective in cytotoxicity, migration on soft agar and virulence in the mouse. The purpose of this study was to map the mutation in this attenuated mutant and further explore how the gene thus identified is involved in virulence. METHODS: The whole genome sequence of mutant NY303 determined by next-generation sequencing was compared with that of strain YJ016 to map the mutations. By isolating and characterizing the specific gene-knockout mutants, the gene associated with the phenotype of mutant NY303 was identified. This gene encodes a global regulator, Lrp. A mutant, YH01, deficient in Lrp was isolated and examined in vitro, in vivo and ex vivo to find the affected virulence mechanisms. The target genes of Lrp were further identified by comparing the transcriptomes, which were determined by RNA-seq, of strain YJ016 and mutant YH01. The promoters bound by Lrp were identified by genome footprinting-sequencing, and those related with virulence were further examined by electrophoretic mobility shift assay. RESULTS: A mutation in lrp was shown to be associated with the reduced cytotoxicity, chemotaxis and virulence of mutant NY303. Mutant YH01 exhibited a phenotype resembling that of mutant NY303, and was defective in colonization in the mouse and growth in mouse serum, but not the antiphagocytosis ability. 596 and 95 genes were down- and up-regulated, respectively, in mutant YH01. Many of the genes involved in secretion of the MARTX cytotoxin, chemotaxis and iron-acquisition were down-regulated in mutant YH01. The lrp gene, which was shown to be negatively autoregulated, and 7 down-regulated virulence-associated genes were bound by Lrp in their promoters. A 14-bp consensus sequence, mkCrTTkwAyTsTG, putatively recognized by Lrp was identified in the promoters of these genes. CONCLUSIONS: Lrp is a global regulator involved in regulation of cytotoxicity, chemotaxis and iron-acquisition in V. vulnificus. Down-regulation of many of the genes associated with these properties may be responsible, at least partly, for loss of virulence in mutant NY303.


Assuntos
Proteínas de Bactérias/genética , Regulação para Baixo , Proteína Reguladora de Resposta a Leucina/genética , Mutação , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidade , Virulência/genética , Animais , Proteínas de Bactérias/metabolismo , Proteína Reguladora de Resposta a Leucina/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Doenças dos Roedores/microbiologia , Vibrioses/microbiologia , Vibrio vulnificus/fisiologia
18.
Appl Microbiol Biotechnol ; 101(14): 5773-5783, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28601893

RESUMO

Lrp/AsnC family regulators have been found in many bacteria as crucial regulators controlling diverse cellular processes. By genomic alignment, we found that SCO3361, an Lrp/AsnC family protein from Streptomyces coelicolor, shared the highest similarity to the SACE_Lrp from Saccharopolyspora erythraea. Deletion of SCO3361 led to dramatic reduction in actinorhodin (Act) production and delay in aerial mycelium formation and sporulation on solid media. Dissection of the mechanism underlying the function of SCO3361 in Act production revealed that it altered the transcription of the cluster-situated regulator gene actII-ORF4 by directly binding to its promoter. SCO3361 was an auto-regulator and simultaneously activated the transcription of its adjacent divergently transcribed gene SCO3362. SCO3361 affected aerial hyphae formation and sporulation of S. coelicolor by activating the expression of amfC, whiB, and ssgB. Phenylalanine and cysteine were identified as the effector molecules of SCO3361, with phenylalanine reducing the binding affinity, whereas cysteine increasing it. Moreover, interactional regulation between SCO3361 and SACE_Lrp was discovered for binding to each other's target gene promoter in this work. Our findings indicate that SCO3361 functions as a pleiotropic regulator controlling secondary metabolism and morphological development in S. coelicolor.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteína Reguladora de Resposta a Leucina/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/metabolismo , Antraquinonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte , Cisteína/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Proteína Reguladora de Resposta a Leucina/metabolismo , Família Multigênica , Fenilalanina/metabolismo , Regiões Promotoras Genéticas , Metabolismo Secundário , Fatores de Transcrição/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-28503491

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are pathogens of significant public health concern. Several studies have confirmed that cattle are the main reservoir of STEC in Argentina and other countries. Although Shiga toxins represent the primary virulence factors of STEC, the adherence and colonization of the gut are also important in the pathogenesis of the bacteria. The aim of this study was to analyze and to compare the presence of putative virulence factors codified in plasmid -katP, espP, subA, stcE- and adhesins involved in colonization of cattle -efa1, iha- in 255 native STEC strains isolated from different categories of cattle from different production systems. The most prevalent gene in all strains was espP, and the less prevalent was stcE. katP was highly detected in strains isolated from young and rearing calves (33.3%), while subA was predominant in those isolated from adults (71.21%). Strains from young calves showed the highest percentage of efa1 (72.46%), while iha showed a high distribution in strains from rearing calves and adults (87.04 and 98.48% respectively). It was observed that espP and iha were widely distributed throughout all strains, whereas katP, stcE, and efa1 were more associated with the presence of eae and subA with the eae-negative strains. A great proportion of eae-negative strains were isolated from adults -dairy and grazing farms- and from rearing calves -dairy and feedlot-, while mostly of the eae-positive strains were isolated from dairy young calves. Data exposed indicate a correlation between the category of the animal and the production systems with the presence or absence of several genes implicated in adherence and virulence of STEC.


Assuntos
Bovinos/microbiologia , Infecções por Escherichia coli/veterinária , Toxinas Shiga/biossíntese , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética , Virulência/genética , Adesinas Bacterianas/genética , Animais , Argentina , Toxinas Bacterianas/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteína Reguladora de Resposta a Leucina/genética , Metaloendopeptidases/genética , Plasmídeos/genética , Serina Endopeptidases/genética , Escherichia coli Shiga Toxigênica/crescimento & desenvolvimento , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/patogenicidade , Subtilisinas/genética
20.
Metab Eng ; 39: 29-37, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27794466

RESUMO

Leucine-responsive regulatory proteins (Lrps) are a group of transcriptional regulators that regulate diverse cellular processes in bacteria and archaea. However, the regulatory role of Lrps in antibiotic biosynthesis remains poorly understood. In this study, we show that SACE_5388, an Lrp family regulator named as SACE_Lrp, is an efficient regulator for transporting and catabolizing branched-chain amino acids (BCAAs), playing an important role in regulating erythromycin production in Saccharopolyspora erythraea. SACE_Lrp directly controlled the expression of the divergently transcribed SACE_5387-5386 operon putatively encoding a BCAA ABC transporter by interacting with the intergenic region between SACE_Lrp and SACE_5387 (SACE_Lrp-5387-int), and indirectly controlled the expression of ilvE putatively encoding an aminotransferase catabolizing BCAAs. BCAA catabolism is one source of the precursors for erythromycin biosynthesis. Lysine and arginine promoted the dissociation of SACE_Lrp from SACE_Lrp -5387-int, whereas histidine increased their binding. Gene disruption of SACE_Lrp (ΔSACE_Lrp) in S. erythraea A226 resulted in a 25% increase in erythromycin production, while overexpression of SACE_5387-5386 in A226 enhanced erythromycin production by 36%. Deletion of SACE_Lrp (WBΔSACE_Lrp) in the industrial strain S. erythraea WB enhanced erythromycin production by 19%, and overexpression of SACE_5387-5386 in WBΔSACE_Lrp (WBΔSACE_Lrp/5387-5386) increased erythromycin production by 41% compared to WB. Additionally, supplement of 10mM valine to WBΔSACE_Lrp/5387-5386 culture further increased total erythromycin production up to 48%. In a 5-L fermenter, the erythromycin accumulation in the engineered strain WBΔSACE_Lrp/5387-5386 with 10mM extra valine in the industrial culture media reached 5001mg/L, a 41% increase over 3503mg/L of WB. These insights into the molecular regulation of antibiotic biosynthesis by SACE_Lrp in S. erythraea are instrumental in increasing industrial production of secondary metabolites.


Assuntos
Vias Biossintéticas/genética , Eritromicina/biossíntese , Melhoramento Genético/métodos , Proteína Reguladora de Resposta a Leucina/genética , Engenharia Metabólica/métodos , Saccharopolyspora/fisiologia , Proteínas de Bactérias/genética , Eritromicina/isolamento & purificação , Redes e Vias Metabólicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA