Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Int Immunopharmacol ; 133: 112065, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608448

RESUMO

Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1ß-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1ß-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1ß induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1ß-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1ß-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1ß-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1ß. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1ß-induced IL-8 production through this non-transcriptional mechanism.


Assuntos
Núcleo Celular , Citoplasma , Proteína Semelhante a ELAV 1 , Interleucina-1beta , Interleucina-8 , Fator de Transcrição STAT3 , Humanos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Linhagem Celular Tumoral , Óxidos S-Cíclicos/farmacologia , Transporte Proteico , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Sistemas CRISPR-Cas
2.
Int Immunopharmacol ; 132: 111933, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581988

RESUMO

Transient receptor potential melastatin 7 (TRPM7) is a cation channel that plays a role in the progression of rheumatoid arthritis (RA), yet its involvement in synovial hyperplasia and inflammation has not been determined. We previously reported that TRPM7 affects the destruction of articular cartilage in RA. Herein, we further confirmed the involvement of TRPM7 in fibroblast-like synoviocyte (FLS) proliferation, metastasis and inflammation. We observed increased TRPM7 expression in FLSs derived from human RA patients. Pharmacological inhibition of TRPM7 protected primary RA-FLSs from proliferation, metastasis and inflammation. Furthermore, we found that TRPM7 contributes to RA-FLS proliferation, metastasis and inflammation by increasing the intracellular Ca2+ concentration. Mechanistically, the PKCα-HuR axis was demonstrated to respond to Ca2+ influx, leading to TRPM7-mediated RA-FLS proliferation, metastasis and inflammation. Moreover, HuR was shown to bind to IL-6 mRNA after nuclear translocation, which could be weakened by TRPM7 channel inhibition. Additionally, adeno-associated virus 9-mediated TRPM7 silencing is highly effective at alleviating synovial hyperplasia and inflammation in adjuvant-induced arthritis rats. In conclusion, our findings unveil a novel regulatory mechanism involved in the pathogenesis of RA and suggest that targeting TRPM7 might be a potential strategy for the prevention and treatment of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Proliferação de Células , Interleucina-6 , Proteína Quinase C-alfa , Sinoviócitos , Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/genética , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Masculino , Ratos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Células Cultivadas , Inflamação/metabolismo , Inflamação/patologia , Ratos Sprague-Dawley , Feminino , Transdução de Sinais
3.
J Cell Physiol ; 239(5): e31229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426269

RESUMO

RNA-binding proteins (RBPs) play a crucial role in the regulation of posttranscriptional RNA networks, which can undergo dysregulation in many pathological conditions. Human antigen R (HuR) is a highly researched RBP that plays a crucial role as a posttranscriptional regulator. HuR plays a crucial role in the amplification of inflammatory signals by stabilizing the messenger RNA of diverse inflammatory mediators and key molecular players. The noteworthy correlations between HuR and its target molecules, coupled with the remarkable impacts reported on the pathogenesis and advancement of multiple diseases, position HuR as a promising candidate for therapeutic intervention in diverse inflammatory conditions. This review article examines the significance of HuR as a member of the RBP family, its regulatory mechanisms, and its implications in the pathophysiology of inflammation and cardiometabolic illnesses. Our objective is to illuminate potential directions for future research and drug development by conducting a comprehensive analysis of the existing body of research on HuR.


Assuntos
Doenças Cardiovasculares , Proteína Semelhante a ELAV 1 , Inflamação , Humanos , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Inflamação/genética , Inflamação/patologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Animais , Regulação da Expressão Gênica , Doenças Metabólicas/genética , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Transdução de Sinais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Cell Signal ; 117: 111112, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387687

RESUMO

Breast cancer (BC) is the most prevalent malignant tumor in women worldwide with high morbidity and mortality. NSUN2, a crucial RNA methyltransferase, plays a pivotal role in regulating the proliferation and metastasis of tumor cells. Our study demonstrated that NSUN2 is upregulated in BC tissues and cell lines, and its high expression is associated with a poor prognosis in BC patients. Knockout of NSUN2 exerted inhibitory effects on the proliferation and migration of BC cells in vitro and in vivo. Mechanistic investigations revealed that the RNA-binding protein ELAVL1 can bind to NSUN2 mRNA and increase its stability. Additionally, we identified HOST2, a long non-coding RNA, as a key player in blocking the ubiquitin-dependent proteasomal degradation of ELAVL1, thereby influencing the stability of NSUN2 mRNA. In conclusion, this study revealed for the first time that HOST2 maintains NSUN2 mRNA stability by blocking ubiquitin-dependent degradation of ELAVL1, which in turn affects BC progression. HOST2/ELAVL1/NSUN2 oncogenic cascade has the potential to be a novel therapeutic target for BC.


Assuntos
Neoplasias da Mama , Proteína Semelhante a ELAV 1 , Metiltransferases , RNA Longo não Codificante , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Metiltransferases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Ubiquitinas/metabolismo
5.
Nucleic Acids Res ; 52(7): 4002-4020, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321934

RESUMO

Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Miogenina , RNA Mensageiro , Tanquirases , Tanquirases/metabolismo , Tanquirases/genética , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Desenvolvimento Muscular/genética , Animais , Fibras Musculares Esqueléticas/metabolismo , Camundongos , Miogenina/genética , Miogenina/metabolismo , Nucleofosmina , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Estabilidade de RNA/genética , Poli ADP Ribosilação/genética , Linhagem Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Diferenciação Celular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células HEK293
6.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38319288

RESUMO

TNFα and IFNγ (TNF/IFNγ) synergistically induce caspase-8 activation and cancer cell death. However, the mechanism of IFNγ in promoting TNF-initiated caspase-8 activation in cancer cells is poorly understood. Here, we found that in addition to CASP8, CYLD is transcriptionally upregulated by IFNγ-induced transcription factor IRF1. IRF1-mediated CASP8 and CYLD upregulation additively mediates TNF/IFNγ-induced cancer cell death. Clinically, the expression levels of TNF, IFNγ, CYLD, and CASP8 in melanoma tumors are increased in patients responsive to immune checkpoint blockade (ICB) therapy after anti-PD-1 treatment. Accordingly, our genetic screen revealed that ELAVL1 (HuR) is required for TNF/IFNγ-induced caspase-8 activation. Mechanistically, ELAVL1 binds CASP8 mRNA and extends its stability to sustain caspase-8 expression both in IFNγ-stimulated and in basal conditions. Consequently, ELAVL1 determines death receptors-initiated caspase-8-dependent cell death triggered from stimuli including TNF and TRAIL by regulating basal/stimulated caspase-8 levels. As caspase-8 is a master regulator in cell death and inflammation, these results provide valuable clues for tumor immunotherapy and inflammatory diseases.


Assuntos
Imunoterapia , Fator Regulador 1 de Interferon , Interferon gama , Melanoma , Humanos , Caspase 8/genética , Morte Celular , Proteína Semelhante a ELAV 1/genética , Inflamação , Fator Regulador 1 de Interferon/genética , Melanoma/genética , Interferon gama/genética , Fator de Necrose Tumoral alfa/genética , Enzima Desubiquitinante CYLD/genética , Animais , Camundongos
7.
PLoS Pathog ; 20(2): e1011999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306394

RESUMO

Hepatitis B virus (HBV) chronically infects 296 million people worldwide, posing a major global health threat. Export of HBV RNAs from the nucleus to the cytoplasm is indispensable for viral protein translation and genome replication, however the mechanisms regulating this critical process remain largely elusive. Here, we identify a key host factor embryonic lethal, abnormal vision, Drosophila-like 1 (ELAVL1) that binds HBV RNAs and controls their nuclear export. Using an unbiased quantitative proteomics screen, we demonstrate direct binding of ELAVL1 to the HBV pregenomic RNA (pgRNA). ELAVL1 knockdown inhibits HBV RNAs posttranscriptional regulation and suppresses viral replication. Further mechanistic studies reveal ELAVL1 recruits the nuclear export receptor CRM1 through ANP32A and ANP32B to transport HBV RNAs to the cytoplasm via specific AU-rich elements, which can be targeted by a compound CMLD-2. Moreover, ELAVL1 protects HBV RNAs from DIS3+RRP6+ RNA exosome mediated nuclear RNA degradation. Notably, we find HBV core protein is dispensable for HBV RNA-CRM1 interaction and nuclear export. Our results unveil ELAVL1 as a crucial host factor that regulates HBV RNAs stability and trafficking. By orchestrating viral RNA nuclear export, ELAVL1 is indispensable for the HBV life cycle. Our study highlights a virus-host interaction that may be exploited as a new therapeutic target against chronic hepatitis B.


Assuntos
Vírus da Hepatite B , RNA Viral , Animais , Humanos , Vírus da Hepatite B/metabolismo , Transporte Ativo do Núcleo Celular , RNA Viral/genética , RNA Viral/metabolismo , Drosophila/genética , Replicação Viral/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo
8.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256026

RESUMO

HuR regulates cytoplasmic mRNA stability and translatability, with its expression correlating with adverse outcomes in various cancers. This study aimed to assess the prognostic value and pro-oncogenic properties of HuR and its post-translational isoforms methyl-HuR and phospho-HuR in endometrial adenocarcinoma. Examining 89 endometrioid adenocarcinomas, we analyzed the relationship between HuR nuclear or cytoplasmic immunostaining, tumor-cell proliferation, and patient survival. HuR cytoplasmic expression was significantly increased in grade 3 vs. grade 1 adenocarcinomas (p < 0.001), correlating with worse overall survival (OS) (p = 0.02). Methyl-HuR cytoplasmic expression significantly decreased in grade 3 vs. grade 1 adenocarcinomas (p < 0.001) and correlated with better OS (p = 0.002). Phospho-HuR nuclear expression significantly decreased in grade 3 vs. grade 1 adenocarcinomas (p < 0.001) and non-significantly correlated with increased OS (p = 0.06). Cytoplasmic HuR expression strongly correlated with proliferation markers MCM6 (rho = 0.59 and p < 0.001) and Ki67 (rho = 0.49 and p < 0.001). Conversely, these latter inversely correlated with cytoplasmic methyl-HuR and nuclear phospho-HuR. Cytoplasmic HuR expression is a poor prognosis marker in endometrioid endometrial adenocarcinoma, while cytoplasmic methyl-HuR and nuclear phosphoHuR expressions are markers of better prognosis. This study highlights HuR as a promising potential therapeutic target, especially in treatment-resistant tumors, though further research is needed to understand the mechanisms regulating HuR subcellular localization and post-translational modifications.


Assuntos
Carcinoma Endometrioide , Proteína Semelhante a ELAV 1 , Neoplasias do Endométrio , Feminino , Humanos , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Proliferação de Células , Citoplasma , Citosol , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo
9.
Cancer Gene Ther ; 31(2): 237-249, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38072968

RESUMO

Circular RNAs (circRNAs) are covalently closed noncoding RNA molecules that play multiple roles in tumorigenesis and metastasis. Ferroptosis is an iron-dependent, regulated form of cell death and has emerged as a promising target for cancer treatment. However, whether and how circRNAs regulate ferroptotic cell death in colorectal cancer (CRC) remains largely unknown. Three circRNA microarrays were used to screen differentially expressed circRNAs in CRC tissues. A series of functional experiments were conducted to investigate the effects of circRNA on CRC cell proliferation, migration and ferroptosis. We found that hsa_circ_0058495 (circRHBDD1), a novel circRNA, was significantly upregulated in colorectal cancer tissues and cells. The expression levels of circRHBDD1 in serum samples were strongly associated with the advancement of CRC. Silencing of circRHBDD1 remarkably suppressed the proliferation and migration of CRC cells in vitro. Moreover, the depletion of circRHBDD1 notably increased ferroptotic cell death and enhanced RSL3-induced ferroptosis in CRC cells. Mechanistically, circRHBDD1 upregulated the expression of stearoyl-CoA desaturase (SCD), a ferroptosis suppressor mediating lipid remodelling, by enhancing the ELAVL1/SCD mRNA interaction. Finally, circRHBDD1 knockdown repressed the tumorigenesis and ferroptosis of CRC cells in vivo. In conclusion, circRHBDD1 facilitates tumour progression and obstructs ferroptosis in CRC by regulating SCD expression in an ELAVL1-dependent manner.


Assuntos
Neoplasias Colorretais , Ferroptose , MicroRNAs , Humanos , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/genética , Estearoil-CoA Dessaturase/metabolismo , Ferroptose/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Carcinogênese/genética , MicroRNAs/genética , Proteína Semelhante a ELAV 1/genética , Serina Endopeptidases/metabolismo
10.
Nat Commun ; 14(1): 7093, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925433

RESUMO

Human antigen R (HuR) is a ubiquitously expressed RNA-binding protein, which functions as an RNA regulator. Overexpression of HuR correlates with high grade tumours and poor patient prognosis, implicating it as an attractive therapeutic target. However, an effective small molecule antagonist to HuR for clinical use remains elusive. Here, a single domain antibody (VHH) that binds HuR with low nanomolar affinity was identified and shown to inhibit HuR binding to RNA. This VHH was used to engineer a TRIM21-based biological PROTAC (bioPROTAC) that could degrade endogenous HuR. Significantly, HuR degradation reverses the tumour-promoting properties of cancer cells in vivo by altering the HuR-regulated proteome, highlighting the benefit of HuR degradation and paving the way for the development of HuR-degrading therapeutics. These observations have broader implications for degrading intractable therapeutic targets, with bioPROTACs presenting a unique opportunity to explore targeted-protein degradation through a modular approach.


Assuntos
Proteína Semelhante a ELAV 1 , Neoplasias , Quimera de Direcionamento de Proteólise , Humanos , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , RNA , Proteínas de Ligação a RNA/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G518-G527, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788332

RESUMO

Gut barrier dysfunction occurs commonly in patients with critical disorders, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Connexin 43 (Cx43) acts as a gap junction protein and is crucial for intercellular communication and the diffusion of nutrients. The levels of cellular Cx43 are tightly regulated by multiple factors, including polyamines, but the exact mechanism underlying the control of Cx43 expression remains largely unknown. The RNA-binding protein HuR regulates the stability and translation of target mRNAs and is involved in many aspects of intestinal epithelial pathobiology. Here we show that HuR directly bound to Cx43 mRNA via its 3'-untranslated region in intestinal epithelial cells (IECs) and this interaction enhanced Cx43 expression by stabilizing Cx43 mRNA. Depletion of cellular polyamines inhibited the [HuR/Cx43 mRNA] complex and decreased the level of Cx43 protein by destabilizing its mRNA, but these changes were prevented by ectopic overexpression of HuR. Polyamine depletion caused intestinal epithelial barrier dysfunction, which was reversed by ectopic Cx43 overexpression. Moreover, overexpression of checkpoint kinase 2 in polyamine-deficient cells increased the [HuR/Cx43 mRNA] complex, elevated Cx43 levels, and promoted barrier function. These findings indicate that Cx43 mRNA is a novel target of HuR in IECs and that polyamines regulate Cx43 mRNA stability via HuR, thus playing a critical role in the maintenance of intestinal epithelial barrier function.NEW & NOTEWORTHY The current study shows that polyamines stabilize the Cx43 mRNA via HuR, thus enhancing the function of the Cx43-mediated gap junction. These findings suggest that induced Cx43 by HuR plays a critical role in the process by which polyamines regulate intestinal epithelial barrier.


Assuntos
Conexina 43 , Proteína Semelhante a ELAV 1 , Poliaminas , RNA Mensageiro , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Mucosa Intestinal/metabolismo , Poliaminas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA
12.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685961

RESUMO

The aryl hydrocarbon receptor (AHR) is a transcription factor that is commonly upregulated in pancreatic ductal adenocarcinoma (PDAC). AHR hinders the shuttling of human antigen R (ELAVL1) from the nucleus to the cytoplasm, where it stabilises its target messenger RNAs (mRNAs) and enhances protein expression. Among these target mRNAs are those induced by gemcitabine. Increased AHR expression leads to the sequestration of ELAVL1 in the nucleus, resulting in chemoresistance. This study aimed to investigate the interaction between AHR and ELAVL1 in the pathogenesis of PDAC in vitro. AHR and ELAVL1 genes were silenced by siRNA transfection. The RNA and protein were extracted for quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Direct binding between the ELAVL1 protein and AHR mRNA was examined through immunoprecipitation (IP) assay. Cell viability, clonogenicity, and migration assays were performed. Our study revealed that both AHR and ELAVL1 inter-regulate each other, while also having a role in cell proliferation, migration, and chemoresistance in PDAC cell lines. Notably, both proteins function through distinct mechanisms. The silencing of ELAVL1 disrupts the stability of its target mRNAs, resulting in the decreased expression of numerous cytoprotective proteins. In contrast, the silencing of AHR diminishes cell migration and proliferation and enhances cell sensitivity to gemcitabine through the AHR-ELAVL1-deoxycytidine kinase (DCK) molecular pathway. In conclusion, AHR and ELAVL1 interaction can form a negative feedback loop. By inhibiting AHR expression, PDAC cells become more susceptible to gemcitabine through the ELAVL1-DCK pathway.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Proteína Semelhante a ELAV 1/genética , Gencitabina , Pâncreas , Hormônios Pancreáticos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Receptores de Hidrocarboneto Arílico/genética , RNA Mensageiro/genética , Desoxicitidina Quinase/efeitos dos fármacos , Desoxicitidina Quinase/metabolismo , Neoplasias Pancreáticas
13.
Cancer Res ; 83(21): 3507-3516, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683260

RESUMO

The RNA-binding protein human antigen R (HuR) is a well-established regulator of gene expression at the posttranscriptional level. Its dysregulation has been implicated in various human diseases, particularly cancer. In cancer, HuR is considered "active" when it shows increased subcellular localization in the cytoplasm, in addition to its normal nuclear localization. Cytoplasmic HuR plays a crucial role in stabilizing and enhancing the translation of prosurvival mRNAs that are involved in stress responses relevant to cancer progression, such as hypoxia, radiotherapy, and chemotherapy. In general, due to HuR's abundance and function in cancer cells compared with normal cells, it is an appealing target for oncology research. Exploiting the principles underlying HuR's role in tumorigenesis and resistance to stressors, targeting HuR has the potential for synergy with existing and novel oncologic therapies. This review aims to explore HuR's role in homeostasis and cancer pathophysiology, as well as current targeting strategies, which include silencing HuR expression, preventing its translocation and dimerization from the nucleus to the cytoplasm, and inhibiting mRNA binding. Furthermore, this review will discuss recent studies investigating the potential synergy between HuR inhibition and traditional chemotherapeutics.


Assuntos
Proteína Semelhante a ELAV 1 , Neoplasias , Humanos , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas ELAV/genética
14.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696579

RESUMO

Rapid self-renewal of the intestinal epithelium requires the activity of intestinal stem cells (ISCs) that are intermingled with Paneth cells (PCs) at the crypt base. PCs provide multiple secreted and surface-bound niche signals and play an important role in the regulation of ISC proliferation. Here, we show that control of PC function by RNA-binding protein HuR via mitochondria affects intestinal mucosal growth by altering ISC activity. Targeted deletion of HuR in mice disrupted PC gene expression profiles, reduced PC-derived niche factors, and impaired ISC function, leading to inhibited renewal of the intestinal epithelium. Human intestinal mucosa from patients with critical surgical disorders exhibited decreased levels of tissue HuR and PC/ISC niche dysfunction, along with disrupted mucosal growth. HuR deletion led to mitochondrial impairment by decreasing the levels of several mitochondrial-associated proteins including prohibitin 1 (PHB1) in the intestinal epithelium, whereas HuR enhanced PHB1 expression by preventing microRNA-195 binding to the Phb1 mRNA. These results indicate that HuR is essential for maintaining the integrity of the PC/ISC niche and highlight a novel role for a defective PC/ISC niche in the pathogenesis of intestinal mucosa atrophy.


Assuntos
Proteína Semelhante a ELAV 1 , MicroRNAs , Mucosa , Celulas de Paneth , Animais , Humanos , Camundongos , Transporte Biológico , Fenômenos Fisiológicos Celulares , Mucosa Intestinal , MicroRNAs/genética , Proteínas Mitocondriais , Células-Tronco , Proteína Semelhante a ELAV 1/genética
15.
PLoS Pathog ; 19(8): e1011552, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37540723

RESUMO

Host protein HuR translocation from nucleus to cytoplasm following infection is crucial for the life cycle of several RNA viruses including hepatitis C virus (HCV), a major causative agent of hepatocellular carcinoma. HuR assists the assembly of replication-complex on the viral-3'UTR, and its depletion hampers viral replication. Although cytoplasmic HuR is crucial for HCV replication, little is known about how the virus orchestrates the mobilization of HuR into the cytoplasm from the nucleus. We show that two viral proteins, NS3 and NS5A, act co-ordinately to alter the equilibrium of the nucleo-cytoplasmic movement of HuR. NS3 activates protein kinase C (PKC)-δ, which in-turn phosphorylates HuR on S318 residue, triggering its export to the cytoplasm. NS5A inactivates AMP-activated kinase (AMPK) resulting in diminished nuclear import of HuR through blockade of AMPK-mediated phosphorylation and acetylation of importin-α1. Cytoplasmic retention or entry of HuR can be reversed by an AMPK activator or a PKC-δ inhibitor. Our findings suggest that efforts should be made to develop inhibitors of PKC-δ and activators of AMPK, either separately or in combination, to inhibit HCV infection.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Citoplasma/metabolismo , Hepatite C/metabolismo , Linhagem Celular Tumoral , Replicação Viral , Proteínas não Estruturais Virais/metabolismo
16.
Mol Cancer Res ; 21(12): 1342-1355, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37647111

RESUMO

The pathologic significance of the circular RNA DDIT4 (circDDIT4), which is formed by backsplicing at the 3'-untranslated region (UTR) with a 5' splice acceptor site in exon 2 of linear DDIT4 mRNA, has yet to be determined. Our study found that circDDIT4 is downregulated in prostate cancer and functions as a tumor suppressor during prostate cancer progression. By competitively binding to ELAV-like RNA binding protein 1 (ELAVL1/HuR) through its 3'-UTR, circDDIT4 acts as a protein sponge to decrease the expression of prostate cancer-overexpressed anoctamin 7 (ANO7). This promotes prostate cancer cell apoptosis while inhibiting cell proliferation and metastasis. Furthermore, we discovered that N6-methyladenosine (m6A) modification facilitates the biogenesis of circDDIT4. The methyltransferase complex consisting of WTAP/METTL3/METTL14 increases the level of circDDIT4, while the RNA demethylase FTO decreases it. IMPLICATIONS: These findings suggest that abnormal cotranscriptional modification of m6A promotes prostate cancer initiation and progression via a circular RNA-protein-cell signaling network.


Assuntos
Neoplasias da Próstata , RNA Circular , Masculino , Humanos , RNA Circular/genética , Metiltransferases/genética , Neoplasias da Próstata/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
17.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 69-74, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300687

RESUMO

MicroRNAs (miRNAs) were reportedly demonstrated to participate in ovarian cancer (OC) progression. Here, we inquired into the role of miR-188-5punderneath OC cell proliferation and migration. In this respect, our work examined the miR-188-5p expression and demonstrated its expression level in OC by qRT-PCR analysis. Enforced miR-188-5p expression resulted in a serious downfall of cell growth and mobility, and acceleration apoptosis in OC cells. Furthermore, we identified CCND2 as a target gene of miR-188-5p. RIP assay and luciferase reporter assay verified the interaction of miR-188-5p and CCND2 and exhibited that miR-188-5p greatly hindered the expression of CCND2. Besides, HuR stabilized CCND2 mRNA and counteracted the miR-188-5p suppressive effect on CCND2 mRNA. Functionally, rescue experiments also showed that miR-188-5p-mediated suppression on OC cell proliferation and migration was reverted by CCND2 or HuR overexpression. Our study found miR-188-5p was a tumor suppressor in OC via competing for CCND2 with ELAVL1, contributing to coming up with novel clues for OC therapies.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , Proliferação de Células/genética , Ciclo Celular , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Ciclina D2/genética , Ciclina D2/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 43(7): 1157-1175, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37128912

RESUMO

BACKGROUND: Obesity and diabetes are associated with elevated free fatty acids like palmitic acid (PA), which promote chronic inflammation and impaired inflammation resolution associated with cardiometabolic disorders. Long noncoding RNAs (lncRNAs) are implicated in inflammatory processes; however, their roles in PA-regulated inflammation and resolution are unclear. METHODS: We performed RNA-sequencing analysis to identify PA-regulated coding genes and novel lncRNAs in CD14+ monocytes from healthy volunteers. We investigated the regulation and function of an uncharacterized PA-induced lncRNA PARAIL (PA-regulated anti-inflammatory lncRNA). We examined its role in inflammation resolution by employing knockdown and overexpression strategies in human and mouse macrophages. We also used RNA pulldown coupled with mass spectrometry to identify PARAIL interacting nuclear proteins and their mechanistic involvement in PARAIL functions in human macrophages. RESULTS: Treatment of human CD14+ monocytes with PA-induced several lncRNAs and genes associated with inflammatory phenotype. PA strongly induced lncRNA PARAIL expressed near RIPK2. PARAIL was also induced by cytokines and infectious agents in human monocytes/macrophages and was regulated by NF-κB (nuclear factor-kappa B). Time course studies showed PARAIL was induced during inflammation resolution phase in PA-treated macrophages. PARAIL knockdown with antisense oligonucleotides upregulated key inflammatory genes and vice versa with PARAIL overexpression. We found that PARAIL interacts with ELAVL1 (ELAV-like RNA-binding protein 1) protein via adenylate/uridylate-rich elements (AU-rich elements; AREs). ELAVL1 knockdown inhibited the anti-inflammatory functions of PARAIL. Moreover, PARAIL knockdown increased cytosolic localization of ELAVL1 and increased the stability of ARE-containing inflammatory genes. Mouse orthologous Parail was downregulated in macrophages from mice with diabetes and atherosclerosis. Parail overexpression attenuated proinflammatory genes in mouse macrophages. CONCLUSIONS: Upregulation of PARAIL under acute inflammatory conditions contributes to proresolution mechanisms via PARAIL-ELAVL1 interactions. Conversely, PARAIL downregulation in cardiometabolic diseases enhances ELAVL1 function and impairs inflammation resolution to further augment inflammation. Thus, inflammation-resolving lncRNAs like PARAIL represent novel targets to combat inflammatory cardiometabolic diseases.


Assuntos
Aterosclerose , RNA Longo não Codificante , Humanos , Camundongos , Animais , Monócitos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ácido Palmítico/toxicidade , Ácido Palmítico/metabolismo , Macrófagos/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , NF-kappa B/metabolismo , Aterosclerose/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo
19.
Diabet Med ; 40(9): e15077, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36861382

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a common complication of diabetes mellitus that poses a threat to adults. MicroRNAs (miRNAs) play a key role in DR progression. However, the role and mechanism of miR-192-5p in DR remain unclear. We aimed to investigate the effect of miR-192-5p on cell proliferation, migration and angiogenesis in DR. METHODS: Expression of miR-192-5p, ELAV-like RNA binding protein 1 (ELAVL1) and phosphoinositide 3-kinase delta (PI3Kδ) in human retinal fibrovascular membrane (FVM) samples and human retinal microvascular endothelial cells (HRMECs) was assessed using RT-qPCR. ELAVL1 and PI3Kδ protein levels were evaluated by Western blot. RIP and dual luciferase reporter assays were performed to confirm the miR-192-5p/ELAVL1/PI3Kδ regulatory networks. Cell proliferation, migration and angiogenesis were assessed by CCK8, transwell and tube formation assays. RESULTS: MiR-192-5p was decreased in FVM samples from DR patients and high glucose (HG)-treated HRMECs. Functionally, overexpressed miR-192-5p inhibited cell proliferation, migration and angiogenesis in HG-treated HRMECs. Mechanically, miR-192-5p directly targeted ELAVL1 and decreased its expression. We further verified that ELAVL1 bound to PI3Kδ and maintained PI3Kδ mRNA stability. Rescue analysis demonstrated that the suppressive effects of HG-treated HRMECs caused by miR-192-5p up-regulation were overturned by overexpressed ELAVL1 or PI3Kδ. CONCLUSION: MiR-192-5p attenuates DR progression by targeting ELAVL1 and reducing PI3Kδ expression, suggesting a biomarker for the treatment of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , MicroRNAs , Adulto , Humanos , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Regulação para Cima , Células Endoteliais , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Proliferação de Células/genética , Diabetes Mellitus/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo
20.
Breast Cancer Res ; 25(1): 25, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918912

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is highly aggressive with an increased metastatic incidence compared to other breast cancer subtypes. However, due to the absence of clinically reliable biomarkers and targeted therapy in TNBC, outcomes are suboptimal. Hence, there is an urgent need to understand biological mechanisms that lead to identifying novel therapeutic targets for managing metastatic TNBC. METHODS: The clinical significance of MUC16 and ELAVL1 or Hu antigen R (HuR) was examined using breast cancer TCGA data. Microarray was performed on MUC16 knockdown and scramble TNBC cells and MUC16-associated genes were identified using RNA immunoprecipitation and metastatic cDNA array. Metastatic properties of MUC16 were evaluated using tail vein experiment. MUC16 and HuR downstream pathways were confirmed by ectopic overexpression of MUC16-carboxyl-terminal (MUC16-Cter), HuR and cMyc as well as HuR inhibitors (MS-444 and CMLD-2) in TNBC cells. RESULTS: MUC16 was highly expressed in TNBC and correlated with its target HuR. Depletion of MUC16 showed decreased invasion, migration, and colony formation abilities of human and mouse TNBC cells. Mice injected with MUC16 depleted cells were less likely to develop lung metastasis (P = 0.001). Notably, MUC16 and HuR were highly expressed in the lung tropic TNBC cells and lung metastases. Mechanistically, we identified cMyc as a HuR target in TNBC using RNA immunoprecipitation and metastatic cDNA array. Furthermore, MUC16 knockdown and pharmacological inhibition of HuR (MS-444 and CMLD-2) in TNBC cells showed a reduction in cMyc expression. MUC16-Cter or HuR overexpression models indicated MUC16/HuR/cMyc axis in TNBC cell migration. CONCLUSIONS: Our study identified MUC16 as a TNBC lung metastasis promoter that acts through HuR/cMyc axis. This study will form the basis of future studies to evaluate the targeting of both MUC16 and HuR in TNBC patients.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , RNA , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Antígeno Ca-125/genética , Antígeno Ca-125/metabolismo , Antígeno Ca-125/uso terapêutico , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA