Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.348
Filtrar
1.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730387

RESUMO

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Assuntos
Bleomicina , Regulação para Baixo , Morfinanos , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fibrose Pulmonar , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Animais , Morfinanos/farmacologia , Morfinanos/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Proteína Smad3/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células A549 , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
2.
Sci Rep ; 14(1): 10393, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710741

RESUMO

The transforming growth factor (TGF)-ß3 is a well-known inducer for tenogenic differentiation, signaling via the Smad2/3 pathway. Furthermore, other factors like extracellular matrix or mechanical force can induce tenogenic differentiation and possibly alter the response to TGF-ß3 by signaling via the Rho/ROCK pathway. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-ß3/Smad signaling in tenogenic differentiation, with the Smad2/3 molecule hypothesized as a possible interface. Cultured as monolayers or on collagen I matrices, mesenchymal stromal cells (MSC) were treated with the ROCK inhibitor Y-27632 (10 µM), TGF-ß3 (10 ng/ml) or both combined. Control cells were cultured accordingly, without Y-27632 and/or without TGF-ß3. At different time points, MSC were analyzed by real-time RT-PCR, immunofluorescence, and Western blot. Cultivation of MSC on collagen matrices and ROCK inhibition supported tenogenic differentiation and fostered the effect of TGF-ß3. The phosphorylation of the linker region of Smad2 was reduced by cultivation on collagen matrices, but not by ROCK inhibition. The latter, however, led to increased phosphorylation of the linker region of Smad3. In conclusion, collagen matrices and the Rho/ROCK signaling pathway influence the TGF-ß3/Smad2/3 pathway by regulating different phosphorylation sites of the Smad linker region.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta3 , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Fosforilação , Diferenciação Celular/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Crescimento Transformador beta3/metabolismo , Células Cultivadas , Piridinas/farmacologia , Amidas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
3.
Int J Rheum Dis ; 27(5): e15164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706209

RESUMO

BACKGROUND: JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS: A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-ß1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFß-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS: CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1ß and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFß-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-ß1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION: JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.


Assuntos
Modelos Animais de Doenças , Regulação para Baixo , Isoquinolinas , Janus Quinase 2 , Pulmão , Fibrose Pulmonar , Piridinas , Pirróis , Transdução de Sinais , Proteína Smad3 , Animais , Proteína Smad3/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/enzimologia , Masculino , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Humanos , Ratos Sprague-Dawley , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Linhagem Celular , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/enzimologia , Anti-Inflamatórios/farmacologia , Ratos
4.
Int Immunopharmacol ; 133: 112067, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608444

RESUMO

Silicosis is one of the most common and severe types of pneumoconiosis and is characterized by lung dysfunction, persistent lung inflammation, pulmonary nodule formation, and irreversible pulmonary fibrosis. The transdifferentiation of fibroblasts into myofibroblasts is one of the main reasons for the exacerbation of silicosis. However, the underlying mechanism of transcription factors regulating silicosis fibrosis has not been clarified. The aim of this study was to investigate the potential mechanism of transcription factor FOXF1 in fibroblast transdifferentiation in silica-induced pulmonary fibrosis. Therefore, a silicosis mouse model was established, and we found that FOXF1 expression level was significantly down-regulated in the silicosis group, and after overexpression of FOXF1 by adeno-associated virus (AAV), FOXF1 expression level was up-regulated, and silicosis fibrosis was alleviated. In order to further explore the specific regulatory mechanism of FOXF1 in silicosis, we established a fibroblasts transdifferentiation model induced by TGF-ß in vitro. In the model, the expression levels of SMAD2/3 and P-SMAD2/3 were up-regulated, but the expression levels of SMAD2/3 and P-SMAD2/3 were down-regulated, inhibiting transdifferentiation and accumulation of extracellular matrix after the overexpressed FOXF1 plasmid was constructed. However, after silencing FOXF1, the expression levels of SMAD2/3 and P-SMAD2/3 were further up-regulated, aggravating transdifferentiation and accumulation of extracellular matrix. These results indicate that the activation of FOXF1 in fibroblasts can slow down the progression of silicosis fibrosis by inhibiting TGF-ß/SMAD2/3 classical pathway, which provides a new idea for further exploration of silicosis treatment.


Assuntos
Transdiferenciação Celular , Fibroblastos , Pulmão , Fibrose Pulmonar , Transdução de Sinais , Dióxido de Silício , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta , Animais , Fibroblastos/metabolismo , Proteína Smad3/metabolismo , Proteína Smad3/genética , Proteína Smad2/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta/metabolismo , Camundongos , Pulmão/patologia , Dióxido de Silício/toxicidade , Camundongos Endogâmicos C57BL , Silicose/metabolismo , Silicose/patologia , Masculino , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Modelos Animais de Doenças , Humanos , Células Cultivadas
5.
Aging (Albany NY) ; 16(7): 6588-6612, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604156

RESUMO

BACKGROUND: Liver progenitor cells (LPCs) are a subpopulation of cells that contribute to liver regeneration, fibrosis and liver cancer initiation under different circumstances. RESULTS: By performing adenoviral-mediated transfection, CCK-8 analyses, F-actin staining, transwell analyses, luciferase reporter analyses and Western blotting, we observed that TGF-ß promoted cytostasis and partial epithelial-mesenchymal transition (EMT) in LPCs. In addition, we confirmed that TGF-ß activated the Smad and MAPK pathways, including the Erk, JNK and p38 MAPK signaling pathways, and revealed that TGFß-Smad signaling induced growth inhibition and partial EMT, whereas TGFß-MAPK signaling had the opposite effects on LPCs. We further found that the activity of Smad and MAPK signaling downstream of TGF-ß was mutually restricted in LPCs. Mechanistically, we found that TGF-ß activated Smad signaling through serine phosphorylation of both the C-terminal and linker regions of Smad2 and 3 in LPCs. Additionally, TGFß-MAPK signaling inhibited the phosphorylation of Smad3 but not Smad2 at the C-terminus, and it reinforced the linker phosphorylation of Smad3 at T179 and S213. We then found that overexpression of mutated Smad3 at linker phosphorylation sites intensifies TGF-ß-induced cytostasis and EMT, mimicking the effects of MAPK inhibition in LPCs, whereas mutation of Smad3 at the C-terminus caused LPCs to blunt TGF-ß-induced cytostasis and partial EMT. CONCLUSION: These results suggested that TGF-ß downstream of Smad3 and MAPK signaling were mutually antagonistic in regulating the viability and partial EMT of LPCs. This antagonism may help LPCs overcome the cytostatic effect of TGF-ß under fibrotic conditions and maintain partial EMT and progenitor phenotypes.


Assuntos
Transição Epitelial-Mesenquimal , Fígado , Sistema de Sinalização das MAP Quinases , Proteína Smad3 , Células-Tronco , Fator de Crescimento Transformador beta , Proteína Smad3/metabolismo , Células-Tronco/metabolismo , Animais , Fator de Crescimento Transformador beta/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fígado/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fosforilação , Camundongos , Transdução de Sinais
6.
Clinics (Sao Paulo) ; 79: 100354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640751

RESUMO

AIM: The study was to clarify the mechanism of miR-1258 targeting Prep1 (pKnox1) to control Transforming Growth Factor ß1 (TGF-ß1)/SMAD3 pathway in septic Acute Lung Injury (ALI)-induced oxidative stress and inflammation. METHODS: BEAS-2B cells and C57BL/6 mice were used to make in vitro and in vivo septic ALI models, respectively. miR-1258 expression was checked by RT-qPCR. After transfection in the in vitro experimental model, inflammation, oxidative stress, viability, and apoptosis were observed through ELISA, MTT, and flow cytometry. RESULTS: In the in vivo model after miR-1258 overexpression treatment, inflammation, oxidative stress, and lung injury were further investigated. The targeting relationship between miR-1258 and Pknox1 was tested. Low miR-1258 was expressed in septic ALI patients, LPS-treated BEAS-2B cells, and mice. Upregulated miR-1258 prevented inflammation, oxidative stress, and apoptosis but enhanced the viability of LPS-treated BEAS-2B cells. The impact of upregulated miR-1258 on LPS-treated BEAS-2B cells was mitigated by inhibiting Pknox1 expression. MiR-1258 overexpression had the alleviating effects on inflammation, oxidative stress, and lung injury of LPS-injured mice through suppressing Pknox1 expression and TGF-ß1/SMAD3 cascade activation. CONCLUSIONS: The study concludes that miR-1258 suppresses oxidative stress and inflammation in septic ALI through the Pknox1-regulated TGF-ß1/SMAD3 cascade.


Assuntos
Lesão Pulmonar Aguda , Apoptose , Camundongos Endogâmicos C57BL , MicroRNAs , Estresse Oxidativo , Sepse , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Animais , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Sepse/complicações , Sepse/metabolismo , Sepse/genética , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
7.
Mol Biol Rep ; 51(1): 541, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642208

RESUMO

BACKGROUND AND PURPOSE: Liver fibrosis is a reversible liver injury that occurs as a result of many chronic inflammatory diseases and can lead to cirrhosis, which is irreversible and fatal. So, we studied the anti-fibrotic effects of saroglitazar on LX-2 cell lines, as a dual PPARα/γ agonist. METHODS: Cells, after 80% confluence, were treated with TGF-ß (2 ng/mL) for 24 h. Then cells were treated with saroglitazar at different doses (2.5, 5, 10 µM) for 24 h. After same incubation, the cells of control group, TGF-ß group, and TGF-ß + saroglitazar group were harvested for RNA and protein extraction to determine the effects of saroglitazar. RT-PCR and western blot methods were used to express genes related to fibrosis. RESULTS: Our results show that the relative expression of α-SMA, collagen1α, N-cadherin, NOX (1, 2, and 4), and phosphorylated Smad3 protein was significantly higher in TGF-ß-treated cells compared with the normal group, and E-cadherin expression was decreased in TGF-ß-treated cells. After TGF-ß-treated cells were exposed to saroglitazar, the expression of these genes was significantly reversed (P < 0.05). CONCLUSIONS: Our results clearly show the short-term inhibitory role of saroglitazar in the expression of fibrotic factors using the TGF-ß/Smad signaling pathway. These results suggest that saroglitazar can be considered as a suitable therapeutic strategy for fibrotic patients. Although more studies are needed.


Assuntos
Cirrose Hepática , Fenilpropionatos , Pirróis , Proteína Smad3 , Fator de Crescimento Transformador beta , Humanos , Linhagem Celular , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fenilpropionatos/farmacologia , Fosforilação/efeitos dos fármacos , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
8.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592373

RESUMO

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Assuntos
Adenocarcinoma , Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA , Neoplasias Esofágicas , Oxaliplatina , Proteína Smad3 , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Proteína Smad3/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Reparo do DNA/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Transdução de Sinais/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organoides/efeitos dos fármacos
9.
J Clin Invest ; 134(10)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625739

RESUMO

Renal interstitial fibrosis is an important mechanism in the progression of chronic kidney disease (CKD) to end-stage kidney disease. However, we lack specific treatments to slow or halt renal fibrosis. Ribosome profiling identified upregulation of a secreted micropeptide, C4orf48 (Cf48), in mouse diabetic nephropathy. Cf48 RNA and protein levels were upregulated in tubular epithelial cells in human and experimental CKD. Serum Cf48 levels were increased in human CKD and correlated with loss of kidney function, increasing CKD stage, and the degree of active interstitial fibrosis. Cf48 overexpression in mice accelerated renal fibrosis, while Cf48 gene deletion or knockdown by antisense oligonucleotides significantly reduced renal fibrosis in CKD models. In vitro, recombinant Cf48 (rCf48) enhanced TGF-ß1-induced fibrotic responses in renal fibroblasts and epithelial cells independently of Smad3 phosphorylation. Cellular uptake of Cf48 and its profibrotic response in fibroblasts operated via the transferrin receptor. RNA immunoprecipitation-sequencing identified Cf48 binding to mRNA of genes involved in the fibrotic response, including Serpine1, Acta2, Ccn2, and Col4a1. rCf48 binds to the 3'UTR of Serpine1 and increases mRNA half-life. We identify the secreted Cf48 micropeptide as a potential enhancer of renal fibrosis that operates as an RNA-binding peptide to promote the production of extracellular matrix.


Assuntos
Nefropatias Diabéticas , Fibrose , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Camundongos Knockout , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Masculino , Rim/metabolismo , Rim/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas
10.
Front Immunol ; 15: 1387197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665916

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary disease that is characterized by an excessive accumulation of extracellular matrix (ECM) proteins (e.g. collagens) in the parenchyma, which ultimately leads to respiratory failure and death. While current therapies exist to slow the progression, no therapies are available to resolve fibrosis. Methods: We characterized the O-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT)/O-GlcNAc axis in IPF using single-cell RNA-sequencing (scRNA-seq) data and human lung sections and isolated fibroblasts from IPF and non-IPF donors. The underlying mechanism(s) of IPF were further investigated using multiple experimental models to modulate collagen expression and accumulation by genetically and pharmacologically targeting OGT. Furthermore, we hone in on the transforming growth factor-beta (TGF-ß) effector molecule, Smad3, by co-expressing it with OGT to determine if it is modified and its subsequent effect on Smad3 activation. Results: We found that OGT and O-GlcNAc levels are upregulated in patients with IPF compared to non-IPF. We report that the OGT regulates collagen deposition and fibrosis resolution, which is an evolutionarily conserved process demonstrated across multiple species. Co-expression of OGT and Smad3 showed that Smad3 is O-GlcNAc modified. Blocking OGT activity resulted in decreased phosphorylation at Ser-423/425 of Smad3 attenuating the effects of TGF-ß1 induced collagen expression/deposition. Conclusion: OGT inhibition or knockdown successfully blocked and reversed collagen expression and accumulation, respectively. Smad3 is discovered to be a substrate of OGT and its O-GlcNAc modification(s) directly affects its phosphorylation state. These data identify OGT as a potential target in pulmonary fibrosis resolution, as well as other diseases that might have aberrant ECM/collagen accumulation.


Assuntos
Colágeno , Fibrose Pulmonar Idiopática , N-Acetilglucosaminiltransferases , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Humanos , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Colágeno/metabolismo , Animais , Camundongos , Proteína Smad3/metabolismo , Fibroblastos/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Masculino , Células Cultivadas
11.
Mol Biol Rep ; 51(1): 525, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632128

RESUMO

BACKGROUND: A series of previous investigations have revealed that p-Smad3 plays a facilitative role in the differentiation and maturation of osteoblasts, while also regulating the expression of certain intercellular communication factors. However, the effects of p-Smad3 in osteoblasts before and after maturation on the proliferation, migration, differentiation, apoptosis and other cellular behaviors of osteoclasts have not been reported. METHODS: MC3T3-E1 cells were cultured in osteogenic induction medium for varying durations, After that, the corresponding conditioned medium was collected and the osteoclast lineage cells were treated. To elucidate the regulatory role of p-Smad3 within osteoblasts, we applied the activator TGF-ß1 and inhibitor SIS3 to immature and mature osteoblasts and collected corresponding conditioned media for osteoclast intervention. RESULTS: We observed an elevation of p-Smad3 and Smad3 during the early stage of osteoblast differentiation, followed by a decline in the later stage. we discovered that as osteoblasts mature, their conditioned media inhibit osteoclasts differentiation and the osteoclast-coupled osteogenic effect. However, it promotes apoptosis in osteoclasts and the angiogenesis coupled with osteoclasts. p-Smad3 in immature osteoblasts, through paracrine effects, promotes the migration, differentiation, and osteoclast-coupled osteogenic effects of osteoclast lineage cells. For mature osteoblasts, p-Smad3 facilitates osteoclast apoptosis and the angiogenesis coupled with osteoclasts. CONCLUSIONS: As pre-osteoblasts undergo maturation, p-Smad3 mediated a paracrine effect that transitions osteoclast cellular behaviors from inducing differentiation and stimulating bone formation to promoting apoptosis and coupling angiogenesis.


Assuntos
Osteoclastos , Osteogênese , Proteína Smad3 , Diferenciação Celular , Meios de Cultivo Condicionados/farmacologia , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Animais , Camundongos , Proteína Smad3/genética , Proteína Smad3/metabolismo
12.
Sci Rep ; 14(1): 8246, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589525

RESUMO

MicroRNAs are small RNA molecules that have a significant role in translational repression and gene silencing through binding to downstream target mRNAs. MiR-762 can stimulate the proliferation and metastasis of various types of cancer. Hippo pathway is one of the pathways that regulate tissue development and carcinogenesis. Dysregulation of this pathway plays a vital role in the progression of cancer. This study aimed to evaluate the possible correlation between miR-762, the Hippo signaling pathway, TWIST1, and SMAD3 in patients with lung cancer, as well as patients with chronic inflammatory diseases. The relative expression of miR-762, MST1, LATS2, YAP, TWIST1, and SMAD3 was determined in 50 lung cancer patients, 30 patients with chronic inflammatory diseases, and 20 healthy volunteers by real-time PCR. The levels of YAP protein and neuron-specific enolase were estimated by ELISA and electrochemiluminescence immunoassay, respectively. Compared to the control group, miR-762, YAP, TWIST1, and SMAD3 expression were significantly upregulated in lung cancer patients and chronic inflammatory patients, except SMAD3 was significantly downregulated in chronic inflammatory patients. MST1, LATS2, and YAP protein were significantly downregulated in all patients. MiR-762 has a significant negative correlation with MST1, LATS2, and YAP protein in lung cancer patients and with MST1 and LATS2 in chronic inflammatory patients. MiR-762 may be involved in the induction of malignant behaviors in lung cancer through suppression of the Hippo pathway. MiR-762, MST1, LATS2, YAP mRNA and protein, TWIST1, and SMAD3 may be effective diagnostic biomarkers in both lung cancer patients and chronic inflammatory patients. High YAP, TWIST1, SMA3 expression, and NSE level are associated with a favorable prognosis for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Via de Sinalização Hippo , Transdução de Sinais , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Crônica , Proliferação de Células/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Biomed Pharmacother ; 174: 116589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636400

RESUMO

Diabetic cardiomyopathy (DCM) is a common severe complication of diabetes that occurs independently of hypertension, coronary artery disease, and valvular cardiomyopathy, eventually leading to heart failure. Previous studies have reported that Tectorigenin (TEC) possesses extensive anti-inflammatory and anti-oxidative stress properties. In this present study, the impact of TEC on diabetic cardiomyopathy was examined. The model of DCM in mice was established with the combination of a high-fat diet and STZ treatment. Remarkably, TEC treatment significantly attenuated cardiac fibrosis and improved cardiac dysfunction. Concurrently, TEC was also found to mitigate hyperglycemia and hyperlipidemia in the DCM mouse. At the molecular level, TEC is involved in the activation of AMPK, both in vitro and in vivo, by enhancing its phosphorylation. This is achieved through the regulation of endothelial-mesenchymal transition via the AMPK/TGFß/Smad3 pathway. Furthermore, it was demonstrated that the level of ubiquitination of the adiponectin receptor 1 (AdipoR1) protein is associated with TEC-mediated improvement of cardiac dysfunction in DCM mice. Notably the substantial reduction of myocardial fibrosis. In conclusion, TEC improves cardiac fibrosis in DCM mice by modulating the AdipoR1/AMPK signaling pathway. These findings suggest that TEC could be an effective therapeutic agent for the treatment of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Isoflavonas , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/etiologia , Dieta Hiperlipídica/efeitos adversos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose/tratamento farmacológico , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miocárdio/metabolismo , Receptores de Adiponectina/efeitos dos fármacos , Receptores de Adiponectina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Estreptozocina
14.
Mol Immunol ; 170: 60-75, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626622

RESUMO

Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-ß1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.


Assuntos
Tetracloreto de Carbono , Cromolina Sódica , Cirrose Hepática , Fígado , Mastócitos , Animais , Mastócitos/metabolismo , Mastócitos/imunologia , Mastócitos/efeitos dos fármacos , Tetracloreto de Carbono/toxicidade , Ratos , Masculino , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/imunologia , Cirrose Hepática/induzido quimicamente , Cromolina Sódica/farmacologia , Fígado/patologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Ratos Sprague-Dawley , Cetotifeno/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Estresse Oxidativo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Cancer Sci ; 115(5): 1505-1519, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38476010

RESUMO

The fibrotic tumor microenvironment is a pivotal therapeutic target. Nintedanib, a clinically approved multikinase antifibrotic inhibitor, is effective against lung adenocarcinoma (ADC) but not squamous cell carcinoma (SCC). Previous studies have implicated the secretome of tumor-associated fibroblasts (TAFs) in the selective effects of nintedanib in ADC, but the driving factor(s) remained unidentified. Here we examined the role of tissue inhibitor of metalloproteinase-1 (TIMP-1), a tumor-promoting cytokine overproduced in ADC-TAFs. To this aim, we combined genetic approaches with in vitro and in vivo preclinical models based on patient-derived TAFs. Nintedanib reduced TIMP-1 production more efficiently in ADC-TAFs than SCC-TAFs through a SMAD3-dependent mechanism. Cell culture experiments indicated that silencing TIMP1 in ADC-TAFs abolished the therapeutic effects of nintedanib on cancer cell growth and invasion, which were otherwise enhanced by the TAF secretome. Consistently, co-injecting ADC cells with TIMP1-knockdown ADC-TAFs into immunocompromised mice elicited a less effective reduction of tumor growth and invasion under nintedanib treatment compared to tumors bearing unmodified fibroblasts. Our results unveil a key mechanism underlying the selective mode of action of nintedanib in ADC based on the excessive production of TIMP-1 in ADC-TAFs. We further pinpoint reduced SMAD3 expression and consequent limited TIMP-1 production in SCC-TAFs as key for the resistance of SCC to nintedanib. These observations strongly support the emerging role of TIMP-1 as a critical regulator of therapy response in solid tumors.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Indóis , Neoplasias Pulmonares , Proteína Smad3 , Inibidor Tecidual de Metaloproteinase-1 , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Humanos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Indóis/farmacologia , Indóis/uso terapêutico , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Proteína Smad3/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Feminino
16.
Sci Rep ; 14(1): 6769, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514720

RESUMO

Breast cancer is a serious threat to human health. The transforming growth factor-ß signaling pathway is an important pathway involved in the occurrence and development of cancer. The SMAD family genes are responsible for the TGF-ß signaling pathway. However, the mechanism by which genes of the SMAD family are involved in breast cancer is still unclear. Therefore, it is necessary to investigate the biological roles of the SMAD family genes in breast cancer. We downloaded the gene expression data, gene mutation data, and clinical pathological data of breast cancer patients from the UCSC Xena database. We used the Wilcox test to estimate the expression of genes of the SMAD family in cancers. And the biological functions of SMAD family genes using the DAVID website. The Pearson correlation method was used to explore the immune cell infiltration and drug response of SMAD family genes. We conducted in biological experiments vitro and vivo. In this study, we integrated the multi-omics data from TCGA breast cancer patients for analysis. The expression of genes of SMAD family was significantly dysregulated in patients with breast cancer. Except for SMAD6, the expression of other SMAD family genes was positively correlated. We also found that genes of the SMAD family were significantly enriched in the TGF-ß signaling pathway, Hippo signaling pathway, cell cycle, and cancer-related pathways. In addition, SMAD3, SMAD6, and SMAD7 were lowly expressed in stage II breast cancer, while SMAD4 and SMAD2 were lowly expressed in stage III cancer. Furthermore, the expression of genes of the SMAD family was significantly correlated with immune cell infiltration scores. Constructing a xenograft tumor mouse model, we found that SMAD3 knockdown significantly inhibited tumorigenesis. Finally, we analyzed the association between these genes and the IC50 value of drugs. Interestingly, patients with high expression of SMAD3 exhibited significant resistance to dasatinib and staurosporine, while high sensitivity to tamoxifen and auranofin. In addition, SMAD3 knockdown promoted the apoptosis of BT-549 cells and decreased cell activity, and BAY-1161909 and XK-469 increased drug efficacy. In conclusion, genes of the SMAD family play a crucial role in the development of breast cancer.


Assuntos
Neoplasias da Mama , Transativadores , Humanos , Animais , Camundongos , Feminino , Transativadores/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Transdução de Sinais , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo
17.
Nat Commun ; 15(1): 2567, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519469

RESUMO

Non-small-cell lung carcinoma (NSCLC) is the most common lung cancer and one of the pioneer tumors in which immunotherapy has radically changed patients' outcomes. However, several issues are emerging and their implementation is required to optimize immunotherapy-based protocols. In this work, we investigate the ability of the Bromodomain and Extra-Terminal protein inhibitors (BETi) to stimulate a proficient anti-tumor immune response toward NSCLC. By using in vitro, ex-vivo, and in vivo models, we demonstrate that these epigenetic drugs specifically enhance Natural Killer (NK) cell cytotoxicity. BETi down-regulate a large set of NK inhibitory receptors, including several immune checkpoints (ICs), that are direct targets of the transcriptional cooperation between the BET protein BRD4 and the transcription factor SMAD3. Overall, BETi orchestrate an epigenetic reprogramming that leads to increased recognition of tumor cells and the killing ability of NK cells. Our results unveil the opportunity to exploit and repurpose these drugs in combination with immunotherapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células Matadoras Naturais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteínas que Contêm Bromodomínio
18.
Chem Biol Interact ; 394: 110979, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555046

RESUMO

TGF-ß/Smad signaling pathway plays an important role in the pathogenesis and progression of liver fibrosis. Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+) dependent enzyme and responsible for deacetylating the proteins. Increasing numbers of reports have shown that the molecular mechanism of SIRT1 as an effective therapeutic target for liver fibrosis but the transformation is not very clear. In the present study, liver fibrotic tissues were screened by staining with Masson, hematoxylin-eosin staining (H&E) and Immunohistochemistry (IHC) for histopathological observation from the liver biopsy of seventy-seven rhesus monkey, which fixed with 4% paraformaldehyde (PFA) after treatment with high-fat diet (HFD) for two years. And the liver function was further determined by serum biochemical tests. The mRNA levels and protein expression of rat hepatic stellate (HSC-T6) cells were determined after treatment with Resveratrol (RSV) and Nicotinamide (NAM), respectively. The results showed that with the increasing of hepatic fibrosis in rhesus monkeys, the liver function impaired, and the transforming growth factor-ß1 (TGF-ß1), p-Smad3 (p-Smad3) and alpha-smooth muscle actin (α-SMA) was up-regulated, while SIRT1 and Smad7 were down-regulated. Moreover, when stimulated the HSC-T6 with RSV to activate SIRT1 for 6, 12, and 24 h, the results showed that RSV promoted the expression of smad7, while the expression of TGF-ß1, p-Smad3 and α-SMA were inhibited. In contrast, when the cells stimulated with NAM to inhibit SIRT1 for 6, 12, and 24 h, the Smad7 expression was decreased, while TGF-ß1, p-Smad3, and α-SMA expressions were increased. These results indicate that SIRT1 acts as an important protective factor for liver fibrosis, which may be attributed to inhibiting the signaling pathway of TGF-ß/Smad in hepatic fibrosis of the rhesus monkey.


Assuntos
Cirrose Hepática , Macaca mulatta , Transdução de Sinais , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Ratos , Masculino , Resveratrol/farmacologia , Proteínas Smad/metabolismo , Niacinamida/farmacologia , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Actinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Proteína Smad3/metabolismo
19.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527804

RESUMO

Since its first discovery, long noncoding RNA Linc00673 has been linked to carcinogenesis and metastasis of various human cancers. Linc00673 had five transcriptional isoforms and their biological functions remained to be explored. Here we have reported that Linc00673-V3, one of the isoforms of Linc00673, promoted non-small cell lung cancer chemoresistance, and increased Linc00673-V3 expression level was associated with enhanced autophagy. Mechanistically, we discerned the existence of a stem-loop configuration engendered by the 1-100-nt and 2200-2275-nt fragments within Linc00673-V3. This structure inherently interacted with Smad3, thereby impeding its ubiquitination and subsequent degradation orchestrated by E3 ligase STUB1. The accumulation of Smad3 contributed to autophagy via up-regulation of LC3B transcription and ultimately conferred chemoresistance in NSCLC. Our results revealed a novel transcriptional regulation network between Linc00673-V3, Smad3, and LC3B, which provided an important insight into the interplay between autophagy regulation and non-canonical function of Smad3. Furthermore, the results from in vivo experiments suggested Linc00673-V3 targeted antisense oligonucleotide as a promising therapeutic strategy to overcome chemotherapy resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Associadas aos Microtúbulos , RNA Longo não Codificante , Proteína Smad3 , Humanos , Autofagia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Isoformas de Proteínas , Ubiquitina-Proteína Ligases , RNA Longo não Codificante/metabolismo , Proteína Smad3/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
20.
Nat Commun ; 15(1): 2176, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467649

RESUMO

The regulation of proteostasis is fundamental for maintenance of muscle mass and function. Activation of the TGF-ß pathway drives wasting and premature aging by favoring the proteasomal degradation of structural muscle proteins. Yet, how this critical post-translational mechanism is kept in check to preserve muscle health remains unclear. Here, we reveal the molecular link between the post-transcriptional regulation of m6A-modified mRNA and the modulation of SMAD-dependent TGF-ß signaling. We show that the m6A-binding protein YTHDF2 is essential to determining postnatal muscle size. Indeed, muscle-specific genetic deletion of YTHDF2 impairs skeletal muscle growth and abrogates the response to hypertrophic stimuli. We report that YTHDF2 controls the mRNA stability of the ubiquitin ligase ASB2 with consequences on anti-growth gene program activation through SMAD3. Our study identifies a post-transcriptional to post-translational mechanism for the coordination of gene expression in muscle.


Assuntos
Proteostase , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento Transformador beta/metabolismo , Músculos/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA