Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Brain Res ; 1827: 148756, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199307

RESUMO

Neural stem/progenitor cells (NSPCs) hold immense promise in clinical applications, yet the harsh conditions resulting from central nervous system (CNS) injuries, particularly oxidative stress, lead to the demise of both native and transplanted NSPCs. Cellular communication network factor 3 (CCN3) exhibits a protective effect against oxidative stress in various cell types. This study investigates the impact of CCN3 on NSPCs apoptosis induced by oxidative stress. To establish models of primary cultured mouse NSPCs under oxidative stress, we exposed them to 50 µM H2O2 for 4 h. Remarkably, pre-exposing CCN3 exacerbated the H2O2-induced decline in cell viability in a concentration-dependent manner. However, employing gene-targeted siRNA to inhibit CCN3 protected NSPCs against H2O2-induced cell death. Conversely, CCN3 replenishment reversed this protective effect, as evidenced by TUNEL staining, the ratio of Cleaved-caspase-3 to Pro-caspase-3, and Bcl-2/Bax. Further investigations revealed that CCN3 pretreatment increased the phosphorylation level of p38 MAPK, while silencing CCN3 diminished p38 MAPK activation. Ultimately, the impact of changes in CCN3 protein expression on H2O2-induced apoptosis was nullified using anisomycin (a p38 activator) and SB 203580 (a p38 inhibitor). Our findings suggest that CCN3 inhibition prevents H2O2-induced cell death in cultured mouse NSPCs via the p38 pathway. These discoveries may contribute to the development of strategies aimed at enhancing the survival of both endogenous and transplanted NSPCs following CNS oxidative stress insults.


Assuntos
Peróxido de Hidrogênio , Proteínas Quinases p38 Ativadas por Mitógeno , Camundongos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/farmacologia , Estresse Oxidativo , Apoptose , Células-Tronco/metabolismo
2.
Int J Mol Sci ; 20(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284378

RESUMO

CCN3, otherwise known as the nephroblastoma overexpressed (NOV) protein, is a cysteine-rich protein that belongs to the CCN family and regulates several cellular functions. Osteoblasts are major bone-forming cells that undergo proliferation, mineralization, renewal, and repair during the bone formation process. We have previously reported that CCN3 increases bone morphogenetic protein 4 (BMP-4) production and bone mineralization in osteoblasts, although the role of CCN3 remains unclear with regard to osteogenic transcription factors (runt-related transcription factor 2 (Runx2) and osterix). Here, we used alizarin red-S and alkaline phosphatase staining to show that CCN3 enhances osteoblast differentiation. Stimulation of osteoblasts with CCN3 increases expression of osteogenic factors such as BMPs, Runx2, and osterix. Moreover, we found that the inhibition of miR-608 expression is involved in the effects of CCN3 and that incubation of osteoblasts with CCN3 promotes focal adhesion kinase (FAK) and Akt phosphorylation. Our results indicate that CCN3 promotes the expression of Runx2 and osterix in osteoblasts by inhibiting miR-608 expression via the FAK and Akt signaling pathways.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MicroRNAs/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/farmacologia , Osteoblastos/metabolismo , Osteogênese , Transdução de Sinais , Fator de Transcrição Sp7/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Linhagem Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , MicroRNAs/genética , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Mol Med Rep ; 13(3): 2017-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26795879

RESUMO

The presence of apoptotic cells and loss of extracellular matrix (ECM) are common characteristics of degenerated cartilage endplates (CEPs). In addition, therapeutic efficacy is hampered by an incomplete understanding regarding the mechanisms underlying CEP homeostasis and degeneration. The CCN proteins have recently emerged as important regulators of cell­ECM interactions, and have been identified as key mediators of nucleus pulposus ECM composition and tissue homeostasis. However, whether CCN3 is associated with CEP homeostasis has yet to be elucidated. The present study aimed to investigate the effects of CCN3 on the apoptosis and ECM synthesis of CEP cells cultured under serum deprivation. Rat CEP cells were confirmed to be of the chondrocytic phenotype by toluidine blue staining. The mRNA expression levels of CCN3 were markedly increased, and a dose­dependent increase of apoptotic rate was detected under serum deprivation conditions following treatment with recombinant CCN3, whereas CCN3 did not exert a proapoptotic effect on cells cultured under normal conditions. Furthermore, CCN3­treated cells exhibited a decrease in the expression levels of aggrecan and collagen II in both groups. These results suggested that CCN3 may act as a regulator, rather than an initiator, of serum deprivation­induced cellular apoptosis, and that CCN3 has a catabolic effect on the mediation of ECM synthesis under both normal and serum deprivation conditions. Therefore, CCN3 may represent a novel therapeutic target for the prevention of CEP degeneration.


Assuntos
Cartilagem Articular/patologia , Condrócitos/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Células Cultivadas , Condrócitos/efeitos dos fármacos , Meios de Cultura Livres de Soro , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Fenótipo , Ratos Sprague-Dawley
4.
Oncol Rep ; 34(4): 2011-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238193

RESUMO

The nephroblastoma overexpressed (NOV) gene, a member of the CCN gene family that encodes secreted proteins involved in a variety of processes including tumorigenesis, is often altered in a variety of tumors, including osteosarcoma. Recent studies indicated that NOV promotes osteosarcoma metastasis, but its biological functions and molecular mechanisms on osteosarcoma proliferation have yet to be fully elucidated. The aim of the present study was to examine the role of NOV in osteosarcoma biology. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were performed to characterize the endogenous expression of NOV in osteosarcoma cell lines. Recombinant adenovirus expressing NOV/siNOV (AdNOV/AdsiNOV) was used to infect osteosarcoma cell lines with a relatively low/high endogenous NOV expression to determine the functional relevance of NOV expression to osteosarcoma cell growth and migration in vitro, respectively. As a result, osteosarcoma cell proliferation was significantly reduced by NOV upregulation, indicated by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltrazolium bromide (MTT), colony forming assay and cell cycle analysis. Cell apoptosis was markedly induced, as indicated by Hoechst 33258 staining assay and flow cytometry (FCM) detection. Despite the antiproliferative effect, NOV-transfected osteosarcoma cells exhibited increased migration ability. The possible molecular mechanisms underlying the biological role of NOV were also investigated. The results demonstrated that NOV increased the phosphorylation of p38 and c-Jun N-terminal kinase (JNK) mitogen-actived protein kinases (MAPKs) in osteosarcoma cell lines. When the phosphorylation of p38 and JNK were inhibited by SB203580 (p38 inhibitor) or SP600125 (JNK inhibitor), respectively, the NOV-induced proliferation inhibition and cell apoptosis were reversed. In conclusion, the results revealed that NOV regulates the tumor growth of osteosarcoma cells through activation of the MAPK signaling pathway and promotes osteosarcoma cell migration in vitro.


Assuntos
Neoplasias Ósseas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Sobre-Expressa em Nefroblastoma/genética , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Osteossarcoma/metabolismo , Antracenos/farmacologia , Apoptose , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Sobre-Expressa em Nefroblastoma/farmacologia , Osteossarcoma/genética , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Am J Pathol ; 184(11): 2908-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25193594

RESUMO

Fibrosis is at the core of the high morbidity and mortality rates associated with the complications of diabetes and obesity, including diabetic nephropathy (DN), without any US Food and Drug Administration-approved drugs with this specific target. We recently provided the first evidence that the matricellular protein CCN3 (official symbol NOV) functions in a reciprocal manner, acting on the profibrotic family member CCN2 to inhibit fibrosis in a mesangial cell model of DN. Herein, we used the BT/BR ob/ob mouse as a best model of human obesity and DN progression to determine whether recombinant human CCN3 could be used therapeutically, and the mechanisms involved. Eight weeks of thrice-weekly i.p. injections (0.604 and 6.04 µg/kg of recombinant human CCN3) beginning in early-stage DN completely blocked and/or reversed the up-regulation of mRNA expression of kidney cortex fibrosis genes (CCN2, Col1a2, TGF-ß1, and PAI-1) seen in placebo-treated diabetic mice. The treatment completely blocked glomerular fibrosis, as determined by altered mesangial expansion and deposition of laminin. Furthermore, it protected against, or reversed, podocyte loss and kidney function reduction (rise in plasma creatinine concentration); albuminuria was also greatly reduced. This study demonstrates the potential efficacy of recombinant human CCN3 treatment in DN and points to mechanisms operating at multiple levels or pathways, upstream (eg, protecting against cell injury) and downstream (eg, regulating CCN2 activity and extracellular matrix metabolism).


Assuntos
Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Fibrose/tratamento farmacológico , Rim/efeitos dos fármacos , Proteína Sobre-Expressa em Nefroblastoma/uso terapêutico , Animais , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/complicações , Fibrose/patologia , Fibrose/prevenção & controle , Rim/patologia , Masculino , Camundongos , Proteína Sobre-Expressa em Nefroblastoma/farmacologia , Obesidade/complicações , Obesidade/patologia , Resultado do Tratamento
6.
Int J Hematol ; 99(4): 393-406, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24563081

RESUMO

Throughout life, hematopoietic stem cells (HSCs) sustain the blood cell supply through their capacities for self-renewal and multilineage differentiation. These processes are regulated within a specialized microenvironment termed the 'niche'. Here, we show a novel mechanism for regulating HSC function that is mediated by nephroblastoma overexpressed (Nov/CCN3), a matricellular protein member of the CCN family. We found that Nov contributes to the maintenance of long-term repopulating (LTR) activity through association with integrin αvß3 on HSCs. The resultant ß3 integrin outside-in signaling is dependent on thrombopoietin (TPO), a crucial cytokine involved in HSC maintenance. TPO was required for Nov binding to integrin αvß3, and stimulated Nov expression in HSCs. However, in the presence of IFNγ, a cytokine known to impair HSC function, not only was TPO-induced expression of Nov suppressed, but the LTR activity was conversely impaired by TPO-mediated ligation of integrin αvß3 with exogenous ligands, including Nov, as well. Thus, Nov/integrin αvß3-mediated maintenance of HSCs appears to be modulated by simultaneous stimulation by other cytokines. Our finding suggests that this system contributes to the regulation of HSCs within the bone marrow niche.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Integrina alfaVbeta3/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interferon gama/farmacologia , Camundongos , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/farmacologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trombopoetina/farmacologia
7.
Am J Pathol ; 180(5): 1979-90, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22538190

RESUMO

In contrast to factors that promote mesangial cell proliferation, little is known about their endogenous inhibitors. During experimental mesangioproliferative nephritis, expression of the glomerular CCN3 (nephroblastoma overexpressed gene [NOV]) gene is reduced before the proliferative phase and increased in glomeruli and serum when mesangial cell proliferation subsides. To further elucidate its role in mesangioproliferative glomerulonephritis, CCN3 systemically was overexpressed by muscle electroporation in healthy or nephritic rats. This increased CCN3 serum concentrations more than threefold for up to 56 days. At day 5 after disease induction, CCN3-transfected rats showed an increase in glomerular endothelial area and in mRNA levels of the pro-angiogenic factors vascular endothelial growth factor and PDGF-C. At day 7, CCN3 overexpression decreased mesangial cell proliferation, including expression of α-smooth muscle actin and matrix accumulation of fibronectin and type IV collagen. In progressive nephritis (day 56), overexpression of CCN3 resulted in decreased albuminuria, glomerulosclerosis, and reduced cortical collagen type I accumulation. In healthy rat kidneys, overexpression of CCN3 induced no morphologic changes but regulated glomerular gene transcripts (reduced transcription of PDGF-B, PDGF-D, PDGF-receptor-ß, and fibronectin, and increased PDGF-receptor-α and PDGF-C mRNA). These data identify a dual role for CCN3 in experimental glomerulonephritis with pro-angiogenic and antimesangioproliferative effects. Manipulation of CCN3 may represent a novel approach to help repair glomerular endothelial damage and mesangioproliferative changes.


Assuntos
Glomerulonefrite Membranoproliferativa/metabolismo , Neovascularização Fisiológica/fisiologia , Proteína Sobre-Expressa em Nefroblastoma/fisiologia , Actinas/metabolismo , Doença Aguda , Indutores da Angiogênese/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo IV/metabolismo , Progressão da Doença , Eletroquimioterapia/métodos , Células Endoteliais/efeitos dos fármacos , Fibronectinas/metabolismo , Terapia Genética/métodos , Mesângio Glomerular/patologia , Glomerulonefrite Membranoproliferativa/patologia , Glomerulonefrite Membranoproliferativa/fisiopatologia , Glomerulonefrite Membranoproliferativa/terapia , Humanos , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/efeitos dos fármacos , Masculino , Células Mesangiais/patologia , Músculo Esquelético/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/sangue , Proteína Sobre-Expressa em Nefroblastoma/genética , Proteína Sobre-Expressa em Nefroblastoma/farmacologia , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real/métodos , Proteínas Recombinantes/farmacologia
8.
Arthritis Rheum ; 63(10): 3022-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21618206

RESUMO

OBJECTIVE: To investigate transforming growth factor ß (TGFß) regulation of CCN3 expression in cells of the nucleus pulposus. METHODS: Real-time reverse transcription-polymerase chain reaction and Western blot analyses were used to measure CCN3 expression in the nucleus pulposus. Transfections were used to measure the effect of Smad3, MAPKs, and activator protein 1 (AP-1) on TGFß-mediated CCN3 promoter activity. Lentiviral knockdown of Smad3 was performed to assess the role of Smad3 in CCN3 expression. RESULTS: CCN3 was expressed in embryonic and adult intervertebral discs. TGFß decreased the expression of CCN3 and suppressed its promoter activity in nucleus pulposus cells. DN-Smad3, Smad3 small interfering RNA, or DN-AP-1 had little effect on TGFß suppression of CCN3 promoter activity. However, p38 and ERK inhibitors blocked suppression of CCN3 by TGFß, suggesting involvement of these signaling pathways in the regulation of CCN3. Interestingly, overexpression of Smad3 in the absence of TGFß increased CCN3 promoter activity. We validated the role of Smad3 in controlling CCN3 expression in Smad3-null mice and in nucleus pulposus cells transduced with lentiviral short hairpin Smad3. In terms of function, treatment with recombinant CCN3 showed a dose-dependent decrease in the proliferation of nucleus pulposus cells. Moreover, CCN3-treated cells showed a decrease in aggrecan, versican, CCN2, and type I collagen expression. CONCLUSION: The opposing effect of TGFß on CCN2 and CCN3 expression and the suppression of CCN2 by CCN3 in nucleus pulposus cells further the paradigm that these CCN proteins form an interacting triad, which is possibly important in maintaining extracellular matrix homeostasis and cell numbers.


Assuntos
Disco Intervertebral/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Disco Intervertebral/citologia , Disco Intervertebral/efeitos dos fármacos , Camundongos , Proteína Sobre-Expressa em Nefroblastoma/genética , Proteína Sobre-Expressa em Nefroblastoma/farmacologia , Regiões Promotoras Genéticas , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta/genética
9.
Glia ; 58(12): 1510-21, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20648642

RESUMO

Increasing evidence suggests that CCN matricellular proteins play important roles in inflammation. One of the major cell types that handle inflammation in the brain is the astrocyte, which, upon activation, dramatically increases its production of cytokines and chemokines. Here, we report that NOV/CCN3, added to primary cultured rat brain astrocytes, markedly increased the expression of CCL2 and CXCL1 chemokines, as indicated by ELISA and RT-qPCR assays. This effect was selective, as the production of thirteen other cytokines and chemokines was not affected by NOV. NOV expression by astrocytes was demonstrated by immunocytochemistry and Western blot analysis, and astrocyte transfection with NOV small interfering RNA (siRNA) markedly decreased CXCL1 and CCL2 production, indicating that endogenous NOV played a major role in the control of astrocytic chemokine synthesis. NOV was shown to mediate several of its actions through integrins. Here, we observed that siRNAs against integrins beta1 and beta5 decreased basal and abrogated NOV-stimulated astrocyte expression of CCL2 and CXCL1, respectively. Using a panel of kinase inhibitors, we demonstrated that NOV action on CCL2 and CXCL1 production involved a Rho/ROCK/JNK/NF-kappaB and a Rho/qROCK/p38/NF-kappaB pathway, respectively. Thus, distinct integrins and signaling mechanisms are involved in NOV-induced production of CCL2 and CXCL1 in astrocytes. Finally, astrocytic expression of NOV was detected in rat brain tissue sections, and NOV intracerebral injection increased CCL2 and CXCL1 brain levels in vivo. Altogether, our data shed light on the signaling pathways operated by NOV and strongly suggest that NOV mediates astrocyte activation and, therefore, might play a role in neuroinflammation.


Assuntos
Astrócitos/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Cadeias beta de Integrinas/metabolismo , Integrina beta1/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Movimento Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CXCL1/genética , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Masculino , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA