Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 622(7984): 850-862, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794185

RESUMO

Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.


Assuntos
Imunoterapia , Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Imunoterapia/métodos , Interferons/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
3.
Chem Biodivers ; 19(1): e202100600, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34725898

RESUMO

Protein tyrosine phosphatases (PTPs) are essential modulators of signal transduction pathways and has been implicated in many human diseases such as cancer, diabetes, obesity, autoimmune disorders, and neurological diseases, indicating that PTPs are next-generation drug targets. Since PTPN1, PTPN2, and PTPN11 have been reported to be negative regulators of insulin action, the identification of PTP inhibitors may be an effective strategy to develop therapeutic agents for the treatment of type 2 diabetes. In this study, we observed for the first time that nepetin inhibits the catalytic activity of PTPN1, PTPN2, and PTPN11 in vitro, indicating that nepetin acts as a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11. Furthermore, treatment of mature 3T3-L1 adipocytes with 20 µM nepetin stimulates glucose uptake through AMPK activation. Taken together, our findings provide evidence that nepetin, a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11, could be a promising therapeutic candidate for the treatment of type 2 diabetes.


Assuntos
Inibidores Enzimáticos/química , Flavonas/química , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biocatálise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Flavonas/metabolismo , Flavonas/uso terapêutico , Glucose/metabolismo , Humanos , Resistência à Insulina , Camundongos , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteínas Tirosina Fosfatases/metabolismo
4.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445589

RESUMO

Crohn's Disease (CD) and Rheumatoid Arthritis (RA) share some single nucleotide polymorphisms (SNPs) in protein tyrosine phosphatase non-receptor types 2 and 22 (PTPN2/22). Recently, we reported that clinical samples from CD and RA patients associated with PTPN2:rs478582 or PTPN22:rs2476601 genotypes were linked to overactive immune response and exacerbation of inflammation. Here, we investigated in vitro the effects of these SNPs in Jurkat T-cells using CRISPR-Cas9. All cells were evaluated for PTPN22/22 loss of function and effects on cell response. We measured gene expression via RT-qPCR and cytokines by ELISA. We also measured cell proliferation using a BrdU labeling proliferation ELISA, and T-cell activation using CD-25 fluorescent immunostaining. In PTPN2 SNP-edited cells, PTPN2 expression decreased by 3.2-fold, and proliferation increased by 10.2-fold compared to control. Likewise, expression of PTPN22 decreased by 2.4-fold and proliferation increased by 8.4-fold in PTPN22 SNP-edited cells. IFN-γ and TNF-α secretions increased in both edited cell lines. CD25 expression (cell activation) was 80.32% in PTPN2 SNP-edited cells and 85.82% in PTPN22 SNP-edited cells compared to 70.48% in unedited Jurkat T-cells. Treatment of PTPN2 and PTPN22-edited cells with a maximum 20 µM spermidine restored PTPN2/22 expression and cell response including cell proliferation, activation, and cytokines secretion. Most importantly, the effect of spermidine on edited cells restored normal expression and secretion of IFN-γ and TNF-α. The data clearly demonstrated that edited SNPs in PTPN2 or PTPN22 were associated with reduced gene expression, which resulted in an increase in cell proliferation and activation and overactive immune response. The data validated our earlier observations in CD and RA clinical samples. Surprisingly, spermidine restored PTPN2/22 expression in edited Jurkat T-cells and the consequent beneficial effect on cell response and inflammation. The study supports the use of polyamines dietary supplements for management of CD and in RA patients.


Assuntos
Sistemas CRISPR-Cas , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia de Células T/patologia , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Espermidina/farmacologia , Artrite Reumatoide/genética , Doença de Crohn/genética , Predisposição Genética para Doença , Humanos , Células Jurkat , Leucemia de Células T/tratamento farmacológico , Leucemia de Células T/genética , Ativação Linfocitária , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 22/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo
5.
J Biol Chem ; 294(33): 12483-12494, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31248982

RESUMO

Protein tyrosine phosphatase, nonreceptor type 2 (PTPN2) is mainly expressed in hematopoietic cells, where it negatively regulates growth factor and cytokine signaling. PTPN2 is an important regulator of hematopoiesis and immune/inflammatory responses, as evidenced by loss-of-function mutations of PTPN2 in leukemia and lymphoma and knockout mice studies. Benzene is an environmental chemical that causes hematological malignancies, and its hematotoxicity arises from its bioactivation in the bone marrow to electrophilic metabolites, notably 1,4-benzoquinone, a major hematotoxic benzene metabolite. Although the molecular bases for benzene-induced leukemia are not well-understood, it has been suggested that benzene metabolites alter topoisomerases II function and thereby significantly contribute to leukemogenesis. However, several studies indicate that benzene and its hematotoxic metabolites may also promote the leukemogenic process by reacting with other targets and pathways. Interestingly, alterations of cell-signaling pathways, such as Janus kinase (JAK)/signal transducer and activator of transcription (STAT), have been proposed to contribute to benzene-induced malignant blood diseases. We show here that 1,4-benzoquinone directly impairs PTPN2 activity. Mechanistic and kinetic experiments with purified human PTPN2 indicated that this impairment results from the irreversible formation (kinact = 645 m-1·s-1) of a covalent 1,4-benzoquinone adduct at the catalytic cysteine residue of the enzyme. Accordingly, cell experiments revealed that 1,4-benzoquinone exposure irreversibly inhibits cellular PTPN2 and concomitantly increases tyrosine phosphorylation of STAT1 and expression of STAT1-regulated genes. Our results provide molecular and cellular evidence that 1,4-benzoquinone covalently modifies key signaling enzymes, implicating it in benzene-induced malignant blood diseases.


Assuntos
Benzeno , Benzoquinonas/metabolismo , Leucemia , Proteínas de Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Fator de Transcrição STAT1 , Transdução de Sinais/efeitos dos fármacos , Benzeno/farmacocinética , Benzeno/farmacologia , Células HEK293 , Humanos , Células Jurkat , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética
6.
Org Lett ; 21(12): 4864-4867, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31188002

RESUMO

Four unusual indole-terpenoids, penerpenes A-D (1-4), along with two known ones paxilline (5) and emindole SB (6), were isolated from the marine-derived fungus Penicillium sp. KFD28. The absolute structures of 1-4 were elucidated on the basis of spectroscopic data and ECD spectra analysis along with quantum ECD calculations. Compounds 1 and 2 showed potent inhibitory activity toward protein tyrosine phosphatases (PTP1B and TCPTP). Plausible biosynthetic pathways of compounds 1-4 are proposed.


Assuntos
Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Penicillium/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Terpenos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Indóis/química , Indóis/isolamento & purificação , Modelos Moleculares , Conformação Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Teoria Quântica , Terpenos/química , Terpenos/isolamento & purificação
7.
Bioorg Chem ; 88: 102900, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30991192

RESUMO

A series of imidazole flavonoids as new type of protein tyrosine phosphatase inhibitors were synthesized and characterized. Most of them gave potent protein phosphatase 1B (PTP1B) inhibitory activities. Especially, compound 11a could effectively inhibit PTP1B with an IC50 value of 0.63 µM accompanied with high selectivity ratio (9.5-fold) over T-cell protein tyrosine phosphatase (TCPTP). This compound is cell permeable with relatively low cytotoxicity. The high binding affinity and selectivity was disclosed by molecular modeling and dynamics studies. The structural features essential for activity were confirmed by quantum chemical studies.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Imidazóis/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Flavonoides/síntese química , Flavonoides/metabolismo , Flavonoides/toxicidade , Células HEK293 , Humanos , Imidazóis/síntese química , Imidazóis/metabolismo , Imidazóis/toxicidade , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo
8.
Biomed Res Int ; 2019: 9852897, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729132

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is considered a potential target for the treatment of type II diabetes and obesity due to its critical negative role in the insulin signaling pathway. However, improving the selectivity of PTP1B inhibitors over the most closely related T-cell protein tyrosine phosphatase (TCPTP) remains a major challenge for inhibitor development. Lys120 at the active site and Ser27 at the second pTyr binding site are distinct in PTP1B and TCPTP, which may bring differences in binding affinity. To explore the determinant of selective binding of inhibitor, molecular dynamics simulations with binding free energy calculations were performed on K120A and A27S mutated PTP1B, and the internal changes induced by mutations were investigated. Results reveal that the presence of Lys120 induces a conformational change in the WPD-loop and YRD-motif and has a certain effect on the selective binding at the active site. Ser27 weakens the stability of the inhibitor at the second pTyr binding site by altering the orientation of the Arg24 and Arg254 side chains via hydrogen bonds. Further comparison of alanine scanning demonstrates that the reduction in the energy contribution of Arg254 caused by A27S mutation leads to a different inhibitory activity. These observations provide novel insights into the selective binding mechanism of PTP1B inhibitors to TCPTP.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Sítios de Ligação , Domínio Catalítico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Ligação de Hidrogênio , Insulina/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
9.
J Biomol Struct Dyn ; 37(14): 3697-3706, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30238851

RESUMO

Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator in insulin signaling pathways, is regarded as a potential target for the treatment of type II diabetes and obesity. However, the mechanism underlying the selectivity of PTP1B inhibitors against T-cell protein tyrosine phosphatase (TCPTP) remains controversial, which is due to the high similarity between PTP1B and TCPTP sequence and the fact that no ligand-protein complex of TCPTP has been established yet. Here, the accelerated molecular dynamics (aMD) method was used to investigate the structural dynamics of PTP1B and TCPTP that are bound by two chemically similar inhibitors with distinct selectivity. The conformational transitions during the "open" to "close" states of four complexes were captured, and free energy profiles of important residue pairs were analyzed in detail. Additional MM-PBSA calculations confirmed that the binding free energies of final states were consistent with the experimental results, and the energetic contributions of important residues were further investigated by alanine scanning mutagenesis. By comparing the four complexes, the different conformational behavior of WPD-loop, R-loop, and the second pTyr binding site induced by inhibitors were featured and found to be crucial for the selectivity of inhibitors. This study provides new mechanistic insights of specific binding of inhibitors to PTP1B and TCPTP, which can be exploited to the further structural-based inhibitor design. Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Sítios de Ligação , Mutagênese/genética , Fosforilação , Análise de Componente Principal , Estrutura Secundária de Proteína , Termodinâmica , Tirosina/metabolismo
10.
J Med Chem ; 61(24): 11144-11157, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30525586

RESUMO

Celastrol is a natural pentacyclic triterpene used in traditional Chinese medicine with significant weight-lowering effects. Celastrol-administered mice at 100 µg/kg decrease food consumption and body weight via a leptin-dependent mechanism, yet its molecular targets in this pathway remain elusive. Here, we demonstrate in vivo that celastrol-induced weight loss is largely mediated by the inhibition of leptin negative regulators protein tyrosine phosphatase (PTP) 1B (PTP1B) and T-cell PTP (TCPTP) in the arcuate nucleus (ARC) of the hypothalamus. We show in vitro that celastrol binds reversibly and inhibits noncompetitively PTP1B and TCPTP. NMR data map the binding site to an allosteric site in the catalytic domain that is in proximity of the active site. By using a panel of PTPs implicated in hypothalamic leptin signaling, we show that celastrol additionally inhibited PTEN and SHP2 but had no activity toward other phosphatases of the PTP family. These results suggest that PTP1B and TCPTP in the ARC are essential for celastrol's weight lowering effects in adult obese mice.


Assuntos
Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Triterpenos/farmacologia , Sítio Alostérico , Animais , Fármacos Antiobesidade/metabolismo , Domínio Catalítico , Dieta Hiperlipídica/efeitos adversos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos Transgênicos , Obesidade/etiologia , Triterpenos Pentacíclicos , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/metabolismo , Redução de Peso/efeitos dos fármacos
11.
J Chem Inf Model ; 58(4): 837-847, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29608303

RESUMO

Protein tyrosine phosphatase 1B (PTP1B), a promising target for type II diabetes, obesity, and cancer therapeutics, plays an important negative role in insulin signaling pathways. However, the lack of selectivity over other PTPs, especially for T-cell protein tyrosine phosphatase (TCPTP), is still a challenge for inhibitor development. Recent studies have suggested that the second phosphotyrosine (pTyr) binding site, close to the catalytic domain, may elevate binding affinity while bringing selectivity to inhibitors. Inspired by these studies, a virtual screening method based on a bidentate strategy was employed to identify novel selective inhibitors of PTP1B. Targeting both the active site and the second pTyr binding site of PTP1B, three compounds (CD00466, JFD02943, JFD02945) were found to be competitive inhibitors ( Ki range from 1.79 to 10.49 µM). The most effective compound, CD00466, exhibited selectivity over TCPTP (31-fold). Using molecular dynamics simulation and the MM/GBSA binding free energy calculation, this study confirmed that the three inhibitors bound to PTP1B in a bidentate pattern. Our work indicates that bidentate virtual screening is a potential approach to the further investigation of selective PTP1B inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Termodinâmica , Interface Usuário-Computador
12.
Mar Drugs ; 16(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558377

RESUMO

Phidianidines A and B are two novel marine indole alkaloids bearing an uncommon 1,2,4-oxadiazole ring and exhibiting various biological activities. Our previous research showed that the synthesized phidianidine analogs had the potential to inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), a validated target for Type II diabetes, which indicates that these analogs are worth further structural modification. Therefore, in this paper, a series of phidianidine derivatives were designed and rapidly synthesized with a function-oriented synthesis (FOS) strategy. Their inhibitory effects on PTP1B and T-cell protein tyrosine phosphatase (TCPTP) were evaluated, and several compounds displayed significant inhibitory potency and specific selectivity over PTP1B. The structure-activity relationship (SAR) and molecular docking analyses are also described.


Assuntos
Alcaloides Indólicos/química , Oxidiazóis/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular/métodos , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Relação Estrutura-Atividade
13.
Eur J Med Chem ; 144: 692-700, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29289892

RESUMO

PTP1B serving as a key negative regulator of insulin signaling is a novel target for type 2 diabetes and obesity. Modification at ring B of N-{4-[(3-Phenyl-ureido)-methyl]-phenyl}-methane-sulfonamide template to interact with residues Arg47 and Lys41 in the C site of PTP1B by molecular docking aided design resulted in the discovery of a series of novel high potent and selective inhibitors of PTP1B. The structure activity relationship interacting with the C site of PTP1B was well illustrated. Compounds 8 and 18 were shown to be the high potent and most promising PTP1B inhibitors with cellular activity and great selectivity over the highly homologous TCPTP and other PTPs.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Relação Estrutura-Atividade
14.
Org Biomol Chem ; 15(45): 9595-9598, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29116277

RESUMO

Protein tyrosine phosphatases (PTPs) have been challenging targets for inhibitor design, because all PTPs share a highly conserved active site structure, which is positively charged and requires negatively charged moieties for tight binding. In this study, we developed cell-permeable bicyclic peptidyl inhibitors against T-cell PTP (TCPTP), which feature a cell-penetrating motif in one ring and a target-binding sequence in the second ring.


Assuntos
Técnicas de Química Combinatória , Inibidores Enzimáticos/farmacologia , Peptídeos Cíclicos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Células HeLa , Humanos , Conformação Molecular , Biblioteca de Peptídeos , Peptídeos Cíclicos/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Relação Estrutura-Atividade
15.
Eur J Med Chem ; 134: 24-33, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28395151

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin signaling pathway. Inhibition of PTP1B is expected to improve insulin action. Appropriate selectivity and permeability are the gold standard for excellent PTP1B inhibitors. In this work, molecular hybridization-based screening identified a selective competitive PTP1B inhibitor. Compound 10a has IC50 values of 199 nM against PTP1B, and shows 32-fold selectivity for PTP1B over the closely related phosphatase TCPTP. Molecule docking and molecular dynamics studies reveal the reason of selectivity for PTP1B over TCPTP. Moreover, the cell permeability and cellular activity of compound 10a are demonstrated respectively.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Monossacarídeos/química , Monossacarídeos/farmacologia , Fenóis/química , Fenóis/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Desenho de Fármacos , Halogenação , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo
16.
Sci Rep ; 6: 35808, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782165

RESUMO

Impaired phosphatase activity leads to the persistent activation of signal transducers and activators of transcription (Stat). In mammals, Stat family members are often phosphorylated or dephosphorylated by the same enzymes. To date, only one Stat similar to mammalian Stat5a/b has been found in crustaceans and there have been few studies in Stat signal regulation in crustaceans. Here, we report that ß-arrestin1 interacts with TC45 (45-kDa form of T cell protein tyrosine phosphatase) in the nucleus to attenuate Stat signaling by promoting dephosphorylation of Stat. Initially, we showed that Stat translocates into the nucleus to induce antimicrobial peptide (AMP) expression after bacterial infection. ßArr1 enters the nucleus of hemocytes and recruits TC45 to form the ßarr1-TC45-Stat complex, which dephosphorylates Stat efficiently. The interaction of TC45 with Stat decreased and Stat phosphorylation increased in ßarr1-silenced shrimp (Marsupenaeus japonicus) after challenge with Vibrio anguillarum. ßArr1 directly interacts with Stat in nucleus and accelerates Stat dephosphorylation by recruiting TC45 after V. anguillarum challenge. Further study showed that ßarr1 and TC45 also affect AMP expression, which is regulated by Stat. Therefore, ßarr1 and TC45 are involved in the anti-V. anguillarum immune response by regulating Stat activity negatively to decrease AMP expression in shrimp.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Fatores de Transcrição STAT/metabolismo , beta-Arrestina 1/metabolismo , Animais , Chlorocebus aethiops , Decápodes/metabolismo , Mucosa Intestinal/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/genética , Transdução de Sinais , Vibrio/fisiologia , beta-Arrestina 1/antagonistas & inibidores , beta-Arrestina 1/genética
17.
Bioorg Med Chem ; 23(12): 2848-53, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25805211

RESUMO

Protein tyrosine phosphatases (PTPs) are important enzymes in health and disease, and chemical tools are crucial to understand and modulate their biological roles. PTP1B is involved in diabetes, obesity and cancer. One of the main challenges for the design of chemical tools for PTP1B is the homology to TCPTP, making tool selectivity a highly challenging task. Here, we aimed to study if azide-alkyne cycloaddition-mediated cyclization of a peptide inhibitor could increase its selectivity toward PTP1B over TCPTP, and if cyclic and linear peptide binders can be applied as enrichment tools of endogenous PTP1B. While the cyclization of the peptide binders did not improve the selectivity toward PTP1B over TCPTP, it enhanced strongly the efficiency to co-precipitate endogenous PTP1B out of cell lysates. Our results show that fine-tuning the molecular structure of peptidic pull-down baits can greatly enhance their efficiency compared to the parental peptide sequences.


Assuntos
Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Alcinos/química , Azidas/química , Reação de Cicloadição , Humanos , Peptídeos Cíclicos/síntese química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo
18.
Chem Biol Drug Des ; 83(6): 697-709, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24418013

RESUMO

Given the special role of insulin and leptin signaling in various biological responses, protein-tyrosine phosphatase-1B (PTP1B) was regarded as a novel therapeutic target for treating type 2 diabetes and obesity. However, owing to the highly conserved (sequence identity of about 74%) in active pocket, targeting PTP1B for drug discovery is a great challenge. In this study, we employed the software package Discovery Studio to develop 3D QSAR pharmacophore models for PTP1B and TCPTP inhibitors. It was further validated by three methods (cost analysis, test set prediction, and Fisher's test) to show that the models can be used to predict the biological activities of compounds without costly and time-consuming synthesis. The criteria for virtual screening were also validated by testing the selective PTP1B inhibitors. Virtual screening experiments and subsequent in vitro evaluation of promising hits revealed a novel and selective inhibitor of PTP1B over TCPTP. After that, a most likely binding mode was proposed. Thus, the findings reported here may provide a new strategy in discovering selective PTP1B inhibitors.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Relação Quantitativa Estrutura-Atividade
19.
Mini Rev Med Chem ; 13(11): 1602-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24000798

RESUMO

Even though protein tyrosine phosphatase has been identified as a validated therapeutic target over a decade for type II diabetes and obesity, developing a selective inhibitor to protein tyrosine phosphatase 1B (PTP1B) over other cellular PTPases has been a complicated task owing to the highly conserved and polar nature of the PTP1B catalytic site. Virtual screening study of in-house chemical depository resulted in the prioritization of few low molecular weight compounds as PTP1B inhibitors. The in-vitro pNPP assays were carried out on prioritized compounds in both PTP1B and T-cell protein tyrosine phosphatase (TCPTP). From this we identified four low molecular weight compounds as PTP1B inhibitors, of which the compound AU-2439 has shown 5 fold selectivity towards PTP1B over highly homologous TCPTP. In this short communication selectivity of AU-2439 is explained based on interaction with critical active site residues in both proteins using docking models.


Assuntos
Inibidores Enzimáticos/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Tiazolidinedionas/química
20.
Chem Biol Drug Des ; 82(5): 595-602, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23848232

RESUMO

Owing to its special role as a negative regulator in both insulin and leptin signaling, protein tyrosine phosphatase-1B (PTP1B) has drawn considerable attention as a target for treating type 2 diabetes and obesity. It, however, is a great challenge to discover inhibitors specific to each PTP due to the highly homologous. In this study, a series of compounds were discovered to inhibit PTP1B based on imidazolidine-2,4-dione by means of 'core hopping'. A selective PTP1B inhibitor (comp#h) was identified, and molecular dynamics simulation and binding free energy calculation were carried out to propose the most likely binding mode of comp#h with PTP1B. The findings reported here may provide a new strategy in discovering selective and effective inhibitors for treating diabetes.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Imidazolidinas/química , Imidazolidinas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Sítios de Ligação , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Imidazolidinas/metabolismo , Imidazolidinas/uso terapêutico , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA