Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.021
Filtrar
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1098-1108, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977339

RESUMO

OBJECTIVE: To identify the biomarkers for early rheumatoid arthritis (RA) diagnosis and explore the possible immune regulatory mechanisms. METHODS: The differentially expressed genesin RA were screened and functionally annotated using the limma, RRA, batch correction, and clusterProfiler. The protein-protein interaction network was retrieved from the STRING database, and Cytoscape 3.8.0 and GeneMANIA were used to select the key genes and predicting their interaction mechanisms. ROC curves was used to validate the accuracy of diagnostic models based on the key genes. The disease-specific immune cells were selected via machine learning, and their correlation with the key genes were analyzed using Corrplot package. Biological functions of the key genes were explored using GSEA method. The expression of STAT1 was investigated in the synovial tissue of rats with collagen-induced arthritis (CIA). RESULTS: We identified 9 core key genes in RA (CD3G, CD8A, SYK, LCK, IL2RG, STAT1, CCR5, ITGB2, and ITGAL), which regulate synovial inflammation primarily through cytokines-related pathways. ROC curve analysis showed a high predictive accuracy of the 9 core genes, among which STAT1 had the highest AUC (0.909). Correlation analysis revealed strong correlations of CD3G, ITGAL, LCK, CD8A, and STAT1 with disease-specific immune cells, and STAT1 showed the strongest correlation with M1-type macrophages (R=0.68, P=2.9e-08). The synovial tissues of the ankle joints of CIA rats showed high expressions of STAT1 and p-STAT1 with significant differential expression of STAT1 between the nucleus and the cytoplasm of the synovial fibroblasts. The protein expressions of p-STAT1 and STAT1 in the cell nuclei were significantly reduced after treatment. CONCLUSION: CD3G, CD8A, SYK, LCK, IL2RG, STAT1, CCR5, ITGB2, and ITGAL may serve as biomarkers for early diagnosis of RA. Gene-immune cell pathways such as CD3G/CD8A/LCK-γδ T cells, ITGAL-Tfh cells, and STAT1-M1-type macrophages may be closely related with the development of RA.


Assuntos
Artrite Reumatoide , Biomarcadores , Mapas de Interação de Proteínas , Fator de Transcrição STAT1 , Membrana Sinovial , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Animais , Ratos , Fator de Transcrição STAT1/metabolismo , Biomarcadores/metabolismo , Membrana Sinovial/metabolismo , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Perfilação da Expressão Gênica , Bases de Dados Genéticas , Humanos , Antígenos CD8/metabolismo , Receptores CCR5/metabolismo , Receptores CCR5/genética , Quinase Syk/metabolismo , Quinase Syk/genética , Curva ROC
2.
J Med Chem ; 67(14): 11868-11884, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38973320

RESUMO

Despite significant advances over recent years, the treatment of T cell acute lymphoblastic leukemia (T-ALL) remains challenging. We have recently shown that a subset of T-ALL cases exhibited constitutive activation of the lymphocyte-specific protein tyrosine kinase (LCK) and were consequently responsive to treatments with LCK inhibitors and degraders such as dasatinib and dasatinib-based PROTACs. Here we report the design, synthesis and in vitro/vivo evaluation of SJ45566, a potent and orally bioavailable LCK PROTAC.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/antagonistas & inibidores , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Humanos , Administração Oral , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Animais , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Linhagem Celular Tumoral , Relação Estrutura-Atividade
3.
Front Immunol ; 15: 1440499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021567

RESUMO

The tyrosine kinase Lck is mandatory for initiating signaling responses downstream the antigenic T cell receptor (TCR). Numerous studies have shown that a prerequisite for efficient and well-balanced Lck regulation and function is its finely orchestrated spatial distribution pattern, especially at the plane of the plasma membrane. There is a wealth of knowledge on Lck localization sites, preference for specialized lipid microenvironments and colocalization partners. However, several questions concerning the spatial organization of its differentially phosphorylated conformers and the dynamics of their juxtaposition in relation to ligated and non-ligated TCRs remain elusive. In this brief report we introduce a non-invasive nanobody-based approach for mapping Lck subcellular allocation with high precision. Our initial data using this methodology, provide insight into the topology of Lck in resting T cells and its confined localization in a strictly delimited environment within the plane of the plasma membrane.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Anticorpos de Domínio Único , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Humanos , Anticorpos de Domínio Único/imunologia , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Jurkat , Fosforilação , Transdução de Sinais
4.
J Chem Inf Model ; 64(12): 4835-4849, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38847742

RESUMO

The lymphocyte-specific protein tyrosine kinase (LCK) plays a crucial role in both T-cell development and activation. Dysregulation of LCK signaling has been demonstrated to drive the oncogenesis of T-cell acute lymphoblastic leukemia (T-ALL), thus providing a therapeutic target for leukemia treatment. In this study, we introduced a sophisticated virtual screening strategy combined with biological evaluations to discover potent LCK inhibitors. Our initial approach involved utilizing the PLANET algorithm to assess and contrast various scoring methodologies suitable for LCK inhibitor screening. After effectively evaluating PLANET, we progressed to devise a virtual screening workflow that synergistically combines the strengths of PLANET with the capabilities of Schrödinger's suite. This integrative strategy led to the efficient identification of four potential LCK inhibitors. Among them, compound 1232030-35-1 stood out as the most promising candidate with an IC50 of 0.43 nM. Further in vitro bioassays revealed that 1232030-35-1 exhibited robust antiproliferative effects on T-ALL cells, which was attributed to its ability to suppress the phosphorylations of key molecules in the LCK signaling pathway. More importantly, 1232030-35-1 treatment demonstrated profound in vivo antileukemia efficacy in a human T-ALL xenograft model. In addition, complementary molecular dynamics simulations provided deeper insight into the binding kinetics between 1232030-35-1 and LCK, highlighting the formation of a hydrogen bond with Met319. Collectively, our study established a robust and effective screening strategy that integrates AI-driven and conventional methodologies for the identification of LCK inhibitors, positioning 1232030-35-1 as a highly promising and novel drug-like candidate for potential applications in treating T-ALL.


Assuntos
Aprendizado Profundo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/antagonistas & inibidores , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Animais , Descoberta de Drogas , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos
5.
Int Immunopharmacol ; 134: 112237, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744170

RESUMO

Regulatory T (Treg) cells are indispensable in maintaining the immune homeostasis and preventing autoimmune diseases. Regulatory T (Treg) cells include thymus derived Treg cells (tTregs) and peripherally induced Treg cells (iTreg), which are differentiated from antigen stimulated CD4+ naïve T cells in presence of TGFß. tTregs are quite stable, and more immune suppressive, while iTreg cells are less stable, and are prone to differentiate into inflammatory T cells. Therefore, identification of small molecules that could promote the differentiation of iTreg cells is an attractive strategy for autoimmune diseases. Inhibition of AKT/mTOR pathway promotes their differentiation. Whether inhibition of Lck/Fyn kinase activity (upstream of AKT/mTOR pathway) can be used to promote the differentiation of iTreg cells has not been determined. Here, we showed that Srci1, a small molecular inhibitor of Lck/Fyn, promoted the differentiation of FOXP3+ iTreg cells. Srci1 treatment resulted in inhibition of phosphorylation of key components of AKT/mTOR pathway, including mTOR, p70 S6K, 4EBP1, and promoted the expression of Foxp3 and its target genes, thereby promoted differentiation of in vitro iTreg cells. Srci1 treated iTreg cells showed more similar gene expression profile to that of tTreg cells. Our results thus suggest that inhibition of Lck/Fyn kinase activity can promote the differentiation of iTreg cells, and may have implication in autoimmune diseases.


Assuntos
Diferenciação Celular , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Linfócitos T Reguladores , Serina-Treonina Quinases TOR , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Diferenciação Celular/efeitos dos fármacos , Animais , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Fatores de Transcrição Forkhead/metabolismo , Células Cultivadas , Camundongos Endogâmicos C57BL , Humanos
6.
Yakugaku Zasshi ; 144(5): 497-501, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692923

RESUMO

Signal-transducing adaptor protein-2 (STAP-2) is a unique scaffold protein that regulates several immunological signaling pathways, including LIF/LIF receptor and LPS/TLR4 signals. STAP-2 is required for Fas/FasL-dependent T cell apoptosis and SDF-1α-induced T cell migration. Conversely, STAP-2 modulates integrin-mediated T cell adhesion, suggesting that STAP-2 is essential for several negative and positive T cell functions. However, whether STAP-2 is involved in T cell-antigen receptor (TCR)-mediated T cell activation is unknown. STAP-2 deficiency was recently reported to suppress TCR-mediated T cell activation by inhibiting LCK-mediated CD3ζ and ZAP-70 activation. Using STAP-2 deficient mice, it was demonstrated that STAP-2 is required for the pathogenesis of Propionibacterium acnes-induced granuloma formation and experimental autoimmune encephalomyelitis. Here, detailed functions of STAP-2 in TCR-mediated T cell activation, and how STAP-2 affects the pathogenesis of T cell-mediated inflammation and immune diseases, are reviewed.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Linfócitos T , Proteína-Tirosina Quinase ZAP-70 , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Complexo CD3 , Adesão Celular , Movimento Celular , Quimiocina CXCL12/fisiologia , Quimiocina CXCL12/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/etiologia , Inflamação/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/fisiologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Propionibacterium acnes/fisiologia , Propionibacterium acnes/imunologia , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Proteína-Tirosina Quinase ZAP-70/metabolismo , Proteína-Tirosina Quinase ZAP-70/fisiologia
7.
Front Immunol ; 15: 1392933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779683

RESUMO

Introduction: Antigen binding to the T cell antigen receptor (TCR) leads to the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 complex, and thereby to T cell activation. The CD3ε subunit plays a unique role in TCR activation by recruiting the kinase LCK and the adaptor protein NCK prior to ITAM phosphorylation. Here, we aimed to investigate how phosphorylation of the individual CD3ε ITAM tyrosines impacts the CD3ε signalosome. Methods: We mimicked irreversible tyrosine phosphorylation by substituting glutamic acid for the tyrosine residues in the CD3ε ITAM. Results: Integrating CD3ε phospho-mimetic variants into the complete TCR-CD3 complex resulted in reduced TCR signal transduction, which was partially compensated by the involvement of the other TCR-CD3 ITAMs. By using novel CD3ε phospho-mimetic Chimeric Antigen Receptor (CAR) variants, we avoided any compensatory effects of other ITAMs in the TCR-CD3 complex. We demonstrated that irreversible CD3ε phosphorylation prevented signal transduction upon CAR engagement. Mechanistically, we demonstrated that glutamic acid substitution at the N-terminal tyrosine residue of the CD3ε ITAM (Y39E) significantly reduces NCK binding to the TCR. In contrast, mutation at the C-terminal tyrosine of the CD3ε ITAM (Y50E) abolished LCK recruitment to the TCR, while increasing NCK binding. Double mutation at the C- and N-terminal tyrosines (Y39/50E) allowed ZAP70 to bind, but reduced the interaction with LCK and NCK. Conclusions: The data demonstrate that the dynamic phosphorylation of the CD3ε ITAM tyrosines is essential for CD3ε to orchestrate optimal TCR and CAR signaling and highlights the key role of CD3ε signalosome to tune signal transduction.


Assuntos
Complexo CD3 , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Transdução de Sinais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo CD3/metabolismo , Células HEK293 , Motivo de Ativação do Imunorreceptor Baseado em Tirosina , Células Jurkat , Ativação Linfocitária/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Fosforilação , Ligação Proteica , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Transdução de Sinais/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Proteína-Tirosina Quinase ZAP-70/genética
8.
Elife ; 122024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639990

RESUMO

CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Placenta , Gravidez , Animais , Feminino , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Placenta/metabolismo , Transdução de Sinais/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Fosforilação , Antígenos CD4 , Mamíferos/metabolismo
9.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38324068

RESUMO

TH17 differentiation is critically controlled by "signal 3" of cytokines (IL-6/IL-23) through STAT3. However, cytokines alone induced only a moderate level of STAT3 phosphorylation. Surprisingly, TCR stimulation alone induced STAT3 phosphorylation through Lck/Fyn, and synergistically with IL-6/IL-23 induced robust and optimal STAT3 phosphorylation at Y705. Inhibition of Lck/Fyn kinase activity by Srci1 or disrupting the interaction between Lck/Fyn and STAT3 by disease-causing STAT3 mutations selectively impaired TCR stimulation, but not cytokine-induced STAT3 phosphorylation, which consequently abolished TH17 differentiation and converted them to FOXP3+ Treg cells. Srci1 administration or disrupting the interaction between Lck/Fyn and STAT3 significantly ameliorated TH17 cell-mediated EAE disease. These findings uncover an unexpected deterministic role of TCR signaling in fate determination between TH17 and Treg cells through Lck/Fyn-dependent phosphorylation of STAT3, which can be exploited to develop therapeutics selectively against TH17-related autoimmune diseases. Our study thus provides insight into how TCR signaling could integrate with cytokine signal to direct T cell differentiation.


Assuntos
Encefalomielite Autoimune Experimental , Receptores de Antígenos de Linfócitos T , Células Th17 , Diferenciação Celular , Citocinas , Interleucina-23 , Interleucina-6 , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Fosforilação , Encefalomielite Autoimune Experimental/imunologia , Animais
10.
Bioorg Chem ; 144: 107180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335758

RESUMO

Lymphocyte-specific protein tyrosine kinase (LCK), a member of the Src family of tyrosine kinases, is implicated in the pathogenesis of almost all types of leukemia via T cells activation and signal transduction. LCK is highly expressed in acute lymphoblastic leukemia (ALL), and knockdown of the LCK gene can significantly inhibit the proliferation of leukemia cell lines. Here, we designed and synthesized a series of benzothiazole derivatives as novel LCK inhibitors using both docking-based virtual screening and activity assays for structural optimization. Among these compounds, 7 m showed a strong inhibitory activity in the proliferation of leukemia cell lines and LCK kinase activity. Moreover, we found that compound 7 m could induce apoptosis while simultaneously blocking cell cycle via decreasing its phosphorylation at Tyr394 of the LCK. Collectively, these findings shed new light on compound 7 m that would be utilized as a promising drug candidate with apoptosis-triggered and cell cycle arrest activities for the future ALL therapy.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Transdução de Sinais , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Benzotiazóis/farmacologia
11.
Bioorg Med Chem Lett ; 102: 129645, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316368

RESUMO

Lymphocyte-specific protein tyrosine kinase (Lck) plays vital roles in the T-cell receptor- mediated development, function, and differentiation of T-cells. Given its substantial involvement in T cell signaling, irregularities in the expression and functionality of Lck may lead to various diseases, including cancer. In this study, we found that compound 12a exerted significant inhibitory potency against Lck with an IC50 value of 10.6 nM. In addition, 12a demonstrated high efficacy in various colon cancer cell lines as indicated by GI50 values ranging from 0.24 to 1.26 µM. Notably, 12a inhibited the phosphorylation of Lck in Colo201 cells. Overall, the anti-proliferative effects of 12a on diverse cancer cell lines highlights its potential application for the treatment of various cancer types.


Assuntos
Antineoplásicos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/farmacologia , Linfócitos T , Transdução de Sinais , Fosforilação , Receptores de Antígenos de Linfócitos T/metabolismo , Antineoplásicos/farmacologia
12.
Nat Commun ; 15(1): 532, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225265

RESUMO

DUSP22 is a dual-specificity phosphatase that inhibits T cell activation by inactivating the kinase Lck. Here we show that the E3 ubiquitin ligase UBR2 is a positive upstream regulator of Lck during T-cell activation. DUSP22 dephosphorylates UBR2 at specific Serine residues, leading to ubiquitin-mediated UBR2 degradation. UBR2 is also modified by the SCF E3 ubiquitin ligase complex via Lys48-linked ubiquitination at multiple Lysine residues. Single-cell RNA sequencing analysis and UBR2 loss of function experiments showed that UBR2 is a positive regulator of proinflammatory cytokine expression. Mechanistically, UBR2 induces Lys63-linked ubiquitination of Lck at Lys99 and Lys276 residues, followed by Lck Tyr394 phosphorylation and activation as part of TCR signalling. Inflammatory phenotypes induced by TCR-triggered Lck activation or knocking out DUSP22, are attenuated by genomic deletion of UBR2. UBR2-Lck interaction and Lck Lys63-linked ubiquitination are induced in the peripheral blood T cells of human SLE patients, which demonstrate the relevance of the UBR2-mediated regulation of inflammation to human pathology. In summary, we show here an important regulatory mechanism of T cell activation, which finetunes the balance between T cell response and aggravated inflammation.


Assuntos
Fosfatases de Especificidade Dupla , Ubiquitina-Proteína Ligases , Humanos , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fosforilação , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Inflamação/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
13.
Sci Signal ; 17(817): eadg4422, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166031

RESUMO

Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.


Assuntos
Proteínas Serina-Treonina Quinases , Receptores de Antígenos de Linfócitos T , Linfócitos T , Animais , Humanos , Camundongos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Treonina/metabolismo
14.
Structure ; 32(3): 292-303.e7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38157858

RESUMO

The CD4 or CD8 co-receptors' interaction with the protein-tyrosine kinase Lck initiates the tyrosine phosphorylation cascade leading to T cell activation. A critical question is: to what extent are co-receptors and Lck coupled? Our contribution concerns Zn2+, indispensable for CD4- and CD8-Lck formation. We combined biochemical and cellular approaches to show that dynamic fluctuations of free Zn2+ in physiological ranges influence Zn(CD4)2 and Zn(CD4)(Lck) species formation and their ratio, although the same Zn(Cys)2(Cys)2 cores. Moreover, we demonstrated that the affinity of Zn2+ to CD4 and CD4-Lck species differs significantly. Increased intracellular free Zn2+ concentration in T cells causes higher CD4 partitioning in the plasma membrane. We additionally found that CD4 palmitoylation decreases the specificity of CD4-Lck formation in the reconstituted membrane model. Our findings help elucidate co-receptor-Lck coupling stoichiometry and demonstrate that intracellular free Zn2+ has a major role in the interplay between CD4 dimers and CD4-Lck assembly.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfócitos T , Linfócitos T/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Antígenos CD4 , Transdução de Sinais , Fosforilação , Zinco/metabolismo , Receptores de Antígenos de Linfócitos T
15.
J Exp Med ; 221(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962568

RESUMO

Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.


Assuntos
Síndromes de Imunodeficiência , Linfopenia , Lactente , Humanos , Animais , Camundongos , Antígenos CD28 , Linfócitos T CD4-Positivos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Receptores de Antígenos de Linfócitos T/genética , Inflamação/genética , Linfopenia/genética
16.
J Clin Immunol ; 44(1): 4, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112969

RESUMO

Mutations affecting T-cell receptor (TCR) signaling typically cause combined immunodeficiency (CID) due to varying degrees of disturbed T-cell homeostasis and differentiation. Here, we describe two cousins with CID due to a novel nonsense mutation in LCK and investigate the effect of this novel nonsense mutation on TCR signaling, T-cell function, and differentiation. Patients underwent clinical, genetic, and immunological investigations. The effect was addressed in primary cells and LCK-deficient T-cell lines after expression of mutated LCK. RESULTS: Both patients primarily presented with infections in early infancy. The LCK mutation led to reduced expression of a truncated LCK protein lacking a substantial part of the kinase domain and two critical regulatory tyrosine residues. T cells were oligoclonal, and especially naïve CD4 and CD8 T-cell counts were reduced, but regulatory and memory including circulating follicular helper T cells were less severely affected. A diagnostic hallmark of this immunodeficiency is the reduced surface expression of CD4. Despite severely impaired TCR signaling mTOR activation was partially preserved in patients' T cells. LCK-deficient T-cell lines reconstituted with mutant LCK corroborated partially preserved signaling. Despite detectable differentiation of memory and effector T cells, their function was severely disturbed. NK cell cytotoxicity was unaffected. Residual TCR signaling in LCK deficiency allows for reduced, but detectable T-cell differentiation, while T-cell function is severely disturbed. Our findings expand the previous report on one single patient on the central role of LCK in human T-cell development and function.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Humanos , Códon sem Sentido , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Doenças da Imunodeficiência Primária/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
17.
Molecules ; 28(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37959801

RESUMO

The lymphocyte-specific protein tyrosine kinase (LCK) is a critical target in leukemia treatment. However, potential off-target interactions involving LCK can lead to unintended consequences. This underscores the importance of accurately predicting the inhibitory reactions of drug molecules with LCK during the research and development stage. To address this, we introduce an advanced ensemble machine learning technique designed to estimate the binding affinity between molecules and LCK. This comprehensive method includes the generation and selection of molecular fingerprints, the design of the machine learning model, hyperparameter tuning, and a model ensemble. Through rigorous optimization, the predictive capabilities of our model have been significantly enhanced, raising test R2 values from 0.644 to 0.730 and reducing test RMSE values from 0.841 to 0.732. Utilizing these advancements, our refined ensemble model was employed to screen an MCE -like drug library. Through screening, we selected the top ten scoring compounds, and tested them using the ADP-Glo bioactivity assay. Subsequently, we employed molecular docking techniques to further validate the binding mode analysis of these compounds with LCK. The exceptional predictive accuracy of our model in identifying LCK inhibitors not only emphasizes its effectiveness in projecting LCK-related safety panel predictions but also in discovering new LCK inhibitors. For added user convenience, we have also established a webserver, and a GitHub repository to share the project.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química
18.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833951

RESUMO

The protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor (TCR)-mediated signaling pathway, such as the lymphocyte-specific protein tyrosine kinase (Lck), Src family tyrosine kinases Fyn, and the phosphorylation levels of Zeta-chain-associated protein kinase-70 (ZAP70). For the first time, we have successfully produced PTPN22 CS transgenic mice in which the tyrosine phosphatase activity of PTPN22 is suppressed. Notably, the number of thymocytes in the PTPN22 CS mice was significantly reduced, and the expression of cytokines in the spleen and lymph nodes was changed significantly. Furthermore, PTPN22 CS facilitated the positive and negative selection of developing thymocytes, increased the expression of the TCRαß-CD3 complex on the thymus cell surface, and regulated their internalization and recycling. ZAP70, Lck, Phospholipase C gamma1(PLCγ1), and other proteins were observed to be reduced in PTPN22 CS mouse thymocytes. In summary, PTPN22 regulates TCR internalization and recycling via the modulation of the TCR signaling pathway and affects TCR expression on the T cell surface to regulate negative and positive selection. PTPN22 affected the development of the thymus, spleen, lymph nodes, and other peripheral immune organs in mice. Our study demonstrated that PTPN22 plays a crucial role in T cell development and provides a theoretical basis for immune system construction.


Assuntos
Receptores de Antígenos de Linfócitos T , Quinases da Família src , Animais , Camundongos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos Transgênicos , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Quinases da Família src/metabolismo
19.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686072

RESUMO

The role of neutrophils in breast cancer shows that the N1 proinflammatory subtype can suppress and attack the tumor. In contrast, the N2 pro-tumor subtype aids the tumor in its survival, progression, and metastasis. Recently, more focus has been directed to the role of innate myeloid cells, specifically neutrophils, in regulating the responses of lymphoid populations both in the progression of cancer and in response to therapy. However, the exact crosstalk between breast cancer cells and neutrophils is poorly understood. In this work, we used in-silico assays to investigate the role of the bidirectional effect of neutrophils on metastatic TNBC. Our reanalysis of publicly available data reveals that most TNBC's classified within the CE2 subtype are leukocyte-poor and have four major cell types in their ecotypes: dendritic cells, macrophages, fibroblasts, and epithelial cells. Further immune deconvolution of these patients revealed that a few cells significantly differed between groups, including macrophages, neutrophils, and T cells. All BC showed lower infiltrating neutrophils compared to healthy surrounding tissue. Treated TNBCs improved the count of infiltrating neutrophils in TNBC. Most TNBC patients have a unique CE2 ecotype, characterized by more basal-like epithelial cells, more neutrophils, and fewer mononuclear lymphocytes (B cells, macrophages M1, T cell CD4+ (non-regulatory), and T cell CD8+ and T regs). This can be related to our finding that CE2 TNBCs are characterized by a lower LCK and higher ERBB2, and their top DEGs are related to leukocyte activation and NFKB pathway.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Neutrófilos , Neoplasias de Mama Triplo Negativas , Humanos , Apresentação de Antígeno , Linfócitos B , Leucócitos , Neoplasias de Mama Triplo Negativas/genética
20.
Allergy ; 78(10): 2596-2605, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37395496

RESUMO

Eosinophilia is a common finding in drug hypersensitivity reactions (DHR). Its cause is unclear, as neither antigen/allergen-driven inflammation nor clonal expansion is involved. Most delayed-DHRs are due to p-i (pharmacologic interaction of drugs with immune receptors). These are off-target activities of drugs with immune receptors that result in various types of T-cell stimulation, some of which involve excessive IL-5 production. Functional and phenotypic studies of T-cell clones and their TCR-transfected hybridoma cell lines revealed that some p-i-induced drug stimulations occur without CD4/ CD8 co-receptor engagement. The CD4/CD8 co-receptors link Lck (lymphocyte-specific protein tyrosine kinase) and LAT (linker for activation of T cells) to the TCR. Alteration of Lck or LAT can result in a TCR signalosome with enhanced IL-5 production. Thus, if a more affine TCR-[drug/peptide/HLA] interaction allows bypassing the CD4 co-receptor, a modified Lck/LAT activation may lead to a TCR signalosome with elevated IL-5 production. This "IL-5-TCR-signalosome" hypothesis could also explain eosinophilia in superantigen or allo-stimulation (graft-versus-host disease), in which evasion of CD4/CD8 co-receptors has also been described. It may open new therapeutic possibilities in certain eosinophilic diseases by directly targeting the IL-5-TCR signalosome.


Assuntos
Hipersensibilidade a Drogas , Eosinofilia , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Interleucina-5 , Linfócitos T , Antígenos CD8/metabolismo , Antígenos CD4/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA