Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(6): e0187422, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37306568

RESUMO

Viperin is a multifunctional interferon-inducible protein that is directly induced in cells by human cytomegalovirus (HCMV) infection. The viral mitochondrion-localized inhibitor of apoptosis (vMIA) interacts with viperin at the early stages of infection and translocates it from the endoplasmic reticulum to the mitochondria, where viperin modulates the cellular metabolism to increase viral infectivity. Viperin finally relocalizes to the viral assembly compartment (AC) at late stages of infection. Despite the importance of vMIA interactions with viperin during viral infection, their interacting residues are unknown. In the present study, we showed that cysteine residue 44 (Cys44) of vMIA and the N-terminal domain (amino acids [aa] 1 to 42) of viperin are necessary for their interaction and for the mitochondrial localization of viperin. In addition, the N-terminal domain of mouse viperin, which is structurally similar to that of human viperin, interacted with vMIA. This indicates that the structure, rather than the sequence composition, of the N-terminal domain of viperin, is required for the interaction with vMIA. Recombinant HCMV, in which Cys44 of vMIA was replaced by an alanine residue, failed to translocate viperin to the mitochondria at the early stages of infection and inefficiently relocalized it to the AC at late stages of infection, resulting in the impairment of viperin-mediated lipid synthesis and a reduction in viral replication. These data indicate that Cys44 of vMIA is therefore essential for the intracellular trafficking and function of viperin to increase viral replication. Our findings also suggest that the interacting residues of these two proteins are potential therapeutic targets for HCMV-associated diseases. IMPORTANCE Viperin traffics to the endoplasmic reticulum (ER), mitochondria, and viral assembly compartment (AC) during human cytomegalovirus (HCMV) infection. Viperin has antiviral activity at the ER and regulates cellular metabolism at the mitochondria. Here, we show that Cys44 of HCMV vMIA protein and the N-terminal domain (aa 1 to 42) of viperin are necessary for their interaction. Cys44 of vMIA also has a critical role for viperin trafficking from the ER to the AC via the mitochondria during viral infection. Recombinant HCMV expressing a mutant vMIA Cys44 has impaired lipid synthesis and viral infectivity, which are attributed to mislocalization of viperin. Cys44 of vMIA is essential for the trafficking and function of viperin and may be a therapeutic target for HCMV-associated diseases.


Assuntos
Proteínas Imediatamente Precoces , Proteína Viperina , Proteínas Virais , Viroses , Animais , Humanos , Camundongos , Cisteína/metabolismo , Citomegalovirus/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Lipídeos , Mitocôndrias/metabolismo , Viroses/metabolismo , Proteína Viperina/metabolismo , Proteínas Virais/metabolismo
2.
Inflamm Res ; 72(1): 27-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36315280

RESUMO

OBJECTIVES AND DESIGN: Dendritic cells (DCs) are one of the key immune cells in bridging innate and adaptive immune response against Mycobacterium tuberculosis (Mtb) infection. Interferons (IFNs) play important roles in regulating DC activation and function. Virus-inhibitory protein, endoplasmic reticulum-associated, interferon-inducible (Viperin) is one of the important IFN-stimulated genes (ISGs), and elicits host defense against infection. METHODS: We investigated the effects and mechanisms of Viperin on DC activation and function using Viperin deficient bone marrow-derived dendritic cells (BMDCs) during Mtb infection. RESULTS: Viperin deficiency enhanced phagocytic activity and increased clearance of Mtb in DCs, produced higher abundance of NO, cytokine including interleukin-12 (IL-12), Tumor necrosis factor-α (TNF-α), IL-1ß, IL-6 and chemokine including CXCL1, CXCL2 and CXCL10, elevated MHC I, MHC II and co-stimulatory molecules expression, and enhanced CD4+ and CD8+ T cell responses. Mechanistically, Viperin deficiency promoted DC activation and function through NF-κB p65 activation. NF-κB p65 inhibitor prevented cytokine and chemokine production, and co-stimulatory molecules expression promoted by Viperin deficiency. CONCLUSIONS: These results suggest that Mtb induced Viperin expression could impair the activation of host defense function of DCs and DC-T cell cross talk during Mtb infection. This research may provide a potential target for future HDT in TB therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Proteína Viperina , Quimiocinas/metabolismo , Citocinas , Células Dendríticas , Mycobacterium tuberculosis/metabolismo , NF-kappa B/metabolismo , Proteína Viperina/metabolismo , Animais
3.
Front Immunol ; 14: 1327749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173722

RESUMO

Viperin is a prominent antiviral protein found in animals. The primary function of Viperin is the production of 3'-deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP), an inhibitory nucleotide involved in viral RNA synthesis. Studies in mammalian models have suggested that ddhCTP interferes with metabolic proteins. However, this hypothesis has yet to be tested in teleost. In this study, the role of Viperin in regulating metabolic alterations during viral hemorrhagic septicemia virus (VHSV) infection was tested. When infected with VHSV, viperin -/- fish showed considerably higher mortality rates. VHSV copy number and the expression of the NP gene were significantly increased in viperin -/- fish. Metabolic gene analysis revealed significant differences in soda, hif1a, fasn, and acc expression, indicating their impact on metabolism. Cholesterol analysis in zebrafish larvae during VHSV infection showed significant upregulation of cholesterol production without Viperin. In vitro analysis of ZF4 cells suggested a considerable reduction in lipid production and a significant upregulation of reactive oxygen species (ROS) generation with the overexpression of viperin. Neutrophil and macrophage recruitment were significantly modulated in viperin -/- fish compared to the wild-type (WT) fish. Thus, we have demonstrated that Viperin plays a role in interfering with metabolic alterations during VHSV infection.


Assuntos
Septicemia Hemorrágica Viral , Perciformes , Animais , Colesterol , Mamíferos , Proteínas , Peixe-Zebra , Proteína Viperina/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
Dev Comp Immunol ; 123: 104166, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34116117

RESUMO

SVCV infection is known to activate the host's innate immune responses, including the production of interferon (IFN) and interferon-stimulated genes (ISGs). Viperin_sv1 is a novel splice variant of viperin, which is induced during SVCV infection and proves to positively regulate the IFN activation and production. However, the underlying mechanism remains unsolved. In this study, the P protein of SVCV was identified to be the key to induce the mRNA modification and production of viperin_sv1 during the virus infection. Besides, Viperin_sv1 was able to trigger the RLR signaling cascades to activate type-1 interferon response. Additional analysis revealed that viperin_sv1 promoted the stability and function of RIG-I, which result in the production of IFN and ISGs. Moreover, the central SAM domain of viperin_sv1 was demonstrated to be essential for regulating RIG-I protein expression and inducing IFN production. Furthermore, this study also showed that SVCV replication could be inhibited by the viperin_sv1 SAM domain. In conclusion, our study demonstrates that viperin_sv1 reduces the replication of SVCV by promoting the RIG-I protein expression. Our findings identified the antiviral function played by the SAM domain of viperin_sv1 and suggested an antiviral mechanism that is conserved among different species.


Assuntos
Cyprinidae/imunologia , Proteínas de Peixes/metabolismo , Receptores do Ácido Retinoico/metabolismo , Infecções por Rhabdoviridae/imunologia , Rhabdoviridae/fisiologia , Proteína Viperina/metabolismo , Animais , Antivirais , Proteínas de Peixes/genética , Imunidade Inata , Interferon Tipo I/metabolismo , Domínios Proteicos/genética , Receptores do Ácido Retinoico/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA