Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Org Lett ; 23(9): 3315-3319, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33826851

RESUMO

A styrylpyrone-fused ergosterol derivative, ergopyrone (1), was isolated and structurally characterized from a mushroom, Gymnopilus orientispectabilis, along with five biosynthetically related metabolites (2-6). Compound 1 features an unprecedented hexacyclic 6/5/6/6/6/5 skeleton that would be formed from ergosterol and styrylpyrone precursors via [3 + 2] cycloaddition. The chemical structure of 1 was elucidated by conventional spectroscopic and spectrometric data analysis coupled with computational methods including DP4+ probability and ECD simulation and an NOE/ROE-based interproton distance measurement technique via peak amplitude normalization for the improved cross-relaxation (PANIC) method. Plausible biosynthetic pathways of 1-6 are proposed, and compound 6 significantly regulated lipid metabolism in adipocytes through the upregulation of the mRNA expression of Adipsin, Fabp4, SREBP1, and ATGL.


Assuntos
Ergosterol/química , Esteroides/química , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Agaricales , Vias Biossintéticas , Estrutura Molecular , Esteroides/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-30593870

RESUMO

Fatty acid metabolism is crucial for maintaining energy homeostasis in aquatic vertebrates experiencing environmental stress. Both sterol regulatory element-binding protein 1 (SREBP-1) and peroxisome proliferator-activated receptor α (PPARα) are the key regulators of fatty acid metabolism. In this study, the coding sequences (CDS) of SREBP-1 and PPARα were firstly identified and characterized from Onychostoma macrolepis, encoding peptides of 1136 and 470 amino acids, respectively. The functional domains in O. macrolepis SREBP-1 and PPARα proteins retained the high similarity with those of other animals, at 74.69% and 77.29%, respectively. The mRNA encoding SREBP-1 was primarily expressed in the muscle and PPARα was highly expressed in the liver and intestine. Under thermal exposure, the content of non-esterified fatty acid (NEFA) decreased gradually after 1 h in the liver and muscle of O. macrolepis, which might be due to that the organism meet more energy expenditure via fatty acid ß-oxidation. Furthermore, the mRNA expression level of SREBP-1 decreased, while the mRNA expression level of PPARα increased from 0 h to 6 h in the liver. And we found that the mRNA expression levels of both SREBP-1 and PPARα decreased significantly at 48 h (P < .05) in the muscle, which was in accordance with the significant decrease of target gene FAS and CPT1A mRNA expression levels, respectively. It might be the physiological adjustment that the fish adapted to thermal exposure at the end of experiment. These results illustrate that O. macrolepis SREBP-1 and PPARα-mediated fatty acid metabolism is a fundamental requirement for thermal adaptation.


Assuntos
Cyprinidae/metabolismo , Proteínas de Peixes/metabolismo , Temperatura Alta , PPAR alfa/metabolismo , RNA Mensageiro/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Sequência de Aminoácidos , Animais , Cyprinidae/genética , Ácidos Graxos não Esterificados/metabolismo , Proteínas de Peixes/genética , Lipólise , PPAR alfa/química , PPAR alfa/genética , Filogenia , Homologia de Sequência de Aminoácidos , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
3.
J Virol ; 92(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30258014

RESUMO

Coxsackievirus B3 (CVB3) is the predominant pathogen of viral myocarditis. In our previous study, we found that CVB3 caused abnormal lipid accumulation in host cells. However, the underlying mechanisms by which CVB3 disrupts and exploits the host lipid metabolism are not well understood. Sterol regulatory element binding protein 1 (SREBP1) is the major transcriptional factor in lipogenic genes expression. In this study, we demonstrated that CVB3 infection and nonstructural 2A protein upregulated and activated SREBP1a at the transcriptional level. Deletion analysis of SREBP1a promoter revealed that two regions, -1821/-1490 and -312/+217, in this promoter were both required for its activation by 2A. These promoter regions possessed several binding motifs for transcription factor SP1. Next, we used SP1-specific small interfering RNAs (siRNAs) to confirm that SP1 might be the essential factor in SREBP1a upregulation by 2A. Furthermore, we showed that MEK/ERK pathway was involved in the activation of SREBP1a by 2A and that blocking this signaling pathway with the specific inhibitor U0126 attenuated SREBP1a activation and lipid accumulation by 2A. Finally, we showed that inhibition of SREBP1 with siRNAs attenuated lipid accumulation induced by CVB3 infection and reduced virus replication. Moreover, inhibition of the MEK/ERK pathway also led to reduction of SREBP1a activation, lipid accumulation, and virus replication during CVB3 infection. Taken together, these data demonstrate that CVB3 nonstructural 2A protein activates SREBP1a at the transcription level through a mechanism involving MEK/ERK signaling pathway and SP1 transcription factor, which promotes cellular lipid accumulation and benefits virus replication.IMPORTANCE Coxsackievirus B3 (CVB3) infection is the leading cause of viral myocarditis, but effective vaccines and antiviral therapies against CVB3 infection are still lacking. It is important to understand the precise interactions between host and virus for the rational design of effective therapies. During infection, CVB3 disrupts and exploits host lipid metabolism to promote excessive lipid accumulation, which benefits virus replication. SREBP1 is the master regulator of cellular lipid metabolism. Here, we report that one of the viral nonstructural proteins, 2A, upregulates and activates SREBP1a. Furthermore, we find that inhibition of SREBP1 decreases CVB3 virus replication. These results reveal the regulation of SREBP1a expression by 2A and the roles of SREBP1 in lipid accumulation and viral replication during CVB3 infection. Our findings provide a new insight into CVB3 host interactions and inform a potential novel therapeutic target for this important pathogen.


Assuntos
Infecções por Coxsackievirus/genética , Enterovirus Humano B/patogenicidade , Fator de Transcrição Sp1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteínas não Estruturais Virais/metabolismo , Sítios de Ligação , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/metabolismo , Células HeLa , Humanos , Metabolismo dos Lipídeos , Sistema de Sinalização das MAP Quinases , Regiões Promotoras Genéticas , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ativação Transcricional , Regulação para Cima , Replicação Viral
4.
Cell Cycle ; 15(20): 2753-65, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27579997

RESUMO

The SREBP transcription factors are major regulators of lipid metabolism. Disturbances in lipid metabolism are at the core of several health issues facing modern society, including cardiovascular disease, obesity and diabetes. In addition, the role of lipid metabolism in cancer cell growth is receiving increased attention. Transcriptionally active SREBP molecules are unstable and rapidly degraded in a phosphorylation-dependent manner by Fbw7, a ubiquitin ligase that targets several cell cycle regulatory proteins for degradation. We have previously demonstrated that active SREBP1 is stabilized during mitosis. We have now delineated the mechanisms involved in the stabilization of SREBP1 in mitotic cells. This process is initiated by the phosphorylation of a specific serine residue in nuclear SREBP1 by the mitotic kinase Cdk1. The phosphorylation of this residue creates a docking site for a separate mitotic kinase, Plk1. Plk1 interacts with nuclear SREBP1 in mitotic cells and phosphorylates a number of residues in the C-terminal domain of the protein, including a threonine residue in close proximity of the Fbw7 docking site in SREBP1. The phosphorylation of these residues by Plk1 blocks the interaction between SREBP1 and Fbw7 and attenuates the Fbw7-dependent degradation of nuclear SREBP1 during cell division. Inactivation of SREBP1 results in a mitotic defect, suggesting that SREBP1 could regulate cell division. We propose that the mitotic phosphorylation and stabilization of nuclear SREBP1 during cell division provides a link between lipid metabolism and cell proliferation. Thus, the current study provides additional support for the emerging hypothesis that SREBP-dependent lipid metabolism may be important for cell growth.


Assuntos
Núcleo Celular/metabolismo , Metabolismo dos Lipídeos , Mitose , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo , Quinase 1 Polo-Like
5.
Cancer Res ; 76(5): 1260-72, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26759235

RESUMO

Dysregulation of the sterol regulatory element-binding transcription factors sterol regulatory element-binding protein (SREBP) and SREBF activates de novo lipogenesis to high levels in cancer cells, a critical event in driving malignant growth. In this study, we identified an important posttranslational mechanism by which SREBP1a is regulated during metabolic reprogramming in cancer cells. Mass spectrometry revealed protein arginine methyltransferase 5 (PRMT5) as a binding partner of SREBP1a that symmetrically dimethylated it on R321, thereby promoting transcriptional activity. Furthermore, PRMT5-induced methylation prevented phosphorylation of SREBP1a on S430 by GSK3ß, leading to its disassociation from Fbw7 (FBXW7) and its evasion from degradation through the ubiquitin-proteasome pathway. Consequently, methylation-stabilized SREBP1a increased de novo lipogenesis and accelerated the growth of cancer cells in vivo and in vitro. Clinically, R321 symmetric dimethylation status was associated with malignant progression of human hepatocellular carcinoma, where it served as an independent risk factor of poor prognosis. By showing how PRMT5-induced methylation of SREBP1a triggers hyperactivation of lipid biosynthesis, a key event in tumorigenesis, our findings suggest a new generalized strategy to selectively attack tumor metabolism.


Assuntos
Arginina/metabolismo , Lipogênese , Neoplasias Hepáticas/patologia , Proteína-Arginina N-Metiltransferases/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Metilação , Fosforilação , Estabilidade Proteica , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Biomaterials ; 73: 149-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26409000

RESUMO

Combination therapy is usually considered as a promising strategy owing to its advantages such as reduced doses, minimized side effects and improved therapeutic efficiency in a variety of diseases including diabetes. Here we synthesized a new highly intracellular stimuli-sensitive chitosan-graft-metformin (CS-MET) prodrug by imine reaction between oxidative chitosan and metformin for type 2 diabetes (T2D) therapy. Hypothetically, CS-MET functions dually as an anti-diabetes prodrug as well as a gene delivery vector without superfluous materials. CS-MET formed nanocomplexes with therapeutic gene through electrostatic interactions and entered cells by Organic Cation Transporter (OCT)-independent endocytosis. The incorporation of metformin into chitosan has been found to increase endosomal escape via the proton sponge effect. When vector carrying a short-hairpin RNA (shRNA) silencing sterol regulatory element-binding protein (SREBP), a major transcription factor involved in de novo lipogenisis, it reduced the SREBP mRNA and proteins efficiently. Furthermore, by intraperitoneal injection, CS-MET/shSREBP nanocomplexes effectively knocked down SREBP in livers of western-type diet (WD)-induced obese C57BL/6J mice, markedly reversed insulin resistance and alleviated the fatty liver phenotype without obvious toxic effects. Thus we were able to show that the intracellular stimuli-sensitive CS-MET prodrug renders a potential platform to increase the anti-diabetes activity with synergistic enhancement of gene therapy.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Nanoestruturas/química , Polímeros/química , Pró-Fármacos/química , Animais , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Quitosana/administração & dosagem , Endocitose , Fígado Gorduroso/metabolismo , Terapia Genética/métodos , Vetores Genéticos , Teste de Tolerância a Glucose , Células Hep G2 , Homeostase , Humanos , Iminas/química , Lipídeos/química , Metformina/administração & dosagem , Metformina/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microscopia Confocal , Oxigênio/química , Fenótipo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Eletricidade Estática , Proteína de Ligação a Elemento Regulador de Esterol 1/química
7.
Proc Natl Acad Sci U S A ; 112(40): 12390-5, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392539

RESUMO

Regulated intramembrane proteolysis (RIP) is a conserved mechanism crucial for numerous cellular processes, including signaling, transcriptional regulation, axon guidance, cell adhesion, cellular stress responses, and transmembrane protein fragment degradation. Importantly, it is relevant in various diseases including Alzheimer's disease, cardiovascular diseases, and cancers. Even though a number of structures of different intramembrane proteases have been solved recently, fundamental questions concerning mechanistic underpinnings of RIP and therapeutic interventions remain. In particular, this includes substrate recognition, what properties render a given substrate amenable for RIP, and how the lipid environment affects the substrate cleavage. Members of the sterol regulatory element-binding protein (SREBP) family of transcription factors are critical regulators of genes involved in cholesterol/lipid homeostasis. After site-1 protease cleavage of the inactive SREBP transmembrane precursor protein, RIP of the anchor intermediate by site-2 protease generates the mature transcription factor. In this work, we have investigated the labile anchor intermediate of SREBP-1 using NMR spectroscopy. Surprisingly, NMR chemical shifts, site-resolved solvent exposure, and relaxation studies show that the cleavage site of the lipid-signaling protein intermediate bears rigid α-helical topology. An evolutionary conserved motif, by contrast, interrupts the secondary structure ∼9-10 residues C-terminal of the scissile bond and acts as an inducer of conformational flexibility within the carboxyl-terminal transmembrane region. These results are consistent with molecular dynamics simulations. Topology, stability, and site-resolved dynamics data suggest that the cleavage of the α-helical substrate in the case of RIP may be associated with a hinge motion triggered by the molecular environment.


Assuntos
Proteínas de Membrana/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteólise , Homologia de Sequência de Aminoácidos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
8.
Mol Neurodegener ; 10: 39, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26296997

RESUMO

BACKGROUND: The γ-secretase complex, composed of transmembrane proteins termed presenilin (PS), anterior pharynx defective (APH), nicastrin (NCT), and presenilin enhancer-2 (Pen-2) catalyzes intramembranous hydrolysis of a variety of Type I membrane protein substrates. In order to understand aspects of subunit assembly, interactions, dynamics and catalysis, it is essential to clarify the membrane topology of each polypeptide. Hydophathicity plots predict that the 101 amino acid Pen-2 molecule has two hydrophobic domains (HP1 and HP2) that may serve as transmembrane spanning domains. Earlier reports indicated that transiently overexpressed Pen-2 uses these two hydrophobic domains as transmembrane helices that generates a "U-shaped" hairpin topology with both amino- (N-) and carboxyl-(C-) termini facing the lumen. In this report, we have reexamined the topology of endogenous Pen-2 and Pen-2 chimeras that are stably expressed in mammalian cells, and have assessed the function of these molecules in rescuing γ-secretase activity in Pen-2-deficient fibroblasts. RESULTS: We confirm that the Pen-2 C-terminus is lumenal, but the N-terminus of Pen-2 is exposed to the cytoplasm, thus indicating that HP1 does not traverse the lipid bilayer as a transmembrane domain. Domain swapping studies reveal the importance of specific regions within the first hydrophobic domain of Pen-2 that are critical for generating the topology that is a prerequisite for mediating PS1 endoproteolysis and γ-secretase activity. Finally, we report that the first fourteen amino acids of the Pen-2 HP1 are required for γ-secretase activity. CONCLUSIONS: We propose that the first hydrophobic domain of Pen-2 forms a structure similar to a reentrant loop while the second hydrophobic domain spans the lipid bilayer.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Proteínas de Membrana/química , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/deficiência , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Catálise , Linhagem Celular Tumoral , Células Cultivadas , Fibroblastos/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Neuroblastoma/patologia , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-25448051

RESUMO

In the present study, putative cDNA of sterol regulatory element-binding protein 1 (SREBP-1) and peroxisome proliferator-activated receptor α (PPAR-α), key regulators of lipid homoeostasis, were cloned and characterized from liver of Japanese seabass (Lateolabrax japonicus), and their expression in response to diets enriched with fish oil (FO) or fatty acids such as palmitic acid (PA), stearic acid (SA), oleic acid (OA), α-linolenic acid (ALA), and n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), was investigated following feeding. The SREBP-1 of Japanese seabass appeared to be equivalent to SREBP-1a of mammals in terms of sequence feature and tissue expression pattern. The stimulation of the mRNA expression level of SREBP-1 in liver of Japanese seabass by dietary fatty acids significantly ranked as follows: PA, OA>SA, ALA, and n-3 LC-PUFA>FO. A new PPAR-α subtype in Japanese seabass, PPAR-α2, was cloned in this study, which is not on the same branch with Japanese seabass PPAR-α1 and mammalian PPAR-α in the phylogenetic tree. Liver gene expression of PPAR-α1 of Japanese seabass was inhibited by diets enriched with ALA or FO compared to diets enriched with PA or OA, while the gene expression of PPAR-α2 of Japanese seabass was up-regulated by diets enriched with ALA or n-3 LC-PUFA compared to diets enriched with OA or FO. This was the first evidence for the great divergence in response to dietary fatty acids between PPAR-α1 and PPAR-α2 of fish, which indicated probable functional distribution between PPAR-α isotypes of fish.


Assuntos
Bass/genética , Gorduras na Dieta , Ácidos Graxos/química , PPAR alfa/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Sequência de Aminoácidos , Animais , Bass/metabolismo , Expressão Gênica , Metabolismo dos Lipídeos , Dados de Sequência Molecular , Especificidade de Órgãos , PPAR alfa/química , PPAR alfa/metabolismo , Filogenia , RNA Mensageiro/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
10.
Arch Physiol Biochem ; 120(5): 216-27, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25353341

RESUMO

The transcription factor sterol regulatory element binding protein (SREBP)-1c plays a pivotal role in lipid metabolism. In this report we identified the main phosphorylation sites of MAPK-families, i.e. p38 stress-activated MAPK (p38), ERK-MAPK (ERK) or c-JUN N-terminal protein kinases (JNK) in SREBP-1c. The major phosphorylation sites of p38, i.e. serine 39 and threonine 402, are identical to those we recently identified in the splice-variant SREBP-1a. In contrast, ERK and JNK phosphorylate SREBP-1c at two major sites, i.e. threonine 81 and serine 93, instead of one site in SREBP-1a. Functional analyses of the biological outcome in the human liver cell line HepG2 reveals SREBP-1c phosphorylation dependent alteration in lipid metabolism and secretion pattern of lipid transporting proteins, e.g. ApoE or ApoA1. These results suggest that phosphorylation of SREBP-1c by different MAPKs interferes with lipid metabolism and the secretory activity of liver cells.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metabolismo dos Lipídeos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sítios de Ligação , Ácidos Graxos/metabolismo , Células Hep G2 , Humanos , Fosforilação , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Especificidade por Substrato
11.
PLoS One ; 8(6): e67532, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825667

RESUMO

BACKGROUND: Aberrantly elevated sterol regulatory element binding protein (SREBP), the lipogenic transcription factor, contributes to the development of fatty liver and insulin resistance in animals. Our recent studies have discovered that AMP-activated protein kinase (AMPK) phosphorylates SREBP at Ser-327 and inhibits its activity, represses SREBP-dependent lipogenesis, and thereby ameliorates hepatic steatosis and atherosclerosis in insulin-resistant LDLR(-/-) mice. Chronic inflammation and activation of NLRP3 inflammasome have been implicated in atherosclerosis and fatty liver disease. However, whether SREBP is involved in vascular lipid accumulation and inflammation in atherosclerosis remains largely unknown. PRINCIPAL FINDINGS: The preclinical study with aortic pouch biopsy specimens from humans with atherosclerosis and diabetes shows intense immunostaining for SREBP-1 and the inflammatory marker VCAM-1 in atherosclerotic plaques. The cleavage processing of SREBP-1 and -2 and expression of their target genes are increased in the well-established porcine model of diabetes and atherosclerosis, which develops human-like, complex atherosclerotic plaques. Immunostaining analysis indicates an elevation in SREBP-1 that is primarily localized in endothelial cells and in infiltrated macrophages within fatty streaks, fibrous caps with necrotic cores, and cholesterol crystals in advanced lesions. Moreover, concomitant suppression of NAD-dependent deacetylase SIRT1 and AMPK is observed in atherosclerotic pigs, which leads to the proteolytic activation of SREBP-1 by diminishing the deacetylation and Ser-372 phosphorylation of SREBP-1. Aberrantly elevated NLRP3 inflammasome markers are evidenced by increased expression of inflammasome components including NLPR3, ASC, and IL-1ß. The increase in SREBP-1 activity and IL-1ß production in lesions is associated with vascular inflammation and endothelial dysfunction in atherosclerotic pig aorta, as demonstrated by the induction of NF-κB, VCAM-1, iNOS, and COX-2, as well as by the repression of eNOS. CONCLUSIONS: These translational studies provide in vivo evidence that the dysregulation of SIRT1-AMPK-SREBP and stimulation of NLRP3 inflammasome may contribute to vascular lipid deposition and inflammation in atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Proteínas de Transporte/metabolismo , Complicações do Diabetes/metabolismo , Inflamassomos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Suínos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Biomarcadores/metabolismo , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/fisiopatologia , Complicações do Diabetes/patologia , Complicações do Diabetes/fisiopatologia , Progressão da Doença , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteólise/efeitos dos fármacos , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 2/química , Molécula 1 de Adesão de Célula Vascular/metabolismo
12.
Yi Chuan ; 35(5): 607-15, 2013 May.
Artigo em Chinês | MEDLINE | ID: mdl-23732667

RESUMO

Sterol regulatory element binding protein 1 (SREBP-1) is one of the important nuclear transcription factors. SREBP-1 can maintain lipids dynamic equilibrium by regulating the expression of enzymes required for synthesis of endogenous cholesterol, fatty acids, triglycerides and phospholipids. Anomalies of SREBP-1 and its target genes can cause a series of metabolic diseases such as insulin resistance, type Ⅱ diabetes, heart dysfunction, vascular complications and hepatic steatosis. In these years, the development of high-throughput technologies has greatly expanded our knowledge about SREBP-1 target genes and the pattern of transcriptional regulation. Here we reviewed recent research progress of SREBP-1, with a focus on the protein structure, activation process, DNA binding sites and target genes. Most importantly, we showed the transcriptional regulatory networks based on omics datasets, which will contribute to a better understanding of the role of SREBP-1 in lipid metabolism and provide new clues for the treatment of lipid metabolism disorders.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Humanos , Metabolismo dos Lipídeos , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
13.
PLoS One ; 7(2): e31812, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363740

RESUMO

The pathogenesis of fatty liver is not understood in detail, but lipid overflow as well as de novo lipogenesis (DNL) seem to be the key points of hepatocyte accumulation of lipids. One key transcription factor in DNL is sterol regulatory element-binding protein (SREBP)-1c. We generated mice with liver-specific over-expression of mature human SREBP-1c under control of the albumin promoter and a liver-specific enhancer (alb-SREBP-1c) to analyze systemic perturbations caused by this distinct alteration. SREBP-1c targets specific genes and causes key enzymes in DNL and lipid metabolism to be up-regulated. The alb-SREBP-1c mice developed hepatic lipid accumulation featuring a fatty liver by the age of 24 weeks under normocaloric nutrition. On a molecular level, clinical parameters and lipid-profiles varied according to the fatty liver phenotype. The desaturation index was increased compared to wild type mice. In liver, fatty acids (FA) were increased by 50% (p<0.01) and lipid composition was shifted to mono unsaturated FA, whereas lipid profile in adipose tissue or serum was not altered. Serum analyses revealed a ∼2-fold (p<0.01) increase in triglycerides and free fatty acids, and a ∼3-fold (p<0.01) increase in insulin levels, indicating insulin resistance; however, no significant cytokine profile alterations have been determined. Interestingly and unexpectedly, mice also developed adipositas with considerably increased visceral adipose tissue, although calorie intake was not different compared to control mice. In conclusion, the alb-SREBP-1c mouse model allowed the elucidation of the systemic impact of SREBP-1c as a central regulator of lipid metabolism in vivo and also demonstrated that the liver is a more active player in metabolic diseases such as visceral obesity and insulin resistance.


Assuntos
Adiposidade , Fígado Gorduroso/genética , Gordura Intra-Abdominal/patologia , Fígado/metabolismo , Fígado/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Transcrição Gênica , Acetiltransferases/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Composição Corporal/efeitos dos fármacos , Citocinas/sangue , Citocinas/metabolismo , Elongases de Ácidos Graxos , Ácidos Graxos/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/farmacologia , Resistência à Insulina , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Fenótipo , Estrutura Terciária de Proteína , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Transcrição Gênica/efeitos dos fármacos
14.
Amino Acids ; 43(2): 603-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21989830

RESUMO

Lamin A/C proteins are the major components of a thin proteinaceous filamentous meshwork, the lamina, that underlies the inner nuclear membrane. A few specific mutations in the lamin A/C gene cause a disease with remarkably different clinical features: FPLD, or familial partial lipodystrophy (Dunnigan-type), which mainly affects adipose tissue. Lamin A/C mutant R482W is the key variant that causes FPLD. Biomolecular interaction and molecular dynamics (MD) simulation analysis were performed to understand dynamic behavior of native and mutant structures at atomic level. Mutant lamin A/C (R482W) showed more interaction with its biological partners due to its expansion of interaction surface and flexible nature of binding residues than native lamin A/C. MD simulation clearly indicates that the flexibility of interacting residues of mutant are mainly due to less involvement in formation of inter and intramolecular hydrogen bonds. Our analysis of native and Mutant lamin A/C clearly shows that the structural and functional consequences of the mutation R482W causes FPLD. Because of the pivotal role of lamin A/C in maintaining dynamics of nuclear function, these differences likely contribute to or represent novel mechanisms in laminopathy development.


Assuntos
Lamina Tipo A/química , Lipodistrofia Parcial Familiar/genética , Simulação de Dinâmica Molecular , Substituição de Aminoácidos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lamina Tipo A/genética , Proteínas de Membrana/química , Proteínas Nucleares/química , Análise de Componente Principal , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Termodinâmica
15.
Crit Rev Biochem Mol Biol ; 46(3): 200-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21599535

RESUMO

The increasing prevalence of overnutrition and reduced activity has led to a worldwide epidemic of obesity. In many cases, this is associated with insulin resistance, an inability of the hormone to direct its physiological actions appropriately. A number of disease states accompany insulin resistance such as type 2 diabetes mellitus, the metabolic syndrome, and non-alcoholic fatty liver disease. Though the pathways by which insulin controls hepatic glucose output have been of intense study in recent years, considerably less attention has been devoted to how lipid metabolism is regulated. Thus, both the proximal signaling pathways as well as the more distal targets of insulin remain uncertain. In this review, we consider the signaling pathways by which insulin controls the synthesis and accumulation of lipids in the mammalian liver and, in particular, how this might lead to abnormal triglyceride deposition in liver during insulin-resistant states.


Assuntos
Glucose/metabolismo , Insulina/química , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Transdução de Sinais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Dislipidemias/metabolismo , Fígado Gorduroso/epidemiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Glucose/química , Humanos , Resistência à Insulina , Lipídeos/biossíntese , Lipídeos/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína Oncogênica v-akt/química , Proteína Oncogênica v-akt/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
16.
Proc Natl Acad Sci U S A ; 107(25): 11283-8, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20534441

RESUMO

The 26-subunit, 1.2 MDa human Mediator complex is essential for expression of perhaps all protein-coding genes. Activator binding triggers major structural shifts within Mediator, suggesting a straightforward means to spatially and temporally regulate Mediator activity. By using mass spectrometry (MudPIT) and other techniques, we have compared the subunit composition of Mediator in three different structural states: bound to the activator SREBP-1a, VP16, or an activator-free state. As expected, consensus Mediator subunits were similarly represented in each sample. However, we identify a set of cofactors that interact specifically with activator-bound but not activator-free Mediator, suggesting activator binding triggers new Mediator-cofactor interactions. Furthermore, MudPIT combined with biochemical assays reveals a nonoverlapping set of coregulatory factors associated with SREBP-Mediator vs. VP16-Mediator. These data define an expanded role for activators in regulating gene expression in humans and suggest that distinct, activator-induced structural shifts regulate Mediator function in gene-specific ways.


Assuntos
Complexo Mediador/fisiologia , Bioquímica/métodos , Núcleo Celular/metabolismo , Cromatina/química , Cromatografia Líquida/métodos , Quinase 8 Dependente de Ciclina/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HeLa , Proteína Vmw65 do Vírus do Herpes Simples/química , Humanos , Espectrometria de Massas/métodos , Complexo Mediador/metabolismo , Modelos Biológicos , Ligação Proteica , Proteína de Ligação a Elemento Regulador de Esterol 1/química
17.
Mamm Genome ; 19(4): 246-62, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18343975

RESUMO

Studies have shown that the TOM1 family of proteins, including TOM1 and TOM1L1, are actively involved in endosomal trafficking and function in the immune response. However, much less is known about the function of TOM1L2. To understand the biological importance of TOM1L2 and the potential significance of its cellular role, we created and evaluated Tom1l2 gene-trapped mice with reduced Tom1l2 expression. Mice hypomorphic for Tom1l2 exhibited numerous infections and tumors compared to wild-type littermates. Associated with this increased risk for infection and tumor formation, apparently healthy Tom1l2 hypomorphs also had splenomegaly, elevated B- and T-cell counts, and an impaired humoral response, although at a reduced penetrance. Furthermore, cellular localization studies showed that a Tom1l2-GFP fusion protein colocalizes with Golgi compartments, supporting the role of Tom1l2 in cellular trafficking, while molecular modeling and bioinformatic analysis of Tom1l2 illustrated a structural basis for a functional role in trafficking. These results indicate a role for Tom1l2 in the immune response and possibly in tumor suppression.


Assuntos
Mutação , Neoplasias Experimentais/imunologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/imunologia , Sequência de Aminoácidos , Animais , Comportamento Animal , Células COS , Chlorocebus aethiops , Marcação de Genes , Humanos , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Neoplasias Experimentais/patologia , Fenótipo , Transporte Proteico , Alinhamento de Sequência , Ovinos , Baço/imunologia , Baço/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Timo/imunologia , Timo/patologia , Rede trans-Golgi/metabolismo
18.
J Biol Chem ; 282(8): 5453-67, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17197698

RESUMO

To understand the molecular mechanisms underlying transcriptional activation of fatty-acid synthase (FAS), we examined the relationship between upstream stimulatory factor (USF) and SREBP-1c, two transcription factors that we have shown previously to be critical for FAS induction by feeding/insulin. Here, by using a combination of tandem affinity purification and coimmunoprecipitation, we demonstrate, for the first time, that USF and SREBP-1 interact in vitro and in vivo. Glutathione S-transferase pulldown experiments with various USF and sterol regulatory element-binding protein (SREBP) deletion constructs indicate that the basic helix-loop-helix domain of USF interacts directly with the basic helix-loop-helix and an N-terminal region of SREBP-1c. Furthermore, cotransfection of USF and SREBP-1c with an FAS promoter-luciferase reporter construct in Drosophila SL2 cells results in highly synergistic activation of the FAS promoter. We also show similar cooperative activation of the mitochondrial glycerol-3-phosphate acyltransferase promoter by USF and SREBP-1c. Chromatin immunoprecipitation analysis of mouse liver demonstrates that USF binds constitutively to the mitochondrial glycerol 3-phosphate acyltransferase promoter during fasting/refeeding in vivo, whereas binding of SREBP-1 is observed only during refeeding, in a manner identical to that of the FAS promoter. In addition, we show that the synergy we have observed depends on the activation domains of both proteins and that mutated USF or SREBP lacking the N-terminal activation domain could inhibit the transactivation of the other. Closely positioned E-boxes and sterol regulatory elements found in the promoters of several lipogenic genes suggest a common mechanism of induction by feeding/insulin.


Assuntos
Ácido Graxo Sintases/biossíntese , Elementos de Resposta/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores Estimuladores Upstream/metabolismo , Animais , Linhagem Celular , Drosophila , Ácido Graxo Sintases/genética , Glicerol-3-Fosfato O-Aciltransferase/biossíntese , Glicerol-3-Fosfato O-Aciltransferase/genética , Insulina/metabolismo , Camundongos , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/agonistas , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Fatores Estimuladores Upstream/agonistas , Fatores Estimuladores Upstream/química , Fatores Estimuladores Upstream/genética
19.
Cell Cycle ; 5(15): 1708-18, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880739

RESUMO

Members of the sterol regulatory element-binding protein (SREBP) family of transcription factors control the biosynthesis of cholesterol and other lipids, and lipid synthesis is critical for cell growth and proliferation. We recently found that the mature forms of SREBP1a and SREBP1c are hyperphosphorylated in mitotic cells, giving rise to a phosphoepitope recognized by the mitotic protein monoclonal-2 (MPM-2) antibody. In addition, we found that mature SREBP1 was stabilized in a phosphorylation-dependent manner during mitosis. We have now mapped the major MPM-2 epitope to a serine residue, S439, in the C terminus of mature SREBP1. Using phosphorylation-specific antibodies, we demonstrate that endogenous SREBP1 is phosphorylated on S439 specifically during mitosis. Mature SREBP1 interacts with the Cdk1/cyclin B complex in mitotic cells and we demonstrate that Cdk1 phosphorylates S439, both in vitro and in vivo. Our results suggest that Cdk1-mediated phosphorylation of S439 stabilizes mature SREBP1 during mitosis, thereby preserving a critical pool of active transcription factors to support lipid synthesis. Taken together with our previous work, the current study suggests that SREBP1 may provide a link between lipid synthesis, proliferation and cell growth. This hypothesis was supported by our observation that siRNA-mediated inactivation of SREBP1 arrested cells in the G(1) phase of the cell cycle, thereby attenuating cell growth.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Mitose , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Termodinâmica , Sequência de Aminoácidos , Células Cultivadas , Epitopos/imunologia , Fase G1 , Células HeLa , Humanos , Dados de Sequência Molecular , Fosforilação , Fosfosserina/metabolismo , Mapeamento de Interação de Proteínas , Fase S , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Transcrição Gênica
20.
J Biol Chem ; 281(35): 25278-86, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16825193

RESUMO

Members of the sterol regulatory element-binding protein (SREBP) family of transcription factors control cholesterol and lipid metabolism and play critical roles during adipocyte differentiation. The transcription factor SREBP1 is degraded by the ubiquitin-proteasome system following phosphorylation of Thr426 and Ser430 in its phosphodegron. We now demonstrate that the glycogen synthase kinase (GSK)-3beta-dependent phosphorylation of these residues in SREBP1 is enhanced in response to specific DNA binding. DNA binding enhances the direct interaction between the C-terminal domain of SREBP1 and GSK-3beta. Accordingly, we demonstrate that GSK-3beta is recruited to the promoters of SREBP target genes in vivo. As a result of the phosphorylation of Thr426 and Ser430, the ubiquitin ligase Fbw7 is recruited to SREBP molecules associated with target promoters. Using a reconstituted ubiquitination system, we demonstrate that Fbw7-mediated ubiquitination of SREBP1 is dependent on its DNA binding activity. Thus, DNA binding could provide a mechanistic link between the phosphorylation, ubiquitination, and degradation of active transcription factors.


Assuntos
DNA/química , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Ubiquitina/química , Linhagem Celular , Núcleo Celular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HeLa , Humanos , Metabolismo dos Lipídeos , Mutação , Fosforilação , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA