Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Elife ; 122023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881526

RESUMO

Malonyl-CoA-acyl carrier protein transacylase (MCAT) is an enzyme involved in mitochondrial fatty acid synthesis (mtFAS) and catalyzes the transfer of the malonyl moiety of malonyl-CoA to the mitochondrial acyl carrier protein (ACP). Previously, we showed that loss-of-function of mtFAS genes, including Mcat, is associated with severe loss of electron transport chain (ETC) complexes in mouse immortalized skeletal myoblasts (Nowinski et al., 2020). Here, we report a proband presenting with hypotonia, failure to thrive, nystagmus, and abnormal brain MRI findings. Using whole exome sequencing, we identified biallelic variants in MCAT. Protein levels for NDUFB8 and COXII, subunits of complex I and IV respectively, were markedly reduced in lymphoblasts and fibroblasts, as well as SDHB for complex II in fibroblasts. ETC enzyme activities were decreased in parallel. Re-expression of wild-type MCAT rescued the phenotype in patient fibroblasts. This is the first report of a patient with MCAT pathogenic variants and combined oxidative phosphorylation deficiency.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase , Doenças Mitocondriais , Animais , Camundongos , Adipogenia , Encéfalo , Mitocôndrias , Doenças Mitocondriais/genética , Proteína de Transporte de Acila S-Maloniltransferase/genética
2.
Genes (Basel) ; 12(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918393

RESUMO

Pathological variants in the nuclear malonyl-CoA-acyl carrier protein transacylase (MCAT) gene, which encodes a mitochondrial protein involved in fatty-acid biogenesis, have been reported in two siblings from China affected by insidious optic nerve degeneration in childhood, leading to blindness in the first decade of life. After analysing 51 families with negative molecular diagnostic tests, from a cohort of 200 families with hereditary optic neuropathy (HON), we identified two novel MCAT mutations in a female patient who presented with acute, sudden, bilateral, yet asymmetric, central visual loss at the age of 20. This presentation is consistent with a Leber hereditary optic neuropathy (LHON)-like phenotype, whose existence and association with NDUFS2 and DNAJC30 has only recently been described. Our findings reveal a wider phenotypic presentation of MCAT mutations, and a greater genetic heterogeneity of nuclear LHON-like phenotypes. Although MCAT pathological variants are very uncommon, this gene should be investigated in HON patients, irrespective of disease presentation.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Análise de Sequência de DNA/métodos , Proteína de Transporte de Acila S-Maloniltransferase/química , Feminino , França , Humanos , Modelos Moleculares , Linhagem , Conformação Proteica , Adulto Jovem
3.
J Biol Chem ; 295(22): 7743-7752, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32341123

RESUMO

Toxoplasma gondii is a common protozoan parasite that infects a wide range of hosts, including livestock and humans. Previous studies have suggested that the type 2 fatty acid synthesis (FAS2) pathway, located in the apicoplast (a nonphotosynthetic plastid relict), is crucial for the parasite's survival. Here we examined the physiological relevance of fatty acid synthesis in T. gondii by focusing on the pyruvate dehydrogenase complex and malonyl-CoA-[acyl carrier protein] transacylase (FabD), which are located in the apicoplast to drive de novo fatty acid biosynthesis. Our results disclosed unexpected metabolic resilience of T. gondii tachyzoites, revealing that they can tolerate CRISPR/Cas9-assisted genetic deletions of three pyruvate dehydrogenase subunits or FabD. All mutants were fully viable in prolonged cultures, albeit with impaired growth and concurrent loss of the apicoplast. Even more surprisingly, these mutants displayed normal virulence in mice, suggesting an expendable role of the FAS2 pathway in vivo Metabolic labeling of the Δpdh-e1α mutant showed reduced incorporation of glucose-derived carbon into fatty acids with medium chain lengths (C14:0 and C16:0), revealing that FAS2 activity was indeed compromised. Moreover, supplementation of exogenous C14:0 or C16:0 significantly reversed the growth defect in the Δpdh-e1α mutant, indicating salvage of these fatty acids. Together, these results demonstrate that the FAS2 pathway is dispensable during the lytic cycle of Toxoplasma because of its remarkable flexibility in acquiring fatty acids. Our findings question the long-held assumption that targeting this pathway has significant therapeutic potential for managing Toxoplasma infections.


Assuntos
Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Toxoplasma/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Apicoplastos/genética , Ácidos Graxos/genética , Deleção de Genes , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética
4.
Hum Mol Genet ; 29(3): 444-458, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915829

RESUMO

Inherited optic neuropathies are rare eye diseases of optic nerve dysfunction that present in various genetic forms. Previously, mutation in three genes encoding mitochondrial proteins has been implicated in autosomal recessive forms of optic atrophy that involve progressive degeneration of optic nerve and retinal ganglion cells (RGC). Using whole exome analysis, a novel double homozygous mutation p.L81R and pR212W in malonyl CoA-acyl carrier protein transacylase (MCAT), a mitochondrial protein involved in fatty acid biosynthesis, has now been identified as responsible for an autosomal recessive optic neuropathy from a Chinese consanguineous family. MCAT is expressed in RGC that are rich in mitochondria. The disease variants lead to structurally unstable MCAT protein with significantly reduced intracellular expression. RGC-specific knockdown of Mcat in mice, lead to an attenuated retinal neurofiber layer, that resembles the phenotype of optic neuropathy. These results indicated that MCAT plays an essential role in mitochondrial function and maintenance of RGC axons, while novel MCAT p.L81R and p.R212W mutations can lead to optic neuropathy.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/genética , Genes Recessivos , Mitocôndrias/patologia , Doenças do Nervo Óptico/patologia , Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Proteína de Transporte de Acila S-Maloniltransferase/química , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Sequência de Aminoácidos , Animais , Criança , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mutação , Nervo Óptico/metabolismo , Doenças do Nervo Óptico/etiologia , Doenças do Nervo Óptico/metabolismo , Linhagem , Conformação Proteica , Células Ganglionares da Retina/metabolismo , Homologia de Sequência , Sequenciamento do Exoma
5.
Methods Mol Biol ; 1927: 23-35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788783

RESUMO

Antisense RNA (asRNA) technology is an important tool for downregulating gene expression. When applying this strategy, the asRNA interference efficiency is determined by several elements including scaffold design, loop size, and relative abundance. Here, we take the Escherichia coli gene fabD encoding malonyl-CoA-[acyl-carrier-protein] transacylase as an example to describe the asRNA design with reliable and controllable interference efficiency. Real-time PCR and fluorescence assay methods are introduced to detect the interference efficiency at RNA level and protein level, respectively.


Assuntos
Regulação da Expressão Gênica , RNA Antissenso/genética , Proteína de Transporte de Acila S-Maloniltransferase/genética , Regulação para Baixo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/genética , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Plasmídeos/genética , Interferência de RNA , RNA Antissenso/química , Reação em Cadeia da Polimerase em Tempo Real/métodos
6.
J Agric Food Chem ; 66(51): 13444-13453, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30488696

RESUMO

Resveratrol, a plant-derived polyphenolic compound with various health activities, is widely used in nutraceutical and food additives. Herein, combinatorial optimization of resveratrol biosynthetic pathway and intracellular environment of E. coli was carried out. By screening pathway genes from various species and exploring their expression pattern, we initially constructed resveratrol-producing strains. Further targeting at availability of malonyl-CoA through expressing ACC of Corynebacterium glutamicum and antisense inhibiting native fabD significantly increased resveratrol biosynthesis. Transport engineering for resveratrol secretion and molecular chaperones helping for folding heterologous enzymes were employed to improve the intracellular environments in remarkable degrees. By introducing PcTAL of Phanerochaete chrysosporium and tuning expression model of PcTAL, At4CL, and VvSTS, an engineered E. coli produced 57.77 mg/L of resveratrol from l-tyrosine. After integrating the above strategies, resveratrol titer reached to 238.71 mg/L from l-tyrosine. The combinatorial optimization in this study provides a promising strategy to produce valuable natural products in heterologous expression systems.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Resveratrol/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Vias Biossintéticas , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Phanerochaete/enzimologia , Phanerochaete/genética
7.
Biochem Biophys Res Commun ; 505(1): 208-214, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30243724

RESUMO

Bacterial fatty acid synthesis (FAS) has been extensively studied as a potential target of antimicrobials. In FAS, FabD mediates transacylation of the malonyl group from malonyl-CoA to acyl-carrier protein (ACP). The mounting threat of nosocomial infection by multidrug-resistant Acinetobacter baumannii warrants a deeper understanding of its essential cellular mechanisms, which could lead to effective control of this highly competent pathogen. The molecular mechanisms involved in A. baumannii FAS are poorly understood, and recent research has suggested that Pseudomonas aeruginosa, a closely related nosocomial pathogen of A. baumannii, utilizes FAS to produce virulence factors. In this study, we solved the crystal structure of A. baumannii FabD (AbFabD) to provide a platform for the development of new antibacterial agents. Analysis of the structure of AbFabD confirmed the presence of highly conserved active site residues among bacterial homologs. Binding constants between AbFabD variants and A. baumannii ACP (AbACP) revealed critical conserved residues Lys195 and Lys200 involved in AbACP binding. Computational docking of a potential inhibitor, trifluoperazine, revealed a unique inhibitor-binding pocket near the substrate-binding site. The structural study presented herein will be useful for the structure-based design of potent AbFabD inhibitors.


Assuntos
Acinetobacter baumannii/genética , Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Ácido Graxo Sintase Tipo II/genética , Acinetobacter baumannii/enzimologia , Proteína de Transporte de Acila S-Maloniltransferase/química , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/metabolismo , Modelos Moleculares , Mutação , Domínios Proteicos , Homologia de Sequência de Aminoácidos
8.
Appl Microbiol Biotechnol ; 102(15): 6333-6341, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29858956

RESUMO

This review will cover the structure, enzymology, and related aspects that are important for structure-based engineering of the transacylase enzymes from fatty acid biosynthesis and polyketide synthesis. Furthermore, this review will focus on in vitro characteristics and not cover engineering of the upstream or downstream reactions or strategies to manipulate metabolic flux in vivo. The malonyl-coenzyme A(CoA)-holo-acyl-carrier protein (holo-ACP) transacylase (FabD) from Escherichia coli serves as a model for this enzyme with thorough descriptions of structure, enzyme mechanism, and effects of mutation on substrate binding presented in the literature. Here, we discuss multiple practical and theoretical considerations regarding engineering transacylase enzymes to accept non-cognate substrates and form novel acyl-ACPs for downstream reactions.


Assuntos
Acil Coenzima A/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Bioengenharia/tendências , Microbiologia Industrial/métodos , Acil Coenzima A/genética , Proteína de Transporte de Acila S-Maloniltransferase/química , Aciltransferases/química , Aciltransferases/genética , Aciltransferases/metabolismo , Microbiologia Industrial/tendências
9.
J Agric Food Chem ; 66(21): 5382-5391, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29722541

RESUMO

Polyunsaturated fatty acids (PUFAs) have been widely applied in the food and medical industry. In this study, malonyl-CoA: ACP transacylase (MAT) was overexpressed through homologous recombination to improve PUFA production in Schizochytrium. The results showed that the lipid and PUFA concentration were increased by 10.1 and 24.5% with MAT overexpression, respectively. Metabolomics analysis revealed that the intracellular tricarboxylic acid cycle was weakened and glucose absorption was accelerated in the engineered strain. In the mevalonate pathway, intracellular carotene content was decreased, and the carbon flux was then redirected toward PUFA synthesis. Furthermore, a glucose fed-batch fermentation was finally performed with the engineered Schizochytrium. The total lipid yield was further increased to 110.5 g/L, 39.6% higher than the wild strain. Docosahexaenoic acid and eicosapentaenoic acid yield were enhanced to 47.39 g/L and 1.65 g/L with an increase of 81.5 and 172.5%, respectively. This study provided an effective metabolic engineering strategy for industrial PUFA production.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/genética , Ácidos Graxos Insaturados/biossíntese , Expressão Gênica , Estramenópilas/metabolismo , Ciclo do Ácido Cítrico , Ácido Eicosapentaenoico/biossíntese , Fermentação , Glucose/metabolismo , Recombinação Homóloga/genética , Metabolômica , Estramenópilas/genética
10.
Appl Microbiol Biotechnol ; 101(23-24): 8431-8441, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29075826

RESUMO

The commercial impact of fermentation systems producing novel and biorenewable chemicals will flourish with the expansion of enzymes engineered to synthesize new molecules. Though a small degree of natural variability exists in fatty acid biosynthesis, the molecular space accessible through enzyme engineering is fundamentally limitless. Prokaryotic fatty acid biosynthesis enzymes build carbon chains on a functionalized acyl carrier protein (ACP) that provides solubility, stability, and a scaffold for interactions with the synthetic enzymes. Here, we identify the malonyl-coenzyme A (CoA)/holo-ACP transacylase (FabD) from Escherichia coli as a platform enzyme for engineering to diversify microbial fatty acid biosynthesis. The FabD R117A variant produced novel ACP-based primer and extender units for fatty acid biosynthesis. Unlike the wild-type enzyme that is highly specific for malonyl-CoA to produce malonyl-ACP, the R117A variant synthesized acetyl-ACP, succinyl-ACP, isobutyryl-ACP, 2-butenoyl-ACP, and ß-hydroxybutyryl-ACP among others from holo-ACP and the corresponding acyl-CoAs with specific activities from 3.7 to 120 nmol min-1 mg-1. FabD R117A maintained K M values for holo-ACP (~ 40 µM) and displayed small changes in K M for acetoacetyl-CoA (110 ± 30 µM) and acetyl-CoA (200 ± 70 µM) when compared to malonyl-CoA (80 ± 30 µM). FabD R117A represents a novel catalyst that synthesizes a broad range of acyl-acyl-ACPs.


Assuntos
Proteína de Transporte de Acila/biossíntese , Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/biossíntese , Cinética
11.
Biotechnol Appl Biochem ; 64(5): 620-626, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27572053

RESUMO

Oleaginous microalgae hold great promises for biofuel production. However, commercialization of microalgal biofuels remains impracticable due to the lack of suitable industrial strains with high growth rate and lipid productivity. Engineering of metabolic pathways is a potential strategy for the improvement of microalgal strains for the production of lipids and also value-added products in microalgae. Malonyl CoA-acyl carrier protein transacylase (MCAT) has been reported to be involved in fatty acid biosynthesis. Here, we identified a putative MCAT in the oleaginous marine microalga Nannochloropsis oceanica. NoMCAT overexpressing N. oceanica showed a higher growth rate and photosynthetic efficiency. The neutral lipid content of engineered lines showed a significant increase by up to 31% compared to wild type. Gas chromatography-mass spectrometry analysis revealed that NoMCAT overexpression significantly altered the fatty acid composition. The composition of eicosapentaenoic acid (C20:5), which is a polyunsaturated fatty acid necessary for animal nutrition, increased by 8%. These results demonstrate the role of MCAT in enhancing fatty acid biosynthesis and growth in microalgae, and also provide an insight into metabolic engineering of microalgae with high industrial potential.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Ácidos Graxos/metabolismo , Microalgas/enzimologia , Estramenópilas/enzimologia , Proteína de Transporte de Acila S-Maloniltransferase/classificação , Biocombustíveis , Ácidos Graxos/análise , Microalgas/genética , Microalgas/metabolismo , Estramenópilas/genética , Estramenópilas/metabolismo
12.
Chembiochem ; 17(22): 2137-2142, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27598417

RESUMO

Andrimid (Adm) synthase, which belongs to the type II system of enzymes, produces Adm in Pantoea agglomerans. The adm biosynthetic gene cluster lacks canonical acyltransferases (ATs) to load the malonyl group to acyl carrier proteins (ACPs), thus suggesting that a malonyl-CoA ACP transacylase (MCAT) from the fatty acid synthase (FAS) complex provides the essential AT activity in Adm biosynthesis. Here we report that an MCAT is essential for catalysis of the transacylation of malonate from malonyl-CoA to AdmA polyketide synthase (PKS) ACP in vitro. Catalytic self-malonylation of AdmA (PKS ACP) was not observed in reactions without MCAT, although many type II PKS ACPs are capable of catalyzing self-acylation. This lack of self-malonylation was explained by amino acid sequence analysis of the AdmA PKS ACP and the type II PKS ACPs. The results show that MCAT from the organism's FAS complex can provide the missing AT activity in trans, thus suggesting a protein-protein interaction between the fatty acid and polyketide synthases in the Adm assembly line.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Ácido Graxo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Antibacterianos/análise , Antibacterianos/química , Proteínas de Bactérias/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Ácido Graxo Sintases/genética , Família Multigênica , Pantoea/enzimologia , Pantoea/genética , Polienos/análise , Polienos/química , Polienos/metabolismo , Policetídeo Sintases/genética , Domínios e Motivos de Interação entre Proteínas , Pirróis/análise , Pirróis/química , Pirróis/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
World J Microbiol Biotechnol ; 32(6): 102, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27116968

RESUMO

Pinosylvin as a bioactive stilbene is of great interest for food supplements and pharmaceuticals development. In comparison to conventional extraction of pinosylvin from plant sources, biosynthesis engineering of microbial cell factories is a sustainable and flexible alternative method. Current synthetic strategies often require expensive phenylpropanoic precursor and inducer, which are not available for large-scale fermentation process. In this study, three bioengineering strategies were described to the development of a simple and economical process for pinosylvin biosynthesis in Escherichia coli. Firstly, we evaluated different construct environments to give a highly efficient constitutive system for enzymes of pinosylvin pathway expression: 4-coumarate: coenzyme A ligase (4CL) and stilbene synthase (STS). Secondly, malonyl coenzyme A (malonyl-CoA) is a key precursor of pinosylvin bioproduction and at low level in E. coli cell. Thus clustered regularly interspaced short palindromic repeats interference (CRISPRi) was explored to inactivate malonyl-CoA consumption pathway to increase its availability. The resulting pinosylvin content in engineered E. coli was obtained a 1.9-fold increase depending on the repression of fabD (encoding malonyl-CoA-ACP transacylase) gene. Eventually, a phenylalanine over-producing E. coli consisting phenylalanine ammonia lyase was introduced to produce the precursor of pinosylvin, trans-cinnamic acid, the crude extraction of cultural medium was used as supplementation for pinosylvin bioproduction. Using these combinatorial processes, 47.49 mg/L pinosylvin was produced from glycerol.


Assuntos
Bioengenharia/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Estilbenos/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/biossíntese , Proteína de Transporte de Acila S-Maloniltransferase/genética , Aciltransferases/metabolismo , Cinamatos/química , Coenzima A Ligases/metabolismo , Ácidos Cumáricos/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Ácido Graxo Sintase Tipo II/biossíntese , Ácido Graxo Sintase Tipo II/genética , Ácidos Graxos/biossíntese , Glicerol/metabolismo , Malonil Coenzima A/metabolismo , Fenilalanina/metabolismo , Estilbenos/química , Estilbenos/economia
14.
Protein Expr Purif ; 115: 39-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26008118

RESUMO

The fatty acid biosynthetic pathway generates highly reduced carbon based molecules. For this reason fatty acid synthesis is a target of pathway engineering to produce novel specialty or commodity chemicals using renewable techniques to supplant molecules currently derived from petroleum. Malonyl-[acyl carrier protein] (malonyl-ACP) is a key metabolite in the fatty acid pathway and donates two carbon units to the growing fatty acid chain during each step of biosynthesis. Attempts to test engineered fatty acid biosynthesis enzymes in vitro will require malonyl-ACP or malonyl-ACP analogs. Malonyl-ACP is challenging to prepare due to the instability of the carboxylate leaving group and the multiple steps of post-translational modification required to activate ACP. Here we report the expression and purification of holo- and malonyl-ACP from Escherichia coli with high yields (>15 mg per L of expression). The malonyl-ACP is efficiently recognized by the E. coli keto-acyl synthase enzyme, FabH. A FabH assay using malonyl-ACP and a coumarin-based fluorescent reagent is described that provides a high throughput alternative to reported radioactive assays.


Assuntos
Acetiltransferases/metabolismo , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Proteínas de Escherichia coli/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase , Acetiltransferases/genética , Proteína de Transporte de Acila S-Maloniltransferase/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Redes e Vias Metabólicas , Engenharia de Proteínas
15.
Biochem Biophys Res Commun ; 457(3): 398-403, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25582772

RESUMO

Malonyl-coenzyme A: acyl-carrier protein transacylase (MCAT) catalyzes the transfer of malonyl group from malonyl-CoA to the holo-acyl carrier protein (Holo-ACP), yielding malonyl-ACP. The overall reaction has been extensively studied in heterotrophic microorganisms, while its mechanism in photosynthetic autotrophs as well as the stepwise reaction information remains unclear. Here the 2.42 Å crystal structure of MCAT from photosynthetic microorganism Synechocystis sp. PCC 6803 is presented. It demonstrates that Arg113, Ser88 and His188 constitute catalytic triad. The second step involved ACP-MCAT-malonyl intermediate is speed-limited instead of the malonyl-CoA-MCAT intermediate in the first step. Therefore His87, Arg113 and Ser88 render different contributions for the two intermediates. Additionally, S88T mutant initializes the reaction by H87 deprotonating S88T which is different from the wild type.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/química , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Synechocystis/enzimologia , Proteína de Transporte de Acila S-Maloniltransferase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Homologia de Sequência de Aminoácidos , Synechocystis/genética
16.
Gene ; 530(1): 33-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23954257

RESUMO

Malonyl CoA-acyl carrier protein transacylase (MCAT, E2.3.1.39) is closely associated with the FASII pathway of fatty acid biosynthesis. However, the information about microalgal MCAT is scarce. In this study, a MCAT gene was isolated from Nannochloropsis gaditana with its deduced protein (NgMCAT) characterized with bioinformatic tools. The abundance of the NgMCAT transcript under different environmental conditions was determined with real-time quantitative PCR. Results showed that the open reading frame (ORF) of NgMCAT was 1059 bp in length, which encoded 352 amino acid residues. The abundance of NgMCAT transcript reached the maximum (5.17-fold) at 6h when sodium nitrate was limited, and reached the maximum (4.25-fold) at 12h at low temperature (15°C). The abundance of NgMCAT transcript fluctuated at high temperature (35°C) when the concentration of nitrate and sodium chloride exceeded 150 mg/L and 62 g/L, respectively. In addition, some components of fatty acid that changed with the expression of NgMCAT were also observed.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/genética , Clonagem Molecular , Ácidos Graxos/genética , Estramenópilas/genética , Proteína de Transporte de Acila S-Maloniltransferase/isolamento & purificação , Sequência de Aminoácidos , Biologia Computacional , Bases de Dados de Proteínas , Ácidos Graxos/biossíntese , Mutagênese Sítio-Dirigida , Alinhamento de Sequência
17.
PLoS One ; 7(10): e47196, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077570

RESUMO

A mouse model with compromised mitochondrial fatty acid synthesis has been engineered in order to assess the role of this pathway in mitochondrial function and overall health. Reduction in the expression of mitochondrial malonyl CoA-acyl carrier protein transacylase, a key enzyme in the pathway encoded by the nuclear Mcat gene, was achieved to varying extents in all examined tissues employing tamoxifen-inducible Cre-lox technology. Although affected mice consumed more food than control animals, they failed to gain weight, were less physically active, suffered from loss of white adipose tissue, reduced muscle strength, kyphosis, alopecia, hypothermia and shortened lifespan. The Mcat-deficient phenotype is attributed primarily to reduced synthesis, in several tissues, of the octanoyl precursors required for the posttranslational lipoylation of pyruvate and α-ketoglutarate dehydrogenase complexes, resulting in diminished capacity of the citric acid cycle and disruption of energy metabolism. The presence of an alternative lipoylation pathway that utilizes exogenous free lipoate appears restricted to liver and alone is insufficient for preservation of normal energy metabolism. Thus, de novo synthesis of precursors for the protein lipoylation pathway plays a vital role in maintenance of mitochondrial function and overall vigor.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/genética , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Lipoilação , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/ultraestrutura , Anemia/genética , Animais , Respiração Celular , Ácidos Graxos/genética , Feminino , Corpos Cetônicos/sangue , Ácido Láctico/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Miocárdio/metabolismo , Prolapso Retal/genética , Transdução de Sinais
18.
Enzyme Microb Technol ; 51(2): 95-9, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22664193

RESUMO

In this report, concentration of malonic acid and acetic acid produced in Escherichia coli were investigated by the expression of acetyl-CoA carboxylase genes (accs) and a malonyl-CoA:ACP transacylase gene (fabD). Both malonyl-CoA and acetyl-CoA are essential intermediate metabolites in the fatty acid biosynthetic pathway, and are reversibly transformed to malonic acid and acetic acid, respectively in the cell. Acetyl-CoA is converted to malonic-CoA by acetyl-CoA carboxylases (Accs), which are composed of 3 different subunits (AccA, AccB, and AccC), and the resulting malonyl-CoA is then converted to malonyl-[acp] by malonyl-CoA:ACP transacylase (FabD). In this study, these genes were separately cloned, and the influences of overexpression of 4 different genes on the concentration of malonic acid and acetic acid were analyzed. Compared with the wild type E. coli, a recombinant strain containing 3 acc genes together showed a 41.03% enhanced malonic acid production, and a 4.29-fold increased ratio of malonic acid to acetic acid.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/biossíntese , Ácido Acético/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Genes Bacterianos , Malonatos/metabolismo , Redes e Vias Metabólicas , Recombinação Genética
19.
Mol Biochem Parasitol ; 184(1): 20-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22525053

RESUMO

Eimeria tenella, an apicomplexan parasite in chickens, possesses an apicoplast and its associated metabolic pathways including the Type II fatty acid synthesis (FAS II). Malonyl-CoA:acyl-carry protein transacylase (MCAT) encoded by the fabD gene is one of the essential enzymes in the FAS II system. In the present study, the entire E. tenella MCAT gene (EtfabD) was cloned and sequenced. Immunolabeling located this protein in the apicoplast organelle in coccidial sporozoites. Functional replacement of the fabD gene with amber mutation of E. coli temperature-sensitive LA2-89 strain by E. tenella EtMCAT demonstrated that EcFabD and EtMCAT perform the same biochemical function. The recombinant EtMCAT protein was expressed and its general biochemical features were also determined. An alkaloid natural product corytuberine (CAS: 517-56-6) could specifically inhibit the EtMCAT activity (IC(50)=16.47µM), but the inhibition of parasite growth in vitro by corytuberine was very weak (the predicted MIC(50)=0.65mM).


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Eimeria tenella/enzimologia , Eimeria tenella/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA de Protozoário/química , DNA de Protozoário/genética , Eimeria tenella/química , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/biossíntese , Teste de Complementação Genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Organelas/química , Proteínas de Protozoários/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
20.
Biotechnol Prog ; 28(1): 60-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22038854

RESUMO

The microbial biosynthesis of free fatty acid, which can be used as precursors for the production of fuels or chemicals from renewable carbon sources, has attracted significant attention in recent years. Free fatty acids can be produced by introducing an acyl-carrier protein (ACP) thioesterase (TE) gene into Escherichia coli. The first committed step of fatty acid biosynthesis is the conversion of acetyl-CoA to malonyl-CoA by an adenosine triphosphate (ATP)-dependent acetyl-CoA carboxylase followed by the conversion of malonyl-CoA to malonyl-ACP through the enzyme malonyl CoA-acyl carrier protein transacylase (MCT; FabD). The E. coli fabD gene encoding MCT has been cloned and studied. However, the effect of FabD overexpression in a fatty acid overproducing strain has not been examined. In this study, we examined the effect of FabD overexpression in a fatty acid overproducing strain carrying an acyl-ACP TE. Specifically, the effect of overexpressing a fabD gene from four different organisms on fatty acid production was compared. The strains carrying a fabD gene from E. coli, Streptomyces avermitilis MA-4680, or Streptomyces coelicolor A3(2) improved the free fatty acid production; these three strains produced more free fatty acids, about 11% more, than the control strain. The strain carrying a fabD gene from Clostridium acetobutylicum ATCC 824, however, produced similar quantities of free fatty acids as the control strain. In addition, the three FabD overexpressed strains also have higher fatty acid/glucose yields. The results suggested that FabD overexpression can be used to improve free fatty acid production by increasing the malonyl-ACP availability.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Ácidos Graxos/biossíntese , Proteína de Transporte de Acila S-Maloniltransferase/genética , Sequência de Aminoácidos , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Primers do DNA , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Regulação Bacteriana da Expressão Gênica , Malonil Coenzima A/metabolismo , Dados de Sequência Molecular , Plasmídeos , Streptomyces/enzimologia , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA