Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.085
Filtrar
1.
Cell Biol Toxicol ; 40(1): 35, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771546

RESUMO

Neural tube defects (NTDs) represent a prevalent and severe category of congenital anomalies in humans. Cadmium (Cd) is an environmental teratogen known to cause fetal NTDs. However, its underlying mechanisms remain elusive. This study aims to investigate the therapeutic potential of lipophagy in the treatment of NTDs, providing valuable insights for future strategies targeting lipophagy activation as a means to mitigate NTDs.We successfully modeled NTDs by Cd exposure during pregnancy. RNA sequencing was employed to investigate the transcriptomic alterations and functional enrichment of differentially expressed genes in NTD placental tissues. Subsequently, pharmacological/genetic (Atg5-/- placentas) experiments confirmed that inducing placental lipophagy can alleviate Cd induced-NTDs. We found that Cd exposure caused NTDs. Further analyzed transcriptomic data from the placentas with NTDs which revealed significant downregulation of low-density lipoprotein receptor associated protein 1(Lrp1) gene expression responsible for positive regulation of low-density lipoprotein cholesterol (LDL-C) transport. Correspondingly, there was an increase in maternal serum/placenta/amniotic fluid LDL-C content. Subsequently, we have discovered that Cd exposure activated placental lipophagy. Pharmacological/genetic (Atg5-/- placentas) experiments confirmed that inducing placental lipophagy can alleviate Cd induced-NTDs. Furthermore, our findings demonstrate that activation of placental lipophagy effectively counteracts the Cd-induced elevation in LDL-C levels. Lipophagy serves to mitigate Cd-induced NTDs by reducing LDL-C levels within mouse placentas.


Assuntos
Cádmio , LDL-Colesterol , Defeitos do Tubo Neural , Placenta , Feminino , Animais , Gravidez , Placenta/metabolismo , Placenta/efeitos dos fármacos , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/metabolismo , Camundongos , Cádmio/toxicidade , LDL-Colesterol/sangue , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Atherosclerosis ; 392: 117527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583286

RESUMO

BACKGROUND AND AIMS: Diabetic atherosclerotic vascular disease is characterized by extensive vascular calcification. However, an elevated blood glucose level alone does not explain this pathogenesis. We investigated the metabolic markers underlying diabetic atherosclerosis and whether extracellular Hsp90α (eHsp90α) triggers vascular endothelial calcification in this particular metabolic environment. METHODS: A parallel human/animal model metabolomics approach was used. We analyzed 40 serum samples collected from 24 patients with atherosclerosis and from the STZ-induced ApoE-/- mouse model. A multivariate statistical analysis of the data was performed, and mouse aortic tissue was collected for the assessment of plaque formation. In vitro, the effects of eHsp90α on endothelial cell calcification were assessed by serum analysis, Western blotting and immunoelectron microscopy. RESULTS: Diabetic ApoE-/- mice showed more severe plaque lesions and calcification damage. Stearamide, oleamide, l-thyroxine, l-homocitrulline and l-citrulline are biomarkers of diabetic ASVD; l-thyroxine was downregulated in both groups, and the thyroid sensitivity index was correlated with serum Hsp90α concentration. In vitro studies showed that eHsp90α increased Runx2 expression in endothelial cells through the LRP1 receptor. l-thyroxine reduced the increase in Runx2 levels caused by eHsp90α and affected the distribution and expression of LRP1 through hydrogen bonding with glutamine at position 1054 in the extracellular segment of LRP1. CONCLUSIONS: This study provides a mechanistic link between characteristic serum metabolites and diabetic atherosclerosis and thus offers new insight into the role of extracellular Hsp90α in promoting vascular calcification.


Assuntos
Diabetes Mellitus Experimental , Proteínas de Choque Térmico HSP90 , Camundongos Knockout para ApoE , Placa Aterosclerótica , Tiroxina , Calcificação Vascular , Humanos , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Tiroxina/sangue , Feminino , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pessoa de Meia-Idade , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos , Aterosclerose/metabolismo , Aterosclerose/patologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/etiologia , Metabolômica/métodos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Idoso , Camundongos Endogâmicos C57BL , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/sangue , Biomarcadores/sangue , Células Endoteliais da Veia Umbilical Humana/metabolismo
3.
Mol Metab ; 84: 101941, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636794

RESUMO

OBJECTIVE: Low-density lipoprotein receptor-related protein-1 (LRP1) regulates energy homeostasis, blood-brain barrier integrity, and metabolic signaling in the brain. Deficiency of LRP1 in inhibitory gamma-aminobutyric acid (GABA)ergic neurons causes severe obesity in mice. However, the impact of LRP1 in inhibitory neurons on memory function and cognition in the context of obesity is poorly understood. METHODS: Mice lacking LRP1 in GABAergic neurons (Vgat-Cre; LRP1loxP/loxP) underwent behavioral tests for locomotor activity and motor coordination, short/long-term and spatial memory, and fear learning/memory. This study evaluated the relationships between behavior and metabolic risk factors and followed the mice at 16 and 32 weeks of age. RESULTS: Deletion of LRP1 in GABAergic neurons caused a significant impairment in memory function in 32-week-old mice. In the spatial Y-maze test, Vgat-Cre; LRP1loxP/loxP mice exhibited decreased travel distance and duration in the novel arm compared with controls (LRP1loxP/loxP mice). In addition, GABAergic neuron-specific LRP1-deficient mice showed a diminished capacity for performing learning and memory tasks during the water T-maze test. Moreover, reduced freezing time was observed in these mice during the contextual and cued fear conditioning tests. These effects were accompanied by increased neuronal necrosis and satellitosis in the hippocampus. Importantly, the distance and duration in the novel arm, as well as the performance of the reversal water T-maze test, negatively correlated with metabolic risk parameters, including body weight, serum leptin, insulin, and apolipoprotein J. However, in 16-week-old Vgat-Cre; LRP1loxP/loxP mice, there were no differences in the behavioral tests or correlations between metabolic parameters and cognition. CONCLUSIONS: Our findings demonstrate that LRP1 from GABAergic neurons is important in regulating normal learning and memory. Metabolically, obesity caused by GABAergic LRP1 deletion negatively regulates memory and cognitive function in an age-dependent manner. Thus, LRP1 in GABAergic neurons may play a crucial role in maintaining normal excitatory/inhibitory balance, impacting memory function, and reinforcing the potential importance of LRP1 in neural system integrity.


Assuntos
Neurônios GABAérgicos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Memória , Obesidade , Animais , Camundongos , Neurônios GABAérgicos/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Obesidade/metabolismo , Memória/fisiologia , Masculino , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Medo/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Camundongos Knockout
4.
Biochemistry ; 63(6): 725-732, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450612

RESUMO

Schwann cells (SCs) undergo phenotypic transformation and then orchestrate nerve repair following a peripheral nervous system injury. The low-density lipoprotein receptor-related protein-1 (LRP1) is significantly upregulated in SCs in response to acute injury, activating cJun and promoting SC survival. Matrix-metalloproteinase-9 (MMP-9) is an LRP1 ligand that binds LRP1 through its hemopexin domain (PEX) and activates SC survival signaling and migration. To identify novel peptide mimetics within the hemopexin domain of MMP-9, we examined the crystal structure of PEX, synthesized four peptides, and examined their potential to bind and activate LRP1. We demonstrate that a 22 amino acid peptide, peptide 2, was the only peptide that activated Akt and ERK1/2 signaling in SCs, similar to a glutathione s-transferase (GST)-fused holoprotein, GST-PEX. Intraneural injection of peptide 2, but not vehicle, into crush-injured sciatic nerves activated cJun greater than 2.5-fold in wild-type mice, supporting that peptide 2 can activate the SC repair signaling in vivo. Peptide 2 also bound to Fc-fusion proteins containing the ligand-binding motifs of LRP1, clusters of complement-like repeats (CCRII and CCRIV). Pulldown and computational studies of alanine mutants of peptide 2 showed that positively charged lysine and arginine amino acids within the peptide are critical for stability and binding to CCRII. Collectively, these studies demonstrate that a novel peptide derived from PEX can serve as an LRP1 agonist and possesses qualities previously associated with LRP1 binding and SC signaling in vitro and in vivo.


Assuntos
Hemopexina , Metaloproteinase 9 da Matriz , Camundongos , Animais , Hemopexina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ligantes , Transdução de Sinais/fisiologia , Peptídeos/farmacologia , Peptídeos/metabolismo , Células de Schwann/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
5.
Stem Cell Res Ther ; 15(1): 64, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438896

RESUMO

BACKGROUND: Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application. Therefore, it is imperative to identify specific subpopulations within UC-MSCs that possess the capability to improve ovarian function, with the aim of reducing the uncertainty arising from the heterogeneity while achieving more effective treatment of POF. METHODS: 10 × Genomics was performed to investigate the heterogeneity of human UC-MSCs. We used LRP1 as a marker and distinguished the potential therapeutic subpopulation by flow cytometry, and determined its secretory functions. Unsorted UC-MSCs, LRP1high and LRP1low subpopulation was transplanted under the ovarian capsules of aged mice and CTX-induced POF mice, and therapeutic effects was evaluated by assessing hormone levels, estrous cycles, follicle counts, and embryo numbers. RNA sequencing on mouse oocytes and granulosa cells after transplantation was performed to explore the mechanism of LRP1high subpopulation on mouse oocytes and granulosa cells. RESULTS: We identified three distinct functional subtypes, including mesenchymal stem cells, multilymphoid progenitor cells and trophoblasts. Additionally, we identified the LRP1high subpopulation, which improved ovarian function in aged and POF mice. We elucidated the unique secretory functions of the LRP1high subpopulation, capable of secreting various chemokines, cytokines, and growth factors. Furthermore, LRP1 plays a crucial role in regulating the ovarian microenvironment, including tissue repair and extracellular matrix remodeling. Consistent with its functions, the transcriptomes of oocytes and granulosa cells after transplantation revealed that the LRP1high subpopulation improves ovarian function by modulating the extracellular matrix of oocytes, NAD metabolism, and mitochondrial function in granulosa cells. CONCLUSION: Through exploration of the heterogeneity of UC-MSCs, we identified the LRP1high subpopulation capable of improving ovarian function in aged and POF mice by secreting various factors and remodeling the extracellular matrix. This study provides new insights into the targeted exploration of human UC-MSCs in the precise treatment of POF.


Assuntos
Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Humanos , Feminino , Animais , Camundongos , Idoso , Insuficiência Ovariana Primária/terapia , Oócitos , Células-Tronco , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
6.
Biol Chem ; 405(6): 383-393, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38488124

RESUMO

The linkage between low-density lipoprotein receptor-related protein (LRP)1-mediated metabolism of apolipoprotein (apo) E-containing lipoproteins (apoE-LP) and the lipopolysaccharide (LPS)-induced inflammatory response contributes to the pathogenesis of sepsis; however, the underlying mechanisms are unclear. Therefore, in this study, the effects of apoE-LP and their constituents on the mRNA expression of interleukin (IL)-6 and LRP1 were evaluated using a culture system of human fibroblasts supplemented with LPS and apoE-containing emulsion particles (apoE-EP). The affinity of apoE-LP for LPS was examined using the interaction between fluorescence-labeled LPS and serum lipoprotein fractions. LPS-induced inflammation significantly upregulated the mRNA expression of IL-6 and LRP1. This upregulation was markedly suppressed by pre-incubation of LPS with apoE-EP or its constituents (apoE or EP). The suppressive effect of apoE-EP on IL-6 upregulation was attenuated in the presence of lactoferrin, an inhibitor of LRP1. The prepared apoE-EP and serum triglyceride-rich lipoproteins showed significant affinity for LPS. However, these affinities appeared to be lower than expected based on the extent to which IL-6 upregulation was suppressed by pre-incubation of LPS with apoE-EP. Overall, these results indicate that LPS-induced inflammation may be regulated by 1) the LPS-neutralizing effect of apoE-LP, 2) anti-inflammatory effect of apoE, and 3) LRP1-mediated metabolic pathways.


Assuntos
Apolipoproteínas E , Inflamação , Lipopolissacarídeos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Lipopolissacarídeos/farmacologia , Humanos , Inflamação/metabolismo , Inflamação/induzido quimicamente , Apolipoproteínas E/metabolismo , Interleucina-6/metabolismo , Células Cultivadas , Lipoproteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
7.
Neuron ; 112(11): 1778-1794.e7, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417436

RESUMO

Highly penetrant autosomal dominant Alzheimer's disease (ADAD) comprises a distinct disease entity as compared to the far more prevalent form of AD in which common variants collectively contribute to risk. The downstream pathways that distinguish these AD forms in specific cell types have not been deeply explored. We compared single-nucleus transcriptomes among a set of 27 cases divided among PSEN1-E280A ADAD carriers, sporadic AD, and controls. Autophagy genes and chaperones clearly defined the PSEN1-E280A cases compared to sporadic AD. Spatial transcriptomics validated the activation of chaperone-mediated autophagy genes in PSEN1-E280A. The PSEN1-E280A case in which much of the brain was spared neurofibrillary pathology and harbored a homozygous APOE3-Christchurch variant revealed possible explanations for protection from AD pathology including overexpression of LRP1 in astrocytes, increased expression of FKBP1B, and decreased PSEN1 expression in neurons. The unique cellular responses in ADAD and sporadic AD require consideration when designing clinical trials.


Assuntos
Doença de Alzheimer , Presenilina-1 , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Presenilina-1/genética , Masculino , Feminino , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Análise de Sequência de RNA/métodos , Autofagia/genética , Transcriptoma , Idoso , Neurônios/metabolismo , Neurônios/patologia , Pessoa de Meia-Idade , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação a Tacrolimo/genética , Idoso de 80 Anos ou mais , Análise de Célula Única
8.
ACS Chem Neurosci ; 15(4): 808-815, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38315060

RESUMO

Silica nanoparticles (SiO2 NPs) are widely used engineered materials that warrant their obvious environmental exposure risk. Our previous study has shown that different routes of SiO2 NP exposure on the glycogen synthase kinase 3 beta (GSK3ß) activity were related to the serum proteins enriched on the surface of SiO2 NPs, which implied that a particular protein in the serum changed the inherent toxic behavior of SiO2 NPs and inhibited the activation of GSK3ß by SiO2 NPs. Here, we identified that the SiO2 NP surface enriched a large amount of apolipoprotein E (ApoE), and the ApoE protein corona bound to the lipoprotein receptor-related protein 1 (LRP1) to inactivate GSK3ß, thereby reducing the damage of SiO2 NPs to the brain. This work presented the first evidence that specific biocorona reduced the toxicity of SiO2 NPs at the molecular level, which helped to elucidate the role of specific corona components on nanotoxicity.


Assuntos
Nanopartículas , Doenças do Sistema Nervoso , Humanos , Dióxido de Silício/toxicidade , Glicogênio Sintase Quinase 3 beta , Apolipoproteínas E/genética , Apolipoproteínas , Fatores de Transcrição , Nanopartículas/toxicidade , Encéfalo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-38267766

RESUMO

Alzheimer's disease (AD) is an irreversible and neurodegenerative disorder. Its etiology is not clear, but the involvement of genetic components plays a central role in the onset of the disease. In the present study, the expression of 10 genes (APP, PS1 and PS2, APOE, APBA2, LRP1, GRIN2B, INSR, GJB1, and IDE) involved in the main pathways related to AD were analyzed in auditory cortices and cerebellum from 29 AD patients and 29 healthy older adults. Raw analysis revealed tissue-specific changes in genes LRP1, INSR, and APP. A correlation analysis showed a significant effect also tissue-specific AD in APP, GRIN2B, INSR, and LRP1. Furthermore, the E4 allele of the APOE gene revealed a significant correlation with change expression tissue-specific in ABPA2, APP, GRIN2B, LRP1, and INSR genes. To assess the existence of a correction between changes in target gene expression and a probability of AD in each tissue (auditory cortices and cerebellum) an analysis of the effect of expressions was realized and showed that the reduction in the expression of the APP in auditory cortex and GRIN2B cerebellum had a significant effect in increasing the probability of AD, in the same logic, our result also suggesting that increased expression of the LRP1 and INSR genes had a significant effect on increasing the probability of AD. Our results showed tissue-specific gene expression alterations associated with AD and certainly opened new perspectives to characterize factors involved in gene regulation and to obtain possible biomarkers for AD.


Assuntos
Doença de Alzheimer , Antígenos CD , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Masculino , Feminino , Idoso , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Cerebelo/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Córtex Auditivo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Expressão Gênica/genética , Estudos de Casos e Controles
10.
ACS Chem Biol ; 19(2): 551-562, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38289037

RESUMO

CXCL14 is a primordial CXC-type chemokine that transports CpG oligodeoxynucleotides (ODN) into endosomes and lysosomes in dendritic cells, thereby leading to the activation of the Toll-like receptor 9 (TLR9)-mediated innate immune system. However, the underlying molecular mechanism by which the CXCL14-CpG ODN complex enters cells remains elusive. Herein, we describe the chemical synthesis of CXCL14-derived photoaffinity probes and their application to the identification of target receptors for CXCL14 using quantitative proteomics. By utilizing native chemical ligation and maleimide-thiol coupling chemistry, we synthesized site-specifically modified CXCL14-based photoaffinity probes that contain photoreactive 2-aryl-5-carboxytetrazole (ACT) and a hydrazine-labile cleavable linker. CXCL14-based probes were found to be capable of binding CpG ODN to immune cells, whose bioactivities were comparable to native CXCL14. Application of CXCL14-derived probes to quantitative proteomic experiments enabled the identification of dozens of target receptor candidates for CXCL14 in mouse macrophage-derived RAW264.7 cells, and we discovered that low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for CXCL14 by competitive proteome profiling. We further showed that disruption of LRP1 affected the incorporation of the CXCL14-CpG ODN complex in the cells. Overall, this report highlights the power of synthetic CXCL14-derived photoaffinity probes combined with chemical proteomics to discover previously unidentified receptors for CXCL14, which could promote an understanding of the molecular functions of CXCL14 and the elaborate machinery of innate immune systems.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteômica , Animais , Camundongos , Oligodesoxirribonucleotídeos/química , Lipoproteínas LDL , Quimiocinas CXC
11.
Biochimie ; 218: 105-117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37517577

RESUMO

Chandipura Virus is an emerging tropical pathogen with a high mortality rate among children. No mode of treatment or antivirals exists against CHPV infection, due to little information regarding its host interaction. Studying viral pathogen interaction with its host can not only provide valuable information regarding its propagation strategy, but also on which host proteins interact with the virus. Identifying these proteins and understanding their role in the infection process can provide more stable anti-viral targets. In this study, we focused on identifying host factors that interact with CHPV and may play a critical role in CHPV infection. We are the first to report the successful identification of Alpha-2-Macroglobulin (A2M), a secretory protein of the host that interacts with CHPV. We also established that LRP1 (Low-density lipoprotein receptor-related protein 1) and GRP78 (Glucose regulated protein 78), receptors of A2M, also interact with CHPV. Furthermore, we could also demonstrate that knocking out A2M has a severe effect on viral infection. We conclusively show the interaction of these host proteins with CHPV. Our findings also indicate that these host proteins could play a role in viral entry into the host cell.


Assuntos
Fatores de Transcrição , Vesiculovirus , Criança , Humanos , Macroglobulinas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade
12.
Cells ; 12(23)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067191

RESUMO

Explaining changes at the gene level that occur during neurodegeneration in the CA3 area is crucial from the point of view of memory impairment and the development of post-ischemic dementia. An ischemic model of Alzheimer's disease was used to evaluate changes in the expression of genes related to amyloid transport in the CA3 region of the hippocampus after 10 min of brain ischemia with survival of 2, 7 and 30 days and 12, 18 and 24 months. The quantitative reverse transcriptase PCR assay revealed that the expression of the LRP1 and RAGE genes involved in amyloid transport was dysregulated from 2 days to 24 months post-ischemia in the CA3 area of the hippocampus. LRP1 gene expression 2 and 7 days after ischemia was below control values. However, its expression from day 30 to 24 months, survival after an ischemic episode was above control values. RAGE gene expression 2 days after ischemia was below control values, reaching a maximum increase 7 and 30 days post-ischemia. Then, after 12, 18 and 24 months, it was again below the control values. The data indicate that in the CA3 area of the hippocampus, an episode of brain ischemia causes the increased expression of the RAGE gene for 7-30 days during the acute phase and that of LRP1 from 1 to 24 months after ischemia during the chronic stage. In other words, in the early post-ischemic stage, the expression of the gene that transport amyloid to the brain increases (7-30 days). Conversely, in the late post-ischemic stage, amyloid scavenging/cleaning gene activity increases, reducing and/or preventing further neuronal damage or facilitating the healing of damaged sites. This is how the new phenomenon of pyramidal neuronal damage in the CA3 area after ischemia is defined. In summary, post-ischemic modification of the LRP1 and RAGE genes is useful in the study of the ischemic pathways and molecular factors involved in the development of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Isquemia Encefálica , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas tau/metabolismo , Transporte Proteico
13.
Nat Commun ; 14(1): 8463, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123547

RESUMO

Brain endothelial LDL receptor-related protein 1 (LRP1) is involved in the clearance of Aß peptides across the blood-brain barrier (BBB). Here we show that endothelial deficiency of ankyrin repeat and SAM domain containing 1 A (ANKS1A) reduces both the cell surface levels of LRP1 and the Aß clearance across the BBB. Association of ANKS1A with the NPXY motifs of LRP1 facilitates the transport of LRP1 from the endoplasmic reticulum toward the cell surface. ANKS1A deficiency in an Alzheimer's disease mouse model results in exacerbated Aß pathology followed by cognitive impairments. These deficits are reversible by gene therapy with brain endothelial-specific ANKS1A. In addition, human induced pluripotent stem cell-derived BBBs (iBBBs) were generated from endothelial cells lacking ANKS1A or carrying the rs6930932 variant. Those iBBBs exhibit both reduced cell surface LRP1 and impaired Aß clearance. Thus, our findings demonstrate that ANKS1A regulates LRP1-mediated Aß clearance across the BBB.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Humanos , Camundongos , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
14.
Nat Commun ; 14(1): 5650, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704627

RESUMO

The zoonotic Rift Valley fever virus (RVFV) can cause severe disease in humans and has pandemic potential, yet no approved vaccine or therapy exists. Here we describe a dual-mechanism human monoclonal antibody (mAb) combination against RVFV that is effective at minimal doses in a lethal mouse model of infection. We structurally analyze and characterize the binding mode of a prototypical potent Gn domain-A-binding antibody that blocks attachment and of an antibody that inhibits infection by abrogating the fusion process as previously determined. Surprisingly, the Gn domain-A antibody does not directly block RVFV Gn interaction with the host receptor low density lipoprotein receptor-related protein 1 (LRP1) as determined by a competitive assay. This study identifies a rationally designed combination of human mAbs deserving of future investigation for use in humans against RVFV infection. Using a two-pronged mechanistic approach, we demonstrate the potent efficacy of a rationally designed combination mAb therapeutic.


Assuntos
Anticorpos Monoclonais , Vírus da Febre do Vale do Rift , Animais , Camundongos , Humanos , Bioensaio , Modelos Animais de Doenças , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade
15.
PLoS One ; 18(9): e0285834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768946

RESUMO

Multidrug resistance (MDR) is a major obstacle to successful cancer chemotherapy. A typical form of MDR is due to the overexpression of membrane transport proteins., such as Glycoprotein-P (P-gp), resulting in an increased drug efflux preventing drug cytotoxicity. P-gp is mainly localized on the plasma membrane; however, it can also be endocytosed resulting in the trafficking of P-gp in endoplasmic reticulum, Golgi, endosomes, and lysosomes. The lysosomal P-gp has been found to be capable of transporting and sequestering P-gp substrates (e.g., Doxorubicin (Dox)) into lysosomes to protect cells against cytotoxic drugs. Many translational studies have shown that low-density lipoprotein receptor-related protein-1 (LRP-1) is involved in endocytosis and regulation of signalling pathways. LRP-1 mediates the endocytosis of a diverse set of extracellular ligands that play important roles in tumor progression. Here, we investigated the involvement of LRP-1 in P-gp expression and subcellular redistribution from the cell surface to the lysosomal membrane by endocytosis and its potential implication in P-gp-mediated multidrug resistance in MCF-7 cells. Our results showed that MCF-7 resistant cells (MCF-7R) overexpressed the P-gp, LRP-1 and LAMP-1 and were 11.66-fold resistant to Dox. Our study also revealed that in MCF-7R cells, lysosomes were predominantly high density compared to sensitized cells and P-gp was localized in the plasma membrane and lysosomes. LRP-1 blockade reduced lysosomes density and level of LAMP-1 and P-gp. It also affected the subcellular distribution of P-gp. Under these conditions, we restored Dox nuclear uptake and ERK 1/2 activation thus leading to MCF-7R cell sensitization to Dox. Our data suggest that LRP-1 is able to modulate the P-gp expression and subcellular redistribution by endocytosis and to potentiate the P-gp-acquired Dox resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Humanos , Antineoplásicos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte/farmacologia , Doxorrubicina/farmacologia , Células MCF-7 , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
16.
Congenit Anom (Kyoto) ; 63(6): 190-194, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37563890

RESUMO

A family of Pakistani origin, segregating polydactyly, and phalangeal synostosis in an autosomal dominant manner, has been investigated and presented in the present report. Whole-exome sequencing (WES), followed by segregation analysis using Sanger sequencing, revealed a heterozygous missense variant [c.G1696A, p.(Gly566Ser)] in the LRP4 gene located on human chromosome 11p11.2. Homology protein modeling revealed the mutant Ser566 generated new interactions with at least four other amino acids and disrupted protein folding and function. Our findings demonstrated the first direct evidence of involvement of LRP4 in causing polydactyly and phalangeal synostosis in the same family. This study highlighted the importance of inclusion of LRP4 gene in screening individuals presenting polydactyly in hands and feet, and phalangeal synostosis in the same family.


Assuntos
Polidactilia , Sinostose , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Paquistão , Polidactilia/diagnóstico , Sinostose/diagnóstico , Sinostose/genética , Dedos , Linhagem , Proteínas Relacionadas a Receptor de LDL/genética
17.
Cells ; 12(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37408279

RESUMO

The brain undergoes oxidative stress and mitochondrial dysfunction following physiological insults such as Traumatic brain injury (TBI), ischemia-reperfusion, and stroke. Pharmacotherapeutics targeting mitochondria (mitoceuticals) against oxidative stress include antioxidants, mild uncouplers, and enhancers of mitochondrial biogenesis, which have been shown to improve pathophysiological outcomes after TBI. However, to date, there is no effective treatment for TBI. Studies have suggested that the deletion of LDL receptor-related protein 1 (LRP1) in adult neurons or glial cells could be beneficial and promote neuronal health. In this study, we used WT and LRP1 knockout (LKO) mouse embryonic fibroblast cells to examine mitochondrial outcomes following exogenous oxidative stress. Furthermore, we developed a novel technique to measure mitochondrial morphometric dynamics using transgenic mitochondrial reporter mice mtD2g (mitochondrial-specific Dendra2 green) in a TBI model. We found that oxidative stress increased the quantity of fragmented and spherical-shaped mitochondria in the injury core of the ipsilateral cortex following TBI, whereas rod-like elongated mitochondria were seen in the corresponding contralateral cortex. Critically, LRP1 deficiency significantly decreased mitochondrial fragmentation, preserving mitochondrial function and cell growth following exogenous oxidative stress. Collectively, our results show that targeting LRP1 to improve mitochondrial function is a potential pharmacotherapeutic strategy against oxidative damage in TBI and other neurodegenerative diseases.


Assuntos
Lesões Encefálicas Traumáticas , Fibroblastos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Estresse Oxidativo , Animais , Camundongos , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Fibroblastos/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
18.
Sci Adv ; 9(28): eadh2264, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450601

RESUMO

Rift Valley fever virus (RVFV) is an emerging arbovirus found in Africa. While RVFV is pantropic and infects many cells and tissues, viral replication and necrosis within the liver play a critical role in mediating severe disease. The low-density lipoprotein receptor-related protein 1 (Lrp1) is a recently identified host factor for cellular entry and infection by RVFV. The biological significance of Lrp1, including its role in hepatic disease in vivo, however, remains to be determined. Because Lrp1 has a high expression level in hepatocytes, we developed a mouse model in which Lrp1 is specifically deleted in hepatocytes to test how the absence of liver Lrp1 expression affects RVF pathogenesis. Mice lacking Lrp1 expression in hepatocytes showed minimal RVFV replication in the liver, longer time to death, and altered clinical signs toward neurological disease. In contrast, RVFV infection levels in other tissues showed no difference between the two genotypes. Therefore, Lrp1 is essential for RVF hepatic disease in mice.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Camundongos , Febre do Vale de Rift/genética , Vírus da Febre do Vale do Rift/genética , África , Hepatócitos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
19.
Phytomedicine ; 118: 154965, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451152

RESUMO

BACKGROUND: A neurodevelopmental illness with a high frequency and unidentified pathophysiology is known as autism spectrum disorder (ASD). A research hotspot in this field is the identification of disease-specific biomarkers and drug intervention targets. Traditional Chinese medicine (TCM) can eliminate the symptoms of autism by precisely regulating human physiology. The Qi Bi Anshen decoction (QAT) is a commonly used TCM clinical drug commonly-used to treat for treating ASD. However, the primary active ingredients and underlying mechanisms of action of this decoction remain unknown. PURPOSE: This study aimed to investigate the active ingredients and pharmacodynamics of QAT in the treatment of ASD using a Sprague-Dawley rat model that resembled autism. METHODS: Autism-like rat models were established through intracerebroventricular injections of propionic acid (PPA). Subsequently, the rats were treated with QAT, and their efficacy was evaluated using the three-chamber method to analyze social interactions and grooming behavior. Additionally, open-field tests, elevated cross-maze tests, hematoxylin and eosin staining, Nissl staining, and enzyme-linked immunosorbent assays were performed; Western blot analysis was employed to determine the expression of synaptic plasticity-related proteins. Utilizing ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS), the effectiveness of active QAT components was assessed, and potential QAT targets were screened through molecular docking, surface plasmon resonance, and thermal migration experiments. To better understand the precise processes involved in treating ASD with active QAT components, in vivo and in vitro knockdown tests were also performed. RESULTS: QATexhibited a significant improvement in autism-like behavior and a notable increase in the production of proteins associated with synaptic plasticity. Furthermore, luteolin (LUT), identified as a potentially important active ingredient in QAT for treating ASD, reduced matrix metallopeptidase-9 (MMP9) expression. However, this effect was attenuated by the knockdown of low-density lipoprotein receptor-associated protein 1 (LRP1), which is the target binding site for LUT. CONCLUSIONS: LUT emerges as a potentially crucial active component of QAT in the treatment of ASD, with the ability to antagonize LRP1 and subsequently reduce MMP9 expression.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Medicamentos de Ervas Chinesas , Receptores de Lipoproteínas , Ratos , Animais , Humanos , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/diagnóstico , Luteolina/uso terapêutico , Metaloproteinase 9 da Matriz , Cromatografia Líquida , Simulação de Acoplamento Molecular , Qi , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/uso terapêutico
20.
HGG Adv ; 4(3): 100208, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37305557

RESUMO

Cognitive functioning is heritable, with metabolic risk factors known to accelerate age-associated cognitive decline. Identifying genetic underpinnings of cognition is thus crucial. Here, we undertake single-variant and gene-based association analyses upon 6 neurocognitive phenotypes across 6 cognition domains in whole-exome sequencing data from 157,160 individuals of the UK Biobank cohort to expound the genetic architecture of human cognition. We report 20 independent loci associated with 5 cognitive domains while controlling for APOE isoform-carrier status and metabolic risk factors; 18 of which were not previously reported, and implicated genes relating to oxidative stress, synaptic plasticity and connectivity, and neuroinflammation. A subset of significant hits for cognition indicates mediating effects via metabolic traits. Some of these variants also exhibit pleiotropic effects on metabolic traits. We further identify previously unknown interactions of APOE variants with LRP1 (rs34949484 and others, suggestively significant), AMIGO1 (rs146766120; pAla25Thr, significant), and ITPR3 (rs111522866, significant), controlling for lipid and glycemic risks. Our gene-based analysis also suggests that APOC1 and LRP1 have plausible roles along shared pathways of amyloid beta (Aß) and lipid and/or glucose metabolism in affecting complex processing speed and visual attention. In addition, we report pairwise suggestive interactions of variants harbored in these genes with APOE affecting visual attention. Our report based on this large-scale exome-wide study highlights the effects of neuronal genes, such as LRP1, AMIGO1, and other genomic loci, thus providing further evidence of the genetic underpinnings for cognition during aging.


Assuntos
Disfunção Cognitiva , Exoma , Humanos , Exoma/genética , Peptídeos beta-Amiloides , Cognição , Apolipoproteínas E/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA