Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Phytomedicine ; 118: 154965, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451152

RESUMO

BACKGROUND: A neurodevelopmental illness with a high frequency and unidentified pathophysiology is known as autism spectrum disorder (ASD). A research hotspot in this field is the identification of disease-specific biomarkers and drug intervention targets. Traditional Chinese medicine (TCM) can eliminate the symptoms of autism by precisely regulating human physiology. The Qi Bi Anshen decoction (QAT) is a commonly used TCM clinical drug commonly-used to treat for treating ASD. However, the primary active ingredients and underlying mechanisms of action of this decoction remain unknown. PURPOSE: This study aimed to investigate the active ingredients and pharmacodynamics of QAT in the treatment of ASD using a Sprague-Dawley rat model that resembled autism. METHODS: Autism-like rat models were established through intracerebroventricular injections of propionic acid (PPA). Subsequently, the rats were treated with QAT, and their efficacy was evaluated using the three-chamber method to analyze social interactions and grooming behavior. Additionally, open-field tests, elevated cross-maze tests, hematoxylin and eosin staining, Nissl staining, and enzyme-linked immunosorbent assays were performed; Western blot analysis was employed to determine the expression of synaptic plasticity-related proteins. Utilizing ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS), the effectiveness of active QAT components was assessed, and potential QAT targets were screened through molecular docking, surface plasmon resonance, and thermal migration experiments. To better understand the precise processes involved in treating ASD with active QAT components, in vivo and in vitro knockdown tests were also performed. RESULTS: QATexhibited a significant improvement in autism-like behavior and a notable increase in the production of proteins associated with synaptic plasticity. Furthermore, luteolin (LUT), identified as a potentially important active ingredient in QAT for treating ASD, reduced matrix metallopeptidase-9 (MMP9) expression. However, this effect was attenuated by the knockdown of low-density lipoprotein receptor-associated protein 1 (LRP1), which is the target binding site for LUT. CONCLUSIONS: LUT emerges as a potentially crucial active component of QAT in the treatment of ASD, with the ability to antagonize LRP1 and subsequently reduce MMP9 expression.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Medicamentos de Ervas Chinesas , Receptores de Lipoproteínas , Ratos , Animais , Humanos , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/diagnóstico , Luteolina/uso terapêutico , Metaloproteinase 9 da Matriz , Cromatografia Líquida , Simulação de Acoplamento Molecular , Qi , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/uso terapêutico
2.
J Cell Biochem ; 124(7): 1040-1049, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37288821

RESUMO

The acute ischemic stroke therapy of choice is the application of Alteplase, a drug containing the enzyme tissue-type plasminogen activator (tPa) which rapidly destabilizes blood clots. A central hallmark of stroke pathology is blood-brain barrier (BBB) breakdown associated with tight junction (TJ) protein degradation, which seems to be significantly more severe under therapeutic conditions. The exact mechanisms how tPa facilitates BBB breakdown are not entirely understood. There is evidence that an interaction with the lipoprotein receptor-related protein 1 (LRP1), allowing tPa transport across the BBB into the central nervous system, is necessary for this therapeutic side effect. Whether tPa-mediated disruption of BBB integrity is initiated directly on microvascular endothelial cells or other brain cell types is still elusive. In this study we could not observe any changes of barrier properties in microvascular endothelial cells after tPa incubation. However, we present evidence that tPa causes changes in microglial activation and BBB breakdown after LRP1-mediated transport across the BBB. Using a monoclonal antibody targeting the tPa binding sites of LRP1 decreased tPa transport across an endothelial barrier. Our results indicate that limiting tPa transport from the vascular system into the brain by coapplication of a LRP1-blocking monoclonal antibody might be a novel approach to minimize tPa-related BBB damage during acute stroke therapy.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ativador de Plasminogênio Tecidual/efeitos adversos , Ativador de Plasminogênio Tecidual/metabolismo , Células Endoteliais/metabolismo , AVC Isquêmico/induzido quimicamente , AVC Isquêmico/complicações , AVC Isquêmico/tratamento farmacológico , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Anticorpos Monoclonais/uso terapêutico , Lipoproteínas LDL
3.
J Clin Invest ; 118(1): 161-72, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18060043

RESUMO

Injury to the peripheral nervous system (PNS) initiates a response controlled by multiple extracellular mediators, many of which contribute to the development of neuropathic pain. Schwann cells in an injured nerve demonstrate increased expression of LDL receptor-related protein-1 (LRP1), an endocytic receptor for diverse ligands and a cell survival factor. Here we report that a fragment of LRP1, in which a soluble or shed form of LRP1 with an intact alpha-chain (sLRP-alpha), was shed by Schwann cells in vitro and in the PNS after injury. Injection of purified sLRP-alpha into mouse sciatic nerves prior to chronic constriction injury (CCI) inhibited p38 MAPK activation (P-p38) and decreased expression of TNF-alpha and IL-1beta locally. sLRP-alpha also inhibited CCI-induced spontaneous neuropathic pain and decreased inflammatory cytokine expression in the spinal dorsal horn, where neuropathic pain processing occurs. In cultures of Schwann cells, astrocytes, and microglia, sLRP-alpha inhibited TNF-alpha-induced activation of p38 MAPK and ERK/MAPK. The activity of sLRP-alpha did not involve TNF-alpha binding, but rather glial cell preconditioning, so that the subsequent response to TNF-alpha was inhibited. Our results show that sLRP-alpha is biologically active and may attenuate neuropathic pain. In the PNS, the function of LRP1 may reflect the integrated activities of the membrane-anchored and shed forms of LRP1.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Dor/prevenção & controle , Nervo Isquiático/lesões , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Células Cultivadas , Doença Crônica , Constrição , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/biossíntese , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/isolamento & purificação , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Dor/metabolismo , Dor/patologia , Células do Corno Posterior/metabolismo , Células do Corno Posterior/patologia , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA