Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 684
Filtrar
1.
Nat Commun ; 15(1): 3823, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714643

RESUMO

The CRISPR-Cas12a system is more advantageous than the widely used CRISPR-Cas9 system in terms of specificity and multiplexibility. However, its on-target editing efficiency is typically much lower than that of the CRISPR-Cas9 system. Here we improved its on-target editing efficiency by simply incorporating 2-aminoadenine (base Z, which alters canonical Watson-Crick base pairing) into the crRNA to increase the binding affinity between crRNA and its complementary DNA target. The resulting CRISPR-Cas12a (named zCRISPR-Cas12a thereafter) shows an on-target editing efficiency comparable to that of the CRISPR-Cas9 system but with much lower off-target effects than the CRISPR-Cas9 system in mammalian cells. In addition, zCRISPR-Cas12a can be used for precise gene knock-in and highly efficient multiplex genome editing. Overall, the zCRISPR-Cas12a system is superior to the CRISPR-Cas9 system, and our simple crRNA engineering strategy may be extended to other CRISPR-Cas family members as well as their derivatives.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Humanos , Células HEK293 , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA/genética , RNA/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas de Bactérias , Endodesoxirribonucleases
2.
Nat Commun ; 15(1): 3699, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698035

RESUMO

In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.


Assuntos
Archaea , Vírus de Archaea , Vírus de Archaea/genética , Archaea/genética , Archaea/virologia , Archaea/imunologia , Regiões Promotoras Genéticas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Virais/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Metagenoma/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética
3.
J Mol Biol ; 436(10): 168550, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38575054

RESUMO

The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp. Cas12a (AsCas12a) binds preferentially, and independently of crRNA, to a suite of branched DNA structures, such as the Holliday junction (HJ), replication fork and D-loops, compared with single- or double-stranded DNA, and promotes their degradation. Further, our study revealed that AsCas12a binds to the HJ, specifically at the crossover region, protects it from DNase I cleavage and renders a pair of thymine residues in the HJ homologous core hypersensitive to KMnO4 oxidation, suggesting DNA melting and/or distortion. Notably, these structural changes enabled AsCas12a to resolve HJ into nonligatable intermediates, and subsequently their complete degradation. We further demonstrate that crRNA impedes HJ cleavage by AsCas12a, and that of Lachnospiraceae bacterium Cas12a, without affecting their DNA-binding ability. We identified a separation-of-function variant, which uncouples DNA-binding and DNA cleavage activities of AsCas12a. Importantly, we found robust evidence that AsCas12a endonuclease also has 3'-to-5' and 5'-to-3' exonuclease activity, and that these two activities synergistically promote degradation of DNA, yielding di- and mononucleotides. Collectively, this study significantly advances knowledge about the substrate specificity of AsCas12a and provides important insights into the degradation of different types of DNA substrates.


Assuntos
Acidaminococcus , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Especificidade por Substrato , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/química , Acidaminococcus/enzimologia , Acidaminococcus/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Exonucleases/metabolismo , Exonucleases/genética , DNA Cruciforme/metabolismo , DNA Cruciforme/genética , DNA/metabolismo , DNA/genética
4.
Nat Commun ; 15(1): 3324, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637512

RESUMO

CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1-5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6-8. Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes.


Assuntos
Proteínas Associadas a CRISPR , RNA Catalítico , RNA/metabolismo , RNA Catalítico/metabolismo , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Domínio Catalítico , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Clivagem do RNA
5.
Nucleic Acids Res ; 52(8): 4739-4755, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567723

RESUMO

Mutagenesis driving genetic diversity is vital for understanding and engineering biological systems. However, the lack of effective methods to generate in-situ mutagenesis in multiple genomic loci combinatorially limits the study of complex biological functions. Here, we design and construct MultiduBE, a dCas12a-based multiplexed dual-function base editor, in an all-in-one plasmid for performing combinatorial in-situ mutagenesis. Two synthetic effectors, duBE-1a and duBE-2b, are created by amalgamating the functionalities of cytosine deaminase (from hAPOBEC3A or hAID*Δ ), adenine deaminase (from TadA9), and crRNA array processing (from dCas12a). Furthermore, introducing the synthetic separator Sp4 minimizes interference in the crRNA array, thereby facilitating multiplexed in-situ mutagenesis in both Escherichia coli and Bacillus subtilis. Guided by the corresponding crRNA arrays, MultiduBE is successfully employed for cell physiology reprogramming and metabolic regulation. A novel mutation conferring streptomycin resistance has been identified in B. subtilis and incorporated into the mutant strains with multiple antibiotic resistance. Moreover, surfactin and riboflavin titers of the combinatorially mutant strains improved by 42% and 15-fold, respectively, compared with the control strains with single gene mutation. Overall, MultiduBE provides a convenient and efficient way to perform multiplexed in-situ mutagenesis.


Assuntos
Bacillus subtilis , Sistemas CRISPR-Cas , Escherichia coli , Edição de Genes , Mutagênese , Escherichia coli/genética , Bacillus subtilis/genética , Edição de Genes/métodos , Plasmídeos/genética , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Mutação , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Aminoidrolases
6.
Anal Chem ; 96(16): 6337-6346, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613479

RESUMO

The arsM gene is a critical biomarker for the potential risk of arsenic exposure in paddy soil. However, on-site screening of arsM is limited by the lack of high-throughput point-of-use (POU) methods. Here, a multiplex CRISPR/Cas12a microfluidic paper-based analytical device (µPAD) was constructed for the high-throughput POU analysis of arsM, with cascade amplification driven by coupling crRNA-enhanced Cas12a and horseradish peroxidase (HRP)-modified probes. First, seven crRNAs were designed to recognize arsM, and their LODs and background signal intensities were evaluated. Next, a step-by-step iterative approach was utilized to develop and optimize coupling systems, which improved the sensitivity 32 times and eliminated background signal interference. Then, ssDNA reporters modified with HRP were introduced to further lower the LOD to 16 fM, and the assay results were visible to the naked eye. A multiplex channel microfluidic paper-based chip was developed for the reaction integration and simultaneous detection of 32 samples and generated a recovery rate between 87.70 and 114.05%, simplifying the pretreatment procedures and achieving high-throughput POU analysis. Finally, arsM in Wanshan paddy soil was screened on site, and the arsM abundance ranged from 1.05 × 106 to 6.49 × 107 copies/g; this result was not affected by the environmental indicators detected in the study. Thus, a coupling crRNA-based cascade amplification method for analyzing arsM was constructed, and a microfluidic device was developed that contains many more channels than previous paper chips, greatly improving the analytical performance in paddy soil samples and providing a promising tool for the on-site screening of arsM at large scales.


Assuntos
Solo , Solo/química , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/química , Sistemas CRISPR-Cas , Oryza/química , Poluentes do Solo/análise , Dispositivos Lab-On-A-Chip , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos
7.
Anal Chem ; 96(16): 6426-6435, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38604773

RESUMO

Sensors designed based on the trans-cleavage activity of CRISPR/Cas12a systems have opened up a new era in the field of biosensing. The current design of CRISPR/Cas12-based sensors in the "on-off-on" mode mainly focuses on programming the activator strand (AS) to indirectly switch the trans-cleavage activity of Cas12a in response to target information. However, this design usually requires the help of additional auxiliary probes to keep the activator strand in an initially "blocked" state. The length design and dosage of the auxiliary probe need to be strictly optimized to ensure the lowest background and the best signal-to-noise ratio. This will inevitably increase the experiment complexity. To solve this problem, we propose using AS after the "RESET" effect to directly regulate the Cas12a enzymatic activity. Initially, the activator strand was rationally designed to be embedded in a hairpin structure to deprive its ability to activate the CRISPR/Cas12a system. When the target is present, target-mediated strand displacement causes the conformation change in the AS, the hairpin structure is opened, and the CRISPR/Cas12a system is reactivated; the switchable structure of AS can be used to regulate the degree of activation of Cas12a according to the target concentration. Due to the advantages of low background and stability, the CRISPR/Cas12a-based strategy can not only image endogenous biomarkers (miR-21) in living cells but also enable long-term and accurate imaging analysis of the process of exogenous virus invasion of cells. Release and replication of virus genome in host cells are indispensable hallmark events of cell infection by virus; sensitive monitoring of them is of great significance to revealing virus infection mechanism and defending against viral diseases.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , MicroRNAs , Sistemas CRISPR-Cas/genética , Técnicas Biossensoriais/métodos , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , Regulação Alostérica , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células HEK293
8.
Nat Commun ; 15(1): 3256, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627399

RESUMO

Spacer acquisition step in CRISPR-Cas system involves the recognition and subsequent integration of protospacer by the Cas1-Cas2 complex in CRISPR-Cas systems. Here we report an anti-CRISPR protein, AcrVA5, and reveal the mechanisms by which it strongly inhibits protospacer integration. Our biochemical data shows that the integration by Cas1-Cas2 was abrogated in the presence of AcrVA5. AcrVA5 exhibits low binding affinity towards Cas2 and acetylates Cas2 at Lys55 on the binding interface of the Cas2 and AcrVA5 N-terminal peptide complex to inhibit the Cas2-mediated endonuclease activity. Moreover, a detailed structural comparison between our crystal structure and homolog structure shows that binding of AcrVA5 to Cas2 causes steric hindrance to the neighboring protospacer resulting in the partial disassembly of the Cas1-Cas2 and protospacer complex, as demonstrated by electrophoretic mobility shift assay. Our study focuses on this mechanism of spacer acquisition inhibition and provides insights into the biology of CRISPR-Cas systems.


Assuntos
Proteínas Associadas a CRISPR , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas
9.
J Phys Chem B ; 128(15): 3563-3574, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38573978

RESUMO

Cas1 and Cas2 are highly conserved proteins among the clustered regularly interspaced short palindromic repeat Cas (CRISPR-Cas) systems and play a crucial role in protospacer selection and integration. According to the double-forked CRISPR Cas1-Cas2 complex, we conducted extensive all-atom molecular dynamics simulations to investigate the protospacer DNA binding and recognition. Our findings revealed that single-point amino acid mutations in Cas1 or in Cas2 had little impact on the binding of the protospacer, both in the binding and precatalytic states. In contrast, multiple-point amino acid mutations, particularly G74A, P80L, and V89A mutations on Cas2 and Cas2' proteins (m-multiple1 system), significantly affected the protospacer binding and selection. Notably, mutations on Cas2 and Cas2' led to an increased number of hydrogen bonds (#HBs) between Cas2&Cas2' and the dsDNA in the m-multiple1 system compared with the wild-type system. And the strong electrostatic interactions between Cas1-Cas2 and the protospacer DNA (psDNA) in the m-multiple1 system again suggested the increase in the binding affinity of protospacer acquisition. Specifically, mutations in Cas2 and Cas2' can remotely make the protospacer adjacent motif complementary (PAMc) sequences better in recognition by the two active sites, while multiple mutations K211E, P202Q, P212L, R138L, V134A, A286T, P282H, and P294H on Cas1a/Cas1b&Cas1a'/Cas1b' (m-multiple2 system) decrease the #HBs and the electrostatic interactions and make the PAMc worse in recognition compared with the wild-type system.


Assuntos
Proteínas Associadas a CRISPR , Escherichia coli , Escherichia coli/genética , Simulação de Dinâmica Molecular , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , DNA/química , Aminoácidos/metabolismo
10.
ACS Sens ; 9(4): 1877-1885, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38573977

RESUMO

The precise determination of DNA methylation at specific sites is critical for the timely detection of cancer, as DNA methylation is closely associated with the initiation and progression of cancer. Herein, a novel ratiometric fluorescence method based on the methylation-sensitive restriction enzyme (MSRE), CRISPR/Cas12a, and catalytic hairpin assembly (CHA) amplification were developed to detect site-specific methylation with high sensitivity and specificity. In detail, AciI, one of the commonly used MSREs, was employed to distinguish the methylated target from nonmethylated targets. The CRISPR/Cas12a system was utilized to recognize the site-specific target. In this process, the protospacer adjacent motif and crRNA-dependent identification, the single-base resolution of Cas12a, can effectively ensure detection specificity. The trans-cleavage ability of Cas12a can convert one target into abundant activators and can then trigger the CHA reaction, leading to the accomplishment of cascaded signal amplification. Moreover, with the structural change of the hairpin probe during CHA, two labeled dyes can be spatially separated, generating a change of the Förster resonance energy transfer signal. In general, the proposed strategy of tandem CHA after the CRISPR/Cas12a reaction not only avoids the generation of false-positive signals caused by the target-similar nucleic acid but can also improve the sensitivity. The use of ratiometric fluorescence can eradicate environmental effects by self-calibration. Consequently, the proposed approach had a detection limit of 2.02 fM. This approach could distinguish between colorectal cancer and precancerous tissue, as well as between colorectal patients and healthy people. Therefore, the developed method can serve as an excellent site-specific methylation detection tool, which is promising for biological and disease studies.


Assuntos
Sistemas CRISPR-Cas , Metilação de DNA , Sistemas CRISPR-Cas/genética , Humanos , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição do DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Técnicas Biossensoriais/métodos
11.
Chem Commun (Camb) ; 60(39): 5197-5200, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38651297

RESUMO

Through the integration of CRISPR/Cpf1 with optogenetics and a reduction-responsive motif, we have developed a photoactivatable cross-linked crRNA that enables precise genome editing upon light exposure. This system also allows for termination of editing activity through external application of reducing agent. The dual-stimuli-responsive CRISPR/Cpf1 editing process operates in a unique OFF → ON → OFF sequence, making it a valuable tool for investigating time-sensitive biological events.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Humanos , Luz , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/química , RNA/química , RNA/genética
12.
Biomolecules ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672502

RESUMO

In recent years, CRISPR-Cas toolboxes for Streptomyces editing have rapidly accelerated natural product discovery and engineering. However, Cas efficiencies are oftentimes strain-dependent, and the commonly used Streptococcus pyogenes Cas9 (SpCas9) is notorious for having high levels of off-target toxicity effects. Thus, a variety of Cas proteins is required for greater flexibility of genetic manipulation within a wider range of Streptomyces strains. This study explored the first use of Acidaminococcus sp. Cas12j, a hypercompact Cas12 subfamily, for genome editing in Streptomyces and its potential in activating silent biosynthetic gene clusters (BGCs) to enhance natural product synthesis. While the editing efficiencies of Cas12j were not as high as previously reported efficiencies of Cas12a and Cas9, Cas12j exhibited higher transformation efficiencies compared to SpCas9. Furthermore, Cas12j demonstrated significantly improved editing efficiencies compared to Cas12a in activating BGCs in Streptomyces sp. A34053, a strain wherein both SpCas9 and Cas12a faced limitations in accessing the genome. Overall, this study expanded the repertoire of Cas proteins for genome editing in actinomycetes and highlighted not only the potential of recently characterized Cas12j in Streptomyces but also the importance of having an extensive genetic toolbox for improving the editing success of these beneficial microbes.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Edição de Genes/métodos , Acidaminococcus/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Família Multigênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Genoma Bacteriano
13.
Nat Commun ; 15(1): 3577, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678031

RESUMO

Genetic interactions mediate the emergence of phenotype from genotype, but technologies for combinatorial genetic perturbation in mammalian cells are challenging to scale. Here, we identify background-independent paralog synthetic lethals from previous CRISPR genetic interaction screens, and find that the Cas12a platform provides superior sensitivity and assay replicability. We develop the in4mer Cas12a platform that uses arrays of four independent guide RNAs targeting the same or different genes. We construct a genome-scale library, Inzolia, that is ~30% smaller than a typical CRISPR/Cas9 library while also targeting ~4000 paralog pairs. Screens in cancer cells demonstrate discrimination of core and context-dependent essential genes similar to that of CRISPR/Cas9 libraries, as well as detection of synthetic lethal and masking/buffering genetic interactions between paralogs of various family sizes. Importantly, the in4mer platform offers a fivefold reduction in library size compared to other genetic interaction methods, substantially reducing the cost and effort required for these assays.


Assuntos
Proteínas de Bactérias , Sistemas CRISPR-Cas , Endodesoxirribonucleases , Técnicas de Inativação de Genes , Humanos , Técnicas de Inativação de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , Biblioteca Gênica , Linhagem Celular Tumoral , Genes Essenciais , Células HEK293 , Epistasia Genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo
14.
Sci Adv ; 10(17): eadl0164, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657076

RESUMO

Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread. We show here that the principal form of collateral RNA degradation elicited by Leptotrichia shahii Cas13a expressed in Escherichia coli cells is the cleavage of anticodons in a subset of transfer RNAs (tRNAs) with uridine-rich anticodons. This tRNA cleavage is accompanied by inhibition of protein synthesis, thus providing defense from the phages. In addition, Cas13a-mediated tRNA cleavage indirectly activates the RNases of bacterial toxin-antitoxin modules cleaving messenger RNA, which could provide a backup defense. The mechanism of Cas13a-induced antiphage defense resembles that of bacterial anticodon nucleases, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module encompassing an anticodon nuclease.


Assuntos
Anticódon , Sistemas CRISPR-Cas , Escherichia coli , RNA de Transferência , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Leptotrichia/genética , Leptotrichia/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Bacteriófagos/genética , Clivagem do RNA
15.
Nucleic Acids Res ; 52(6): 2761-2775, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471818

RESUMO

CRISPR-Cas provides adaptive immunity in prokaryotes. Type III CRISPR systems detect invading RNA and activate the catalytic Cas10 subunit, which generates a range of nucleotide second messengers to signal infection. These molecules bind and activate a diverse range of effector proteins that provide immunity by degrading viral components and/or by disturbing key aspects of cellular metabolism to slow down viral replication. Here, we focus on the uncharacterised effector Csx23, which is widespread in Vibrio cholerae. Csx23 provides immunity against plasmids and phage when expressed in Escherichia coli along with its cognate type III CRISPR system. The Csx23 protein localises in the membrane using an N-terminal transmembrane α-helical domain and has a cytoplasmic C-terminal domain that binds cyclic tetra-adenylate (cA4), activating its defence function. Structural studies reveal a tetrameric structure with a novel fold that binds cA4 specifically. Using pulse EPR, we demonstrate that cA4 binding to the cytoplasmic domain of Csx23 results in a major perturbation of the transmembrane domain, consistent with the opening of a pore and/or disruption of membrane integrity. This work reveals a new class of cyclic nucleotide binding protein and provides key mechanistic detail on a membrane-associated CRISPR effector.


Many anti-viral defence systems generate a cyclic nucleotide signal that activates cellular defences in response to infection. Type III CRISPR systems use a specialised polymerase to make cyclic oligoadenylate (cOA) molecules from ATP. These can bind and activate a range of effector proteins that slow down viral replication. In this study, we focussed on the Csx23 effector from the human pathogen Vibrio cholerae ­ a trans-membrane protein that binds a cOA molecule, leading to anti-viral immunity. Structural studies revealed a new class of nucleotide recognition domain, where cOA binding is transmitted to changes in the trans-membrane domain, most likely resulting in membrane depolarisation. This study highlights the diversity of mechanisms for anti-viral defence via nucleotide signalling.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Vibrio cholerae , Nucleotídeos de Adenina/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos , Sistemas do Segundo Mensageiro , Proteínas de Bactérias/metabolismo , Vibrio cholerae/metabolismo
16.
Nucleic Acids Res ; 52(8): 4502-4522, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38477377

RESUMO

The RNA-guided CRISPR-associated (Cas) enzyme Cas12a cleaves specific double-stranded (ds-) or single-stranded (ss-) DNA targets (in cis), unleashing non-specific ssDNA cleavage (in trans). Though this trans-activity is widely coopted for diagnostics, little is known about target determinants promoting optimal enzyme performance. Using quantitative kinetics, we show formation of activated nuclease proceeds via two steps whereby rapid binding of Cas12a ribonucleoprotein to target is followed by a slower allosteric transition. Activation does not require a canonical protospacer-adjacent motif (PAM), nor is utilization of such PAMs predictive of high trans-activity. We identify several target determinants that can profoundly impact activation times, including bases within the PAM (for ds- but not ssDNA targets) and sequences within and outside those complementary to the spacer, DNA topology, target length, presence of non-specific DNA, and ribose backbone itself, uncovering previously uncharacterized cleavage of and activation by RNA targets. The results provide insight into the mechanism of Cas12a activation, with direct implications on the role of Cas12a in bacterial immunity and for Cas-based diagnostics.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , DNA de Cadeia Simples , DNA , Endodesoxirribonucleases , RNA , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , DNA/genética , DNA/química , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , RNA/metabolismo , RNA/química , RNA/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , Cinética , Ativação Enzimática
17.
Angew Chem Int Ed Engl ; 63(20): e202403123, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38516796

RESUMO

The CRISPR-Cas12a system has emerged as a powerful tool for next-generation nucleic acid-based molecular diagnostics. However, it has long been believed to be effective only on DNA targets. Here, we investigate the intrinsic RNA-enabled trans-cleavage activity of AsCas12a and LbCas12a and discover that they can be directly activated by full-size RNA targets, although LbCas12a exhibits weaker trans-cleavage activity than AsCas12a on both single-stranded DNA and RNA substrates. Remarkably, we find that the RNA-activated Cas12a possesses higher specificity in recognizing mutated target sequences compared to DNA activation. Based on these findings, we develop the "Universal Nuclease for Identification of Virus Empowered by RNA-Sensing" (UNIVERSE) assay for nucleic acid testing. We incorporate a T7 transcription step into this assay, thereby eliminating the requirement for a protospacer adjacent motif (PAM) sequence in the target. Additionally, we successfully detect multiple PAM-less targets in HIV clinical samples that are undetectable by the conventional Cas12a assay based on double-stranded DNA activation, demonstrating unrestricted target selection with the UNIVERSE assay. We further validate the clinical utility of the UNIVERSE assay by testing both HIV RNA and HPV 16 DNA in clinical samples. We envision that the intrinsic RNA targeting capability may bring a paradigm shift in Cas12a-based nucleic acid detection and further enhance the understanding of CRISPR-Cas biochemistry.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , RNA , Sistemas CRISPR-Cas/genética , RNA/metabolismo , RNA/química , RNA/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Desoxirribonucleases/metabolismo , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/química , Humanos
18.
Nucleic Acids Res ; 52(7): 3896-3910, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38340341

RESUMO

The type III CRISPR-Cas effector complex Csm functions as a molecular Swiss army knife that provides multilevel defense against foreign nucleic acids. The coordinated action of three catalytic activities of the Csm complex enables simultaneous degradation of the invader's RNA transcripts, destruction of the template DNA and synthesis of signaling molecules (cyclic oligoadenylates cAn) that activate auxiliary proteins to reinforce CRISPR-Cas defense. Here, we employed single-molecule techniques to connect the kinetics of RNA binding, dissociation, and DNA hydrolysis by the Csm complex from Streptococcus thermophilus. Although single-stranded RNA is cleaved rapidly (within seconds), dual-color FCS experiments and single-molecule TIRF microscopy revealed that Csm remains bound to terminal RNA cleavage products with a half-life of over 1 hour while releasing the internal RNA fragments quickly. Using a continuous fluorescent DNA degradation assay, we observed that RNA-regulated single-stranded DNase activity decreases on a similar timescale. These findings suggest that after fast target RNA cleavage the terminal RNA cleavage products stay bound within the Csm complex, keeping the Cas10 subunit activated for DNA destruction. Additionally, we demonstrate that during Cas10 activation, the complex remains capable of RNA turnover, i.e. of ongoing degradation of target RNA.


Assuntos
Streptococcus thermophilus , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , RNA/metabolismo , RNA/química , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , DNA/química , DNA/genética , Cinética , Clivagem do RNA , Hidrólise , Imagem Individual de Molécula , Ligação Proteica
19.
Science ; 383(6682): 512-519, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301007

RESUMO

The generation of cyclic oligoadenylates and subsequent allosteric activation of proteins that carry sensory domains is a distinctive feature of type III CRISPR-Cas systems. In this work, we characterize a set of associated genes of a type III-B system from Haliangium ochraceum that contains two caspase-like proteases, SAVED-CHAT and PCaspase (prokaryotic caspase), co-opted from a cyclic oligonucleotide-based antiphage signaling system (CBASS). Cyclic tri-adenosine monophosphate (AMP)-induced oligomerization of SAVED-CHAT activates proteolytic activity of the CHAT domains, which specifically cleave and activate PCaspase. Subsequently, activated PCaspase cleaves a multitude of proteins, which results in a strong interference phenotype in vivo in Escherichia coli. Taken together, our findings reveal how a CRISPR-Cas-based detection of a target RNA triggers a cascade of caspase-associated proteolytic activities.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Caspases , Myxococcales , Proteólise , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Caspases/química , Caspases/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RNA/metabolismo , Myxococcales/enzimologia , Myxococcales/genética , Domínios Proteicos
20.
Angew Chem Int Ed Engl ; 63(16): e202400599, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38407550

RESUMO

Proteins capable of switching between distinct active states in response to biochemical cues are ideal for sensing and controlling biological processes. Activatable CRISPR-Cas systems are significant in precise genetic manipulation and sensitive molecular diagnostics, yet directly controlling Cas protein function remains challenging. Herein, we explore anti-CRISPR (Acr) proteins as modules to create synthetic Cas protein switches (CasPSs) based on computational chemistry-directed rational protein interface engineering. Guided by molecular fingerprint analysis, electrostatic potential mapping, and binding free energy calculations, we rationally engineer the molecular interaction interface between Cas12a and its cognate Acr proteins (AcrVA4 and AcrVA5) to generate a series of orthogonal protease-responsive CasPSs. These CasPSs enable the conversion of specific proteolytic events into activation of Cas12a function with high switching ratios (up to 34.3-fold). These advancements enable specific proteolysis-inducible genome editing in mammalian cells and sensitive detection of viral protease activities during virus infection. This work provides a promising strategy for developing CRISPR-Cas tools for controllable gene manipulation and regulation and clinical diagnostics.


Assuntos
Proteínas Associadas a CRISPR , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Endopeptidases/metabolismo , Proteases Virais/genética , Proteases Virais/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA